Conformal if and only if Complex Differentiable

Theorem 1. Suppose f = u + iv is a complex valued function that is defined in a neighborhood of a point z_0 and real differentiable at z_0 . Suppose that

$$\det \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} (z_0) \neq 0.$$

Then f is complex differentiable at z_0 if and only if f is conformal at z_0

Proof. The proof is a consequence of the following lemma and the characterization of complex differentiability by the Cauchy-Riemann equations. \Box

Lemma 1. The real matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with $\det A \neq 0$. preserves angles and orientation if and only if b = -c, d = a.

Proof. If $A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, then we can consider A to be a complex number a+ib. Matrix multiplication $A \begin{bmatrix} x \\ y \end{bmatrix}$ can be interpreted as (a+ib)(x+iy). If $a+ib=re^{it}$, this is scaling by r and rotating to the left by angle t. This multiplication preserves angles between pairs of vectors and the relative orientation.

Next suppose A preserves angles and orientation. Then $\begin{bmatrix} a \\ c \end{bmatrix}$ and $\begin{bmatrix} b \\ d \end{bmatrix}$ are orthogonal ab+cd=0. Also $\begin{bmatrix} a+b \\ c+d \end{bmatrix}$ and $\begin{bmatrix} b-a \\ d-c \end{bmatrix}$ are orthogonal. So $b^2-a^2+d^2-c^2=0$. By manipulating these equations we can show that $c=\pm b$ and $d=-\frac{ac}{b}=\mp a$. We have to choose c=-b, d=a to preserve relative orientations (interpreted as complex numbers we want b+id=i(a+ic), rotate to the left, not right).