Block Multiplication of Matrices

This note describes multiplication of block (partitioned matrices). A special case gives a representation of a matrix as a sum of rank one matrices. Suppose [n] = (1, 2, ..., n) is the (ordered) sequence of integers from 1 to n. An ordered partition (my term) is a set of ordered subsets $J = (J_1, J_2, ..., J_p)$ which come from putting marks at p-1 places in the ordered list (1, 2, ..., n) at arbitrary locations, for example

$$J_1 = (1, 2, 3), J_2 = (4), J_3 = (5, 6)$$

is an ordered partition of [6]. The size of J is n and the size of J_k is the cardinality of f J_k . These are denoted by $|J|, |J_k|$.

Definition 1. Let A be a matrix. Let $A(J_r; K_s)$, denote the submatrix of A with entries from row J_r and columns K_s . This defines a paritioning of A and we call A a partitioned matrix.

Theorem 1. Let J, K, L be ordered partitions of size p, q, r respectively. Let A, B and be partitioned matrices with the partitions of A defined by J, K and the partitions of B defined by K, L. Let C = AB. Let the number of partitions in K be m. Then

$$C(J_r; L_t) = \sum_{s=1}^{s=m} A(J_r; K_s) B(K_s; L_t).$$

Proof. The proof will be illustrated in a particular case. The argument is general and can be used to prove the theorem. Let take as an example a partition that includes the index $2 \in J_1$ and the index $4 \in L_2$. We want to identify the term c_{24} in the product matrix C. This entry is found by summing terms found by multiply entries in row 2 of A times corresponding entries in column 4 of B. This sum can be computed by adding the products of the entries in row 2 in blocks $A(J_1; K_s)$ times the entries in column 4 in the blocks $B(K_s; L_2)$. With an obvious simplified notation the theorem can be written

$$C_{rt} = \sum_{s} A_{rs} B_{st}$$

and the formula reads formally as if the entries A_{rs} , B_{st} are scalars.

Corollary 1. Let $A = [A_1, A_2, ..., A_n], B = [B_1, B_2, ..., B_n]^T$ be matrices with n column vectors and n row vectors respectively. Then

$$AB = A_1 B_1^T + A_2 B_2^T + \dots + A_n B_n^T.$$