Block Multiplication of Matrices

This note describes multiplication of block (partitioned matrices). A special case gives a representation of a matrix as a sum of rank one matrices. Suppose $[n]=(1,2, \ldots, n)$ is the (ordered) sequence of integers from 1 to n. An ordered partition (my term) is a set of ordered subsets $J=\left(J_{1}, J_{2}, \ldots, J_{p}\right)$ which come from putting marks at $p-1$ places in the ordered list $(1,2, \ldots, n)$ at arbitrary locations, for example

$$
J_{1}=(1,2,3), J_{2}=(4), J_{3}=(5,6)
$$

is an ordered partition of [6]. The size of J is n and the size of J_{k} is the cardinality of $\mathrm{f} J_{k}$. These are denoted by $|J|,\left|J_{k}\right|$.

Definition 1. Let A be a matrix. Let $A\left(J_{r} ; K_{s}\right)$, denote the submatrix of A with entries from row J_{r} and columns K_{s}. This defines a paritioning of A and we call A a partitioned matrix.

Theorem 1. Let J, K, L be ordered partitions of size p, q, r respectively. Let A, B and be partioned matrices with the partitions of A defined by J, K and the partitions of B defined by K, L. Let $C=A B$. Let the number of partitions in K be m. Then

$$
C\left(J_{r} ; L_{t}\right)=\sum_{s=1}^{s=m} A\left(J_{r} ; K_{s}\right) B\left(K_{s} ; L_{t}\right) .
$$

Proof. The proof will be illustrated in a particular case. The argument is general and can be used to prove the theorem. Let take as an example a partition that includes the index $2 \in J_{1}$ and the index $4 \in L_{2}$. We want to identify the term c_{24} in the product matrix C. This entry is found by summing terms found by multiply entries in row 2 of A times corresponding entries in column 4 of B. This sum can be computed by adding the products of the entries in row 2 in blocks $A\left(J_{1} ; K_{s}\right)$ times the entries in column 4 in the blocks $B\left(K_{s} ; L_{2}\right)$. With an obvious simplified notation the theorem can be written

$$
C_{r t}=\sum_{s} A_{r s} B_{s t},
$$

and the formula reads formally as if the entries $A_{r s}, B_{s t}$ are scalars.

Corollary 1. Let $A=\left[A_{1}, A_{2}, \ldots, A_{n}\right], B=\left[B_{1}, B_{2}, \ldots, B_{n}\right]^{T}$ be matrices with n column vectors and n row vectors respectively. Then

$$
A B=A_{1} B_{1}^{T}+A_{2} B_{2}^{T}+\cdots+A_{n} B_{n}^{T}
$$

