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1 Introduction

In 1900, David Hilbert published a list of twenty-three questions, all unsolved.

The tenth of these problems asked to perform the following:

Given a Diophantine equation with any number of unknown quan-
tities and with rational integral numerical coefficients: To devise a
process according to which it can be determined in a finite number
of operations whether the equation is solvable in rational integers.

(Note that in the above, a “rational integer” just means an integer.)

The problem was resolved in the negative by Yuri Matiyasevich in 1970.

In the following paper, I will give a brief introduction to the theory of Dio-
phantine sets as well as the theory of computability. I will then present the
Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem, which is immediately
comprehensible given just a cursory understanding of the mathematical basics,
and give some details of its proof. Finally, I will present some further work in
the area of Diophantine computability and various applications or corollaries of
the celebrated MRDP theorem.

To restate Hilbert’s Tenth Problem in modern terms: “Given a polynomial
equation with integer coefficients, is there an algorithm for Turing machines
which can decide, in a finite amount of time, whether or not a set of integer
solutions to the polynomial equation exists?” Phrased in these terms, two obser-
vations become evident. First, we see that Hilbert almost foresaw the concept
of algorithmic unsolvability before it was developed by Turing, Church, et al.
Second, we see that the question hints at a deep, fundamental connection be-
tween number theory, a storied field with much history, and the modern field of
computability theory.
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2 Diophantine equations and sets

First, we shall begin with a formal definition of a Diophantine equation.

Definition 1. Let D(x1, . . . , xm) be a polynomial in n variables with inte-
ger coefficients which admits only integer values for x1, . . . , xm. The equation
D(x1, . . . , xm) = 0 is called Diophantine.

More generally, we usually speak of a Diophantine equation as accepting two sets
of inputs. That is, D(a1, . . . , an, x1, . . . , xm) takes as input an n-tuple, called its
parameters, and an m-tuple, called its unknowns. (Intuitively, we immediately
recognize that n ≤ m+ 1.)

Definition 2. Let S be a subset of all n-tuples of integers and consider an
arbitrary Diophantine equation. If for every a ∈ S there exists an m-tuple
(x1, . . . , xm) such that D(a1, . . . , an, x1, . . . , xm) = 0, and the converse is also
true, then the set S is Diophantine. The dimension of the set is m. Simi-
larly, we consider D to be a Diophantine representation of S.

To save ourselves some work, let us consider the problem of limiting ourselves
to the natural numbers.

Lemma 1. Every natural number can be decomposed as the sum of squares of
four integers, not necessarily unique. (This is known as Lagrange’s four-square
theorem.)

Proof. The proof is given in Niven and Zuckerman (1960). It is surprisingly
involved.

Theorem 1. The problem of determining the existence or nonexistence of so-
lutions to a Diophantine equation which accepts natural numbers is reducible
to the problem of determining the existence or nonexistence of solutions to a
Diophantine equation which accepts integer values. The opposite is also true.

Proof. Since N ∈ Z, the second part is trivially true.

To prove the first part, consider a Diophantine equation D(x1, . . . , xm) = 0,
accepting only natural numbers for x1, . . . , xm.

Write xn = y2n,1 + y2n,2 + y2n,3 + y2n,4 for every n where each y is an integer; from
Lagrange’s four-square theorem, this is guaranteed to be possible. Substituting
into D, we obtain a Diophantine equation in 4m variables, all of which are
integers.

Diophantine sets and relations behave very well with respect to logical opera-
tions, which we can see in the following theorem.

Theorem 2. The union of two Diophantine sets of the same dimension is
Diophantine. The intersection of two Diophantine sets, of same or different
dimension, is Diophantine.
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Proof. Let S1, S2 be two Diophantine sets and let D1, D2 be their Diophantine
representations. If they are both of dimension m, then the Diophantine equation
D1(x1, . . . , xm)×D2(x1, . . . , xm) = 0 has a Diophantine set S1 ∪S2. Moreover,
regardless of dimension, D2

1 +D2
2 = 0 has a Diophantine set S1 ∩ S2.

3 Computability theory

For the purposes of the present paper, it is unnecessary to consider the full
formalization of a Turing machine. It suffices to be aware that a Turing machine
is a generalization of the idea of computers capable of doing basic tasks and
accept procedural lists of elementary instructions.

Definition 3. A subset S of N is called recursive if there exists an algorithm
which accepts a natural number n and is guaranteed to terminate after a finite
amount of time, after which it correctly outputs the truth value of the statement
n ∈ S.

Definition 4. A subset S of N is called recursively enumerable if there exists
an algorithm which accepts a natural number n and, if n ∈ S, is guaranteed to
terminate in a finite amount of time and confirm that n ∈ S. The algorithm
need not be guaranteed to terminate for inputs n 6∈ S, but must not give any
incorrect answers.

It is easy to see from the above that all recursive sets are recursively enumerable.
However, the fact that there exist recursively enumerable sets that are not
recursive is nontrivial. The difference between the conditions is clear; recursively
enumerable sets are not required to terminate if the input is not in the solution
set S. However, it is not immediately clear that the set of recursively enumerable
sets that are not also recursive is nonempty. Thankfully, we have the following
theorem:

Theorem 3. A simple set is a set that is co-infinite and recursively enumer-
able but also such that every infinite subset of its complement is not recursively
enumerable. Simple sets are not recursive.

Proof. Given in Soare (1987).

We may reformulate a different definition of recursively enumerable in order to
make the resolution of Hilbert’s Tenth Problem a little easier.

Definition 5. A set S is recursively enumerable if there exists an algorithm
that enumerates S.

It is not immediately clear that this definition is equivalent to the previously
stated one. However, it is straightforward to prove.
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Theorem 4. The two given definitions of recursive enumerability are equiva-
lent.

Proof. Take a set S ⊂ N. First suppose that there exists an algorithm that is
guaranteed to terminate on inputs contained in S and run infinitely for inputs
not contained in S. Let this algorithm be denoted A(n) where n is its input.

To show that there exists an algorithm for enumerating the members of S,
consider the following construction: Run A(0) for one time step, then run
A(0), A(1) for one time step, then run A(0), A(1), A(2) for one time step, and
so on and so forth. This described algorithm will “eventually” reach arbitrarily
large timesteps for A(n) given any choice of n, and so for all n ∈ S it is guar-
anteed to confirm that n ∈ S in a finite span of time. Modify A(n) to print n
if it halts, and we have the desired enumeration.

Conversely we shall suppose that there exists an algorithm that enumerates S;
call it A. To construct an algorithm B(n) that halts only if n ∈ S, simply run
A and halt if n is printed.

4 The MRDP theorem

The most succint statement of the MRDP theorem is as follows:

Theorem 5. A set is Diophantine if and only if it is recursively enumerable.

The existence of recursively enumerable sets that are not recursive immediately
resolves Hilbert’s Tenth Problem, because it implies the existence of a Diophan-
tine set that is not recursive.

To see this, consider the following reasoning: Let S be a Diophantine set and
let D(a, x1, . . . , xm) be its Diophantine representation. By definition, a ∈ S if
and only if there exists a ∈ N such that D(a1, . . . , an, x) = 0 has a solution
m-tuple (x1, . . . , xm). Suppose also that there does exist an algorithm capable
of deciding the solvability of arbitrary Diophantine equations. This algorithm
would be capable of deciding, in a finite amount of time, whether or not a ∈ S.
As such, this would mean that every Diophantine set is recursive. However,
the MRDP theorem asserts that every set is Diophantine if and only if it is
recursively enumerable, so this implies that all recursively enumerable sets are
also recursive, which is untrue. The contradiction yields a negative answer to
Hilbert’s Tenth Problem.

4.1 Overview of the proof

The proof can be very generally separated into two major parts. First, Davis,
Putnam, and Robinson showed in 1961 that every recursively enumerable set is
exponential Diophantine, which is defined as the following:
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Definition 6. A set is exponential Diophantine if its Diophantine repre-
sentation is a polynomial which allows exponentiation.

(The definition is rough at the moment, but hopefully the meaning will become
clarified in a more detailed treatment later on.)

Second, Matiyasevich was able to show in 1970 that sets which are exponen-
tial Diophantine sets are also Diophantine, that is, that exponentiation is a
Diophantine relation.

The immediate corollary, of course, is the MRDP theorem.

4.2 Every recursively enumerable set is exponential Dio-
phantine

Davis et al. (1960) give the full proof, which is quite technical and will not be
reproduced. However, they do give some interesting corollaries to their main
theorem, stated below:

Theorem 6. Every recursively enumerable set is exponential Diophantine.

Applying the same argument as before, we may see that:

Corollary 1. There exists no algorithm for the determination of solvability of
arbitrary exponential Diophantine equations.

Proof. By contradiction. Identical to proof for Diophantine equations from the
full MRDP theorem.

Perhaps a little more interestingly, they note the following corollary:

Corollary 2. There exists an algorithm which will accept a particular axiomati-
zation of number theory and output an exponential Diophantine equation which
has no solution, but cannot be proved to be unsolvable from the given axiomati-
zation.

Compare to the following statement of Godel’s first incompleteness theorem:

Theorem 7. In any sufficiently strong system of arithmetic, there exists a
statement that is true, but cannot be proven to be true in that system.

From this “incomplete” version of the MRDP theorem alone, we already see
a remarkable connection between Godelian incompleteness and number the-
ory.

4.3 Exponential Diophantine sets are Diophantine

Let βb(0) = 1 and βb(n+1) = bβb(n). Let αb(0) = 0, αb(1) = 1, and αb(n+1) =
bαb(n+ 1)− αb(n) for b ≥ 2.
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Before we may prove that exponentiation is Diophantine, we must prove that
some sets defined by recurrent relations are Diophantine, which is surprisingly
much easier. After the development of two lemmas, we then can arrive at the
primary result.

Lemma 2. The set of pairs {(a, b)|b ≥ 2 ∧ ∃n [a = αb(n)]} is Diophantine.

Proof. Rewrite the second-order recurrent relation α asked

Ab(n) =

(
αb(n+ 1) −αb(n)
αb(n) −αb(n− 1)

)
,

where we take αb(−1) = −1. This can be simplified by writing Ab(0) = E and
Ab(n+ 1) = Ab(n)Ξb, where

E = I2 =

(
1 0
0 1

)
, Ξb =

(
b −1
1 0

)
.

It follows that Ab(n) = Ξn
b . Since det(Xib) = 1, it follows that det(Ab(n)) =

det(Ξb) · det(Ξb)︸ ︷︷ ︸
n times

= 1. Expanding this out fully, we get

α2
b(n)− αb(n+ 1)αb(n− 1) = α2

b(n− 1)− bαb(n− 1)αb(n) + α2
b(n =)1.

As such, if we have natural numbers x, y, b satisfying x2 − bxy + y2 = 1, then
one of x, y is αb(m + 1) and the other is αb(m) for some natural number m, if
such an m exists.

It has been shown by Matiyasevich (a full proof is given in Matiyasevich (1993))
that this is true. The argument is essentially inductive.

Next, we have the following lemma, which is rather difficult to prove.

Lemma 3. The set of triples {(a, b, c)|b ≥ 4 ∧ a = αb(c)} is Diophantine.

Proof. The proof is rather technical, but a full exposition can be found in
Matiyasevich (1993). It adds no insight and so is omitted.

Finally, we find ourselves capable of demonstrating that exponentiation is Dio-
phantine.

Theorem 8. The set of triples {(a, b, c)|a = bc} is Diophantine.
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Proof. The idea is that we ought to be able to prove that αb(n) grows approxi-
mately exponentially, so exponentiation is Diophantine. More precisely, we are
able to prove that

(b− 1)n ≤ αb(n+ 1) ≤ bn

via induction. This is basically clear from inspection of the definition of αb(n+
2). This then implies that

αbx+4(c+ 1)

αx(c+ 1)
≥ (bx+ 3)c

xc
≥ bc

for large enough x. How large does x need to be?

Suppose b = c = 0. Then

αbx+4(c+ 1)

αx(c+ 1)
= 1.

Also for b = 0, c > 0, x > 4, we have the edge case

αbx+4(c+ 1)

αx(c+ 1)
<

4c

(x− 1)c
≤ 1.

Finally, for b > 0 and x > 16c, we have

αbx+4(c+ 1)

αx(c+ 1)
≤ (bx+ 4)c

(x− 1)c

≤ (1 + 4/x)c

(1− 1/x)c
bc

≤ bc

(1− 1/x)c(1− 4/x)c

≤ bc

(1− 4/x)2c

≤ bc

1− 8c/x

≤ bc
(

1 +
16c

x

)
.

It follows that we have the desired inequality when

x > 16(c+ 1)(b+ 1)c.
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An immediate corollary is that, when x is sufficiently large,

bc = αbx+ 4(c+ 1) div αx(c+ 1).

The Diophantine nature of div and of αx then demonstrates that exponentiation
is Diophantine.

5 Looking beyond the MRDP theorem

5.1 Prime-producing polynomials

Poonen (2006) describes a fashion in which the MRDP theorem immediately
demonstrates the existence of a prime-producing polynomial, in the sense that
there exists some polynomial P (x1, . . . , xn) over the integers such that for every
n-tuple (x1, . . . , xn), P (x1, . . . , xn) ∈ P (it is prime) or P ≤ 0, and every prime
number may be produced in this fashion.

Theorem 9. There exists a polynomial P ∈ Z[x1, . . . , xn] such that {P (x1, . . . , xn)|∀n, xn ∈
Z} = P.

Proof. The set of all primes, P, is recursive, and so it is recursively enumer-
able, and so it is Diophantine by the MRDP Theorem. As such, it has a
Diophantine representation D(p, x1, . . . , xm). Then consider the polynomial
F (y, x1, . . . .xm) = (1−D(y, x1, . . . , xm)2)×y; we have F ≤ 0 wheneverD(y, x1, . . . , xm)2 >
0, meaning that F ≤ 0 whenever y is not prime, and when y is indeed prime,
then F = y ∈ P. Finally, use Lagrange’s four-square theorem to expand the
natural number y as the sum of four integers, which completes the proof.

5.2 Hilbert’s Tenth Problem for other rings

Hilbert’s Tenth Problem admits an easy generalization for other rings. Following
Poonen [6], we may write:

Definition 7. Let R be a ring. Hilbert’s Tenth Problem over R asks if
there exists an algorithm that takes as input a polynomial f ∈ Z[x1, . . . , xn] and
outputs YES or NO, according to whether there exists (a1, . . . , an) ∈ Rn such
that f(a1, . . . , an) = 0.

Interestingly, Hilbert’s Tenth Problem has not been resolved for the ring of
rationals, Q, yet.
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5.3 Relation to other problems

Many problems in mathematics can be phrased in terms of Diophantine sets.
For example, the famous Fermat’s Last Theorem states that no three positive
integers a, b, c can satisfy an + bn = cn for n > 2. This is a regular Diophan-
tine equation for any fixed n, but for variable n it becomes an exponential
Diophantine equation; however, thanks to the MRDP theorem, we know that
exponential Diophantine equations are also just Diophantine equations. That
is, we can transform an+bn = cn into a regular Diophantine equation somehow.
As such, the problem of proving Fermat’s Last Theorem is reduced to “simply”
ascertaining if the corresponding Diophantine equation has any solutions.

Consider also Goldbach’s conjecture, which states that every even integer
greater than 2 is the sum of two prime numbers. Let G be the set of even
numbers greater than 2 but not the sum of two primes. Suppose we take some
particular number a > 2; we can easily check if it is a counterexample to Gold-
bach’s conjecture or not via simple brute force computation. As such, the set G
is recursively enumerable and so G is a Diophantine set. As such, there exists
some Diophantine equation which has a solution if and only if Goldbach’s con-
jecture does not hold, so if Hilbert’s Tenth Problem had a positive resolution,
we would easily be able to check if Goldbach’s conjecture is true or not.

Finally, we may consider the famous Riemann hypothesis, which is a state-
ment about the zeroes of Riemann’s zeta function. The proof will not be given
here, but this, too, can be reduced to checking whether or not a particular
Diophantine equation has a solution [4].

We therefore see that three long-standing problems in mathematics (one re-
solved, two not) can be rephrased in the language of Diophantine equations
and sets. Were it true that there existed a universal algorithm to check for the
existence of solutions for arbitrary Diophantine equations, we could then apply
that algorithm to resolve these mathematical equations in what is guaranteed
to be a finite amount of time. This then provides an intuitive reason for the
negative resolution of Hilbert’s Tenth Problem: it would be rather odd if there
existed some straightforward algorithmic method to solve these difficult and
complex problems. “Thankfully”, there is not, and the Goldbach conjecture
and Riemann hypothesis remain very nontrivial.

5.4 Solution of Diophantine equations in Gaussian inte-
gers

There is a simpler version of Hilbert’s Tenth Problem which asks if there is a
process for solving Diophantine equations in Gaussian integers, i.e.complex
numbers of the form a+bi. Although this may at first seem to be a more complex
problem, it may in fact be reduced to the original statement of Hilbert’s Tenth
Problem.

9



Consider such an equation:

D(χ1, . . . , χn) = 0.

It has a solution in Gaussian integers if and only if the following equation has
a solution in integers:

D(x1 + y1i, . . . , xn + yni) = 0

This follows from the definition of a Gaussian integer.

Now, we can separate the real and imaginary parts by writing

D(x1+y1i, . . . , xn+yni) = DR(x1, . . . , xn, y1, . . . , yn)+DI(x1, . . . , xn, y1, . . . , yn).

Hence the question of the solvability of D in Gaussian integers is then reduced
to the problem of finding a solution to

D2
R(x1, . . . , xn, y1, . . . , yn) +D2

I (x1, . . . , xn, y1, . . . , yn)

in regular integers. As such, the problem of finding solutions in Gaussian in-
tegers has been reduced to the problem of finding solutions in regular inte-
gers.

In the opposite direction, J. Denef [2] was able to reduce the problem of finding a
solution to a Diophantine equation D(x1, . . . , xn) = 0 in integers to the problem
of finding a solution to a Diophantine equation G(χ1, . . . , χm) = 0 in Gaussian
integers.

As such, the undecidability of Hilbert’s Tenth Problem via the MRDP theorem
immediately implies the undecidability of Hilbert’s Tenth Problem for Gaussian
integers.
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