ith row. Thus the situation with the Jacobi method is similar to that of Chit

TABLE 2.1 Jacobi iteration.

climination in which the possibility of zero pivot elements must be g e e e
against, et
y Finally, we note that when D' exists, it is relatively easy (in comparin :;('?:??—7]:: 8(’) gé;ggggg g(l) g;(s)go{;gg g(l)
a direct method).to carry out each step of the iteration. Thus in thosce cinilly 0. ; ;();(;7[2 01 0'11597213 01 0'1 153725 o1
which [|-D"}(L + U)]} < 1, the Jacobi method provides an alternative fo i 0.R93SISE 00  0.907022E 00  0.910301E 00
methods. 0.106089E 01  0.105044E 01  0.104986E 01
Examination of (2.61) reveals that each component of the vector v 0.966564E 00 0.97132E 00  0.972166E 00
computed entirely from the vector x®, [F xf** 1 is assumed to be close e O0.10I881E 01 0.101578E 0l 0.101551E 01
true answer than x{®, the estimate for x{**? should be improved by vepli] 0.9RY568E 00  0.991144E 00  0.991350E 00
X% by x*+ 1 whenever j <i. That is, we should use our most recent infor 0.100584E 01  0.100492E 01  0.100482E 0l
as soon as it becomes available. The implementation of this idea leads (4] 0.996753E 060  0.997251E 00  0.997312E 00
procedure known as the Gauss-Seidel method. 0.100181E 01 0.10153E 01 0.160150E 01
If we use the new information as soon as it is available in (2.61), we ::‘):)M";x‘:(l)E 00 0.999146E 00  0.999165E 00
(after multiplication by «;) this equation: u:'l)()%;ng g(‘) g;ggg‘;;’g 8{1) g;gggﬁg g(‘)
-1 n 0.100017E 01  0.10001SE 01  0.100014E 01
a0 = =S gttt = Sy by = 0.999903E 00  0.999918E 00  0.999919E 00
j=1 IEDR! 0. 100005E 01 0.100005E 01 0.100004E 01
(in which we interpret the first sum as zero when i = 1). We can w i ::(I); ),?:,(7,(2)5 g(l) g?gggg‘:g g(l) g?%g{ﬁg g(l)
ecét:qtion in matrix form, using A = L + D + U as in the Jacobi metho | 0.999991E 00 0.999992E 00 0.999992E 00
obtain e
Dx(k'l 1) = __l‘xlk* 1 __(/xlk) + b‘ .
. . ) ] : ABLE 2.2 Gauss-Seidel iteration.
Putting this in the standard form Eq. (2.56) for an iterative method, we III% e e e
(D + ¥t = —Ux® + b, % 0.166667E O  0.944445E 00  0.847222E 00
The matrix M, = —(D + L)7'U is called the Gauss-Seidel matrix. Sweg 0.106944E 01 0.100231E 01  0.982060E 00
Gauss-Seidel method is refinement of the Jacobi method, the former nuif 0.100521E 01 0.100125E 01  0.998385E 00
(but not always) converges faster. For deeper results on convergence and @ ::")::;ggg g(l) g :?3&2};: g: gmﬁ 80
parison of rates of convergence, sce the Ostrowski-Reich and Stein-Roseal 0. 999989F 00 0 100000E. 01 0.:000005 0:
Thegrems in \{a.rga (1962). Note that thg chpicc of the sturli.ng vector x"" i_& 0.999998E 00 0.100000E 01 0.100000E 01
particularly critical, and one natural choice is x® = 0. We will have more l(f 01  0.100000E Ol  0.1006000E Ol

0. 10O00E

of this choice in Section 3.4.

EXAMPLE 2.16. As an example of the sorts of computational results that 1he |
and Gauss-Seidel methods give. consider the lincar system

3+ bt =3 |
2y, + 6, + 3 =9 with solution vector | |
Nt ntdn==6 |

With x'© = 0, we obtain Tables 2.1 and 2.2. The coefficient matrix of the syl
diagonally dominant, a condition that is sufficient to guarantee convergence o
Jacobi and Gauss-Seidel iterations (see Theorem 2.3).

gumple in which iteration is not so successful, consider the (4 %
i of lixample 2.6 (solved by Gauss elimination in Example 2.°

Pl matrix is positive-definite and hence the Gauss-Seidel iteratic
iy (wee Theorem 2.4): but as can be seen, convergence is excee
‘Tuble 2.3.) The question of how fast an iterative procedure w
nsidered in Section 3.4. Through the thcory of the abov
gtlon it can be shown that the Jacobi method will not converge f
tem above.



