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Nonsymmetric Eigenvalue Problems

4.1. Introduction

We discuss canonical forms (in section 4.2), perturbation theory (in section 4.3),
and algorithms for the eigenvalue problem for a single nonsymmetric matrix
A (in section 4.4). Chapter 5 is devoted to the special case of real symmet-
ric matrices A = A T (and the SVD). Section 4.5 discusses generalizations
to eigenvalue problems involving more than one matrix, including motivating
applications from the analysis of vibrating systems, the solution of linear differ-
ential equations, and computational geometry. Finally, section 4.6 summarizes
all the canonical forms, algorithms, costs, applications, and available software
in a list.

One can roughly divide the algorithms for the eigenproblem into two groups:
direct methods and iterative methods. This chapter considers only direct meth-
ods, which are intended to compute all of the eigenvalues, and (optionally)
eigenvectors. Direct methods are typically used on dense matrices and cost
O(n3 ) operations to compute all eigenvalues and eigenvectors; this cost is rel-
atively insensitive to the actual matrix entries.

The mail direct method used in practice is QR iteration with implicit shifts
(see section 4.4.8). It is interesting that after more than 30 years of depend-
able service, convergence failures of this algorithm have quite recently been
observed, analyzed, and patched [25, 65]. But there is still no global conver-
gence proof, even though the current algorithm is considered quite reliable. So
the problem of devising an algorithm that is numerically stable and globally
(and quickly!) convergent remains open. (Note that "direct" methods must
still iterate, since finding eigenvalues is mathematically equivalent to finding
zeros of polynomials, for which no noniterative methods can exist. We call a
method direct if experience shows that it (nearly) never fails to converge in a
fixed number of iterations.)

Iterative rnethods, which are discussed in Chapter 7, are usually applied
to sparse matrices or matrices for which matrix-vector multiplication is the
only convenient operation to perform. Iterative methods typically provide
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140 Applied Numerical Linear Algebra

approximations only to a subset of the eigenvalues and eigenvectors and are
usually run only long enough to get a few adequately accurate eigenvalues
rather than a large number. Their convergence properties depend strongly on
the matrix entries.

4.2. Canonical Forms

DEFINITION 4.1. The polynomial p(.\) = det(A — )I) is called the character-
istic polynomial of A . The roots of p(.\) = 0 are the eigenvalues of A .

Since the degree of the characteristic polynomial pO^) equals n, the dimen-
sion of A, it has n roots, so A has n eigenvalues.

DEFINITION 4.2. A nonzero vector x satisfying Ax = Xx is a (right) eigen-
vector for the eigenvalue X . A  nonzero vector y such that y*A = .)y* is a left
eigenvector. (Recall that y* _ (y) T is the conjugate transpose of y.)

Most of our algorithms will involve transforming the matrix A into sim-
pler, or canonical forms, from which it is easy to compute its eigenvalues and
eigenvectors. These transformations are called similarity transformations (see
below). The two most common canonical forms are called the Jordan form
and Schur form. The Jordan form is useful theoretically but is very hard to
compute in a numerically stable fashion, which is why our algorithms will aim
to compute the Schur form instead.

To motivate Jordan and Schur forms, let us ask which matrices have the
property that their eigenvalues are easy to compute. The easiest case would be
a diagonal matrix, whose eigenvalues are simply its diagonal entries. Equally
easy would be a triangular matrix, whose eigenvalues are also its diagonal
entries. Below we will see that a matrix in Jordan or Schur form is triangular.
But recall that a real matrix can have complex eigenvalues, since the roots
of its characteristic polynomial may be real or complex. Therefore, there is
not always a real triangular matrix with the same eigenvalues as a real general
matrix, since a real triangular matrix can only have real eigenvalues. Therefore,
we must either use complex numbers or look beyond real triangular matrices
for our canonical forms for real matrices. It will turn out to be sufficient to
consider block triangular matrices, i.e., matrices of the form

Al, Al2 ... A lb
A22 ... A2b

A= , (4.1)

Abb

where each Aii is square and all entries below the A22 blocks are zero. One can
easily show that the characteristic polynomial det(A — )J) of A is the product
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Nonsymmetric Eigenvalue Problems 141

Ijb^7i det A ij — AI of the characteristic polynomials of the A( ZZ ) and thereforeP Y ii
that the set )(A) of eigenvalues of A is the union Ub_ 1 )(Aii) of the sets of
eigenvalues of the diagonal blocks Aii (see Question 4.1). The canonical forms
that we compute will be block triangular and will proceed computationally by
breaking up large diagonal blocks into smaller ones. If we start with a complex
matrix A, the final diagonal blocks will be 1-by-1, so the ultimate canonical
form will be triangular. If we start with a real matrix A, the ultimate canonical
form will have 1-by-1 diagonal blocks (corresponding to real eigenvalues) and 2-
by-2 diagonal blocks (corresponding to complex conjugate pairs of eigenvalues);
such a block triangular matrix is called quasi-triangular.

It is also easy to find the eigenvectors of a (block) triangular matrix; see
section 4.2.1.

DEFINITION 4.3. Let S be any nonsingular matrix. Then A and B = S -1 AS
are called similar matrices, and S is a similarity transformation.

PROPOSITION 4.1. Let B = S — 'AS, so A  and B are similar. Then A and B
have the same eigenvalues, and x (or y) is a right (or left) eigenvector of A  if
and only if S -1 x (or S*y) is a right (or left) eigenvector of B.

Proof. Using the fact that det(X •Y ) = det(X)•det(Y) for any square matrices
X and Y , we can write det(A — ) I) = det(S-1 (A — )I)S) = det(B — ) I), so
A and B have the same characteristic polynomials. Ax = .fix holds if and only
if S -1 ASS -1 x = ).S -1x or B(S —l x) = A(S -1x). Similarly, y*A = Ay* if and
only if y*SS -1 AS = )^y*S or (S*y)*B = \(S*y)*. ❑

THEOREM 4.1. Jordan canonical form. Given A, there exists a nonsingular S
such that S — 'AS = J, where J is in Jordan canonical form. This means that
J is block diagonal, with J = diag(Jl (A1), J 2 72), ... , J,()) and

Ai 1 0 nixni

Jn^(Ai) _
1

0 Ai

J is unique, up to permutations of its diagonal blocks.

For a proof of this theorem, see a book on linear algebra such as [110] or
[139].

Each Jm (,\) is called a Jordan block with eigenvalue ). of algebraic multi-
plicity m. If some ni = 1, and Ai is an eigenvalue of only that one Jordan
block, then Ai is called a simple eigenvalue. If all ni = 1, so that J is diagonal,
A is called diagonalizable; otherwise it is called defective. An n-by-n defective
matrix does not have n eigenvectors, as described in more detail in the next
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H x l Hxi Hxn
kl k2 kl ki+l kn

ml • • • mi • • • mn

bl bi bn

x i = position of i-th mass (0 = equilibrium)
m i = mass of i-th mass
ki = spring constant of i-th spring
bi = damping constant of i-th damper

Fig. 4.1. Damped, vibrating mass-spring system.

proposition. Although defective matrices are "rare" in a certain well-defined
sense, the fact that some matrices do not have n eigenvectors is a fundamen-
tal fact confronting anyone designing algorithms to compute eigenvectors and
eigenvalues. In section 4.3, we will see some of the difficulties that such matri-
ces cause. Symmetric matrices, discussed in Chapter 5, are never defective.

PROPOSITION 4.2. A Jordan block has one right eigenvector, el = [1, 0, ... , 0] T ,
and one left eigenvector, en = [0, ... , 0, 1] T . Therefore, a matrix has n eigen-
vectors matching its n eigenvalues if and only if it is diagonalizable. In this
case, S — 'AS = diag(.Xi). This is equivalent to AS = S diag(.\i), so the ith
column of S is a right eigenvector for A i . It is also equivalent to S — 'A  =
diag(7Z)S-1 , so the conjugate transpose of the ith row of S — ' is a left eigen-
vector for AZ. If all n eigenvalues of a matrix A  are distinct, then A is diago-
nalizable.

Proof. Let J = J,,,,('\) for ease of notation. It is easy to see Jel = )iel and
e,TJ = Ae,T, so el and e n are right and left eigenvectors of J, respectively. To
see that J has only one right eigenvector (up to scalar multiples), note that
any eigenvector x must satisfy (J — .\I)x = 0, so x is in the null space of

01

J — AI=
• 1

0

But the null space of J—AI is clearly span(el), so there is just one eigenvector.
If all eigenvalues of A are distinct, then all its Jordan blocks must be 1-by-1,
so J = diag(\1, ... , )^n) is diagonal. ❑

EXAMPLE 4.1. We illustrate the concepts of eigenvalue and eigenvector with a
problem of mechanical vibrations. We will see a defective matrix arise in a nat-
ural physical context. Consider the damped mass spring system in Figure 4.1,
which we will use to illustrate a variety of eigenvalue problems.
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Nonsymmetric Eigenvalue Problems 143

Newton's law F = ma applied to this system yields

mzxi(t) = k2(xi-1(t) - xi(t))
force on mass i from spring i

+ki+1(xi+l(t) — xi(t)) (4.2)

force on mass i from spring i + 1
— bimei (t)

force on mass i from damper i

or

Mï(t) _ —B±(t) — Kx(t), (4.3)

where M = diag(ml, . .. , m ? ), B = diag(bl, . .. , bn), and

k1+k2 -k2
— k2 k2--k3 — k3

K=

—k-n,-1 kn-1 + k1, — k.
— kn, kn,

We assume that all the masses mi are positive. M is called the mass matrix,
B is the damping matrix, and K is the stiffness matrix.

Electrical engineers analyzing linear circuits arrive at an analogous equation
by applying Kirchoff's and related laws instead of Newton's law. In this case x
represents branch currents, M represent inductances, B represents resistances,
and K represents admittances (reciprocal capacitances).

We will use a standard trick to change this second-order differential equa-
tion to a first-order differential equation, changing variables to

y(t) _ [ x(t) J

This yields

^(t) _ 
x(t) 
 

—M-1Bx(t) — M-1Kx(t)
x(t) J x(t)

— L
 J

—M -1B —M-1K 1

 F i(t)1 0 x(t)J

 

L
—M -1B —M -1

K 1 • y(t) __ Ay(t). (4.4)I 0]

To solve y(t) = Ay(t), we assume that y(0) is given (i.e., the initial positions
x(0) and velocities x(0) are given).

One way to write down the solution of this differential equation is y(t) _
eAt y(0), where eAt is the matrix exponential. We will give another more el-
ementary solution in the special case where A is diagonalizable; this will be
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144 Applied Numerical Linear Algebra

Fig. 4.2. Positions and velocities of a mass-spring system with four masses m l =
m4 = 2 and m2 = 7fl3 = 1. The spring constants are all ki = 1. The damping
constants are all bi = .4. The initial displacements are x 1 (0) = –.25, x 2 (0) = x 3 (0) _
0, and x4(0) = .25. The initial velocities are v l (0) = –1, v2(0) = v3(0) = 0, and
v4 (0) = 1. The equilibrium positions are 1, 2, 3, and 4. The software for solving and
plotting an arbitrary mass-spring system is HOMEPA GE/Matlab/massspring. m.

true for almost all choices of mi, kZ, and bi. We will return to consider other
situations later. (The general problem of computing matrix functions such as
eAt is discussed further in section 4.5.1 and Question 4.4.)

When A is diagonalizable, we can write A = SAS – ', where A = diag(Al, ...
,n). Then y(t) = Ay(t) is equivalent to y(t) = SAS–ly(t) or S -1 (t) =
AS–'y(t) or z(t) = Az(t), where z(t) - S–ly(t). This diagonal system
of differential equations zi(t) = )z(t) bas solutions zi(t) = e>,i t zi(0), so
y(t) = Sdiag(e' 1t , .. . , e A ^ t )S–ly(0) = SeAt S–ly(0). A sample numerical solu-
tion for four masses and springs is shown in Figure 4.2.

To see the physical significance of the nondiagonalizability of A for a
mass-spring system, consider the case of a single mals, spring, and damper,
whose differential equation we can simplify to mx(t) _ –b(t) – kx(t), and so

A= [ –blm –kom ]. The two eigenvalues of A are = 2_(–lf(1- 4bm ) 1 ^2 )

When < 1, the system is overdamped, and there are two negative real
eigenvalues, whose mean value is – 2—b . In this case the solution eventually
decays monotonically to zero. When > 1, the system is underdamped,
and there are two complex conjugate eigenvalues with real part – . In this
case the solution oscillates while decaying to zero. In both cases the system is
diagonalizable since the eigenvalues are distinct. When = 1, the system
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Nonsymmetric Eigenvalue Problems 145

is critically damped, there are two real eigenvalues equal to — 2m and A has
a single 2-by-2 Jordan block with this eigenvalue. In other words, the non-
diagonalizable matrices form the "boundary" between two physical behaviors:
oscillation and monotonic decay.

When A is diagonalizable but S is an ill-conditioned matrix, so that S-1 is
difficult to evaluate accurately, the explicit solution y(t) = SeA, S —l y(0) will be
quite inaccurate and useless numerically. We will use this mechanical system
as a running example because it illustrates so many eigenproblems. o

To continue our discussion of canonical forms, it is convenient to define the
following generalization of an eigenvector.

DEFINITION 4.4. An invariant subspace of A  is a subspace X  of R', with the
property that x E X implies that Ax E X. We also write this as AX C X.

The simplest, one-dimensional invariant subspace is the set span(x) of all
scalar multiples of an eigenvector x. Here is the analogous way to build an
invariant subspace of larger dimension. Let X = [xl, ... , x,,72 ], where xl, . .. ,
are any set of independent eigenvectors with eigenvalues ....... , )'„z. Then
X = span(X) is an invariant subspace since x E X implies x = ^m 1 aixi for
some scalars ai, so Ax = Em 1 ajAxi = Em_1 c jX ixi E X. AX will equal X
unless some eigenvalue ) equals zero. The next proposition generalizes this.

PR0POSITI0N 4.3. Let A  ben-by-n, let X  = [xl, ... , x m] be any n-by-m matrix
with independent columns, and let X  = span(X), the m-dimensional space
spanned by the columns of X . Then X  is an invariant subspace if and only
if there is an m-by-m matrix B such that AX = XB. In this case the m
eigenvalues of B are also eigenvalues of A . (When m = 1, X  = [xl] is an
eigenvector and B is an eigenvalue.)

Proof. Assume first that X is invariant. Then each Ax i is also in X, so each
Axz must be a linear combination of a basis of X, say, Ax2 = r_m This
last equation is equivalent to AX = XB. Conversely, AX = XB means that
each Ax2 is a linear combination of columns of X, so X is invariant.

Now assume AX = XB. Choose any n-by-(n — m) matrix X such that
X = [X , X] is nonsingular. Then A and X -1AX are similar and so have

ymxn

the same eigenvalues. Write X -1 = [ (n_ )X ] so X -1X  = I implies

Y X = I and Y X = 0. Then X —I AX = [ Y  ] [AX, AX] = [ yAX Y AX ] 
[ Y XB Y AX ] _ [ B Y A
YXB 

X ] Thus by Question 4.1 the eigenvalues of A areYAX 0 YAX
the union of the eigenvalues of B and the eigenvalues of Y AX . ❑

For example, write the Jordan canonical form S — 'AS = J =
diag(Jni (\i)) as AS = SJ, where S = [St, S2,. . . ,Ski and Si has n2 columns
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146 Applied Numerical Linear Algebra

(the same as Jni (Ai); see Theorem 4.1 for notation). Then AS = SJ implies
ASZ = SZJ., (Ai), i.e., span(S) is an invariant subspace.

The Jordan form tells everything that we might want to know about a
matrix and its eigenvalues, eigenvectors, and invariant subspaces. There are
also explicit formulas based on the Jordan form to compute eA or any other
function of a matrix (see section 4.5.1). But it is bad to compute the Jordan
form for two numerical reasons:

First reason: It is a discontinuous function of A, so any rounding error can
change it completely.

EXAMPLE 4.2. Let
01

J. (0) _

. 1
0

which is in Jordan form. For arbitrarily small E, adding i • E to the (i, i) entry
changes the eigenvalues to the n distinct values i • E, and so the Jordan form
changes from J„(0) to diag(E, 2E, ... , ne). o

Second reason: It cannot be computed stably in general. In other words,
when we have finished computing S and J, we cannot guarantee that S- '(A+
6A)S = J for some small SA.

EXAMPLE 4.3. Suppose S- 'AS = J exactly, where S is very ill-conditioned.
(k(S) = IIS II . IIS — 'II is very large.) Suppose that we are extremely lucky and
manage to compute S exactly and J with just a tiny error SJ with IIbJII =
O(e) 11A11. How big is the backward error? In other words, how big must 6A
be so that S- ' (A  + 6A)S = J + SJ? We get SA = S5JS -1 , and all that we
can conclude is that IIsAII < 11511 - IISJII . PIS -l il = 0(E)k(S)IIAII• Thus IISAII
may be much larger than eIIAII, which prevents backward stability. o

So instead of computing S-1AS = J, where S can be an arbitrarily ill-
conditioned matrix, we will restrict S to be orthogonal (so k2(S) = 1) to
guarantee stability. We cannot get a canonical form as simple as the Jordan
form any more, but we do get something almost as good.

THEOREM 4.2. Schur canonical form. Given A , there exists a unitary matrix
Q and an upper triangular matrix T such that Q*AQ = T. The eigenvalues of
A  are the diagonal entries of T.

Proof. We use induction on n. It is obviously true if A is 1 by 1. Now let ).
be any eigenvalue and u a corresponding eigenvector normalized so IIu  = 1.
Choose U so U = [u, U] is a square unitary matrix. (Note that .A and u may
be complex even if A is real.) Then
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Nonsymmetric Eigenvalue Problems 147

U* A• U= L U* J A•[u,U]= [U*Au U*AU]
Now as in the proof of Proposition 4.3, we can write u*Au = .Xu*u = A,

and Ü*A u = .^U*u = 0 so U*AU = [ A B induction, there is a unitaryp X2
a12 

] .
2 Y

P, so P*A22P = T is upper triangular. Then

U*AU=[0 PTP*] — [0 P] [0 a t 0 P*]'
so

L 1 0 J U*4UI 0 P]—[0 aTP T]—OP* 

is upper triangular and Q = U[ 0L P ] is unitary as desired. ❑
Notice that the Schur form is not unique, because the eigenvalues may

appear on the diagonal of T in any order.
This introduces complex numbers even when A is real. When A is real, we

prefer a canonical form that uses only real numbers, because it will be cheaper
to compute. As mentioned at the beginning of this section, this means that we
will have to sacrifice a triangular canonical form and settle for a block-triangular
canonical form.

THEOREM 4.3. Real Schur canonical form. If A  is real, there exists a real
orthogonal matrix V such that V T AV = T is quasi—upper triangular. This
means that T is block upper triangular with 1-by-1 and 2-by-2 blocks on the
diagonal. Its eigenvalues are the eigenvalues of its diagonal blocks. The 1-
by-1 blocks correspond to real eigenvalues, and the 2-by-2 blocks to complex
conjugate pairs of eigenvalues.

Proof. We use induction as before. Let ).. be an eigenvalue. If ).. is real, it has
a real eigenvector u and we proceed as in the last theorem. If ). is complex, let
u be a (necessarily) complex eigenvector, so Au = \u. Since Au = Au = )^u, ).
and u are also an eigenvalue/eigenvector pair. Let UR = 2 u-F- 2 u be the real part
of u and ui = lu— 22 u be the imaginary part. Then span{uR, uI} = span{u, u}
is a two-dimensional invariant subspace. Let U = [uR, ui] and Ü = QR be its
QR decomposition. Thus span{Q} = span{uR, uI} is invariant. Choose Q so
that U = [Q, Q] is real and orthogonal, and compute

T

UT • A • u — [ QT ] • A - [Q, Q] _ [ Q
T AQ QTA

Since Q spans an invariant subspace, there is a 2-by-2 matrix B such that
AQ = QB. Now as in the proof of Proposition 4.3, we can write QTAQ =

QTQB = B and QT AQ = QT QB = 0, so UT AU = [ á QT ÁQ ] . Now apply

induction to QT AQ. ❑

D
ow

nl
oa

de
d 

12
/2

6/
12

 to
 1

28
.9

5.
10

4.
10

9.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



148
 

Applied Numerical Linear Algebra

4.2.1. Computing Eigenvectors from the Schur Form

Let Q*AQ = T be the Schur form. Then if Tx = .Ax, we have AQx = QTx =
,XQx, so Qx is an eigenvector of A. So to find eigenvectors of A, it suffices to
find eigenvectors of T.

Suppose that = t22 has multiplicity 1 (i.e., it is simple). Write (T—).I)x =
0 as

T11 — XI T12 T13 xi
 0 = 0 0 T23 X2

 

0 0 T33—)^I X3

(T11 — ))I)xl + T12x2 + T13x3
 =  T23x3

(T33 — )I)x3

where T11 is (i — 1)-by-(i — 1), T22 = ) is 1-by-1, T33 is (n — i)-by-(n — i), and
x is partitioned conformably. Since X is simple, both T11 — )^I and T33 — ^I
are nonsingular, so (T33 — )I)x3 = 0 implies X3 = 0. Therefore (T11 — )*I)xl =
—T12x2. Choosing (arbitrarily) X2 = 1 means xl = — (T11 — )^I) — 'T12, so

(>'I — Tii)-1Tia
 x= 1

0

In other words, we just need to solve a triangular system for x1. To find a
real eigenvector from real Schur form, we get a quasi-triangular system to solve.
Computing complex eigenvectors from real Schur form using only real arith-
metic also just involves equation solving but is a little trickier. See subroutine
strevc in LAPACK for details.

4.3. Perturbation Theory

In this section we will concentrate on understanding when eigenvalues are ill-
conditioned and thus hard to compute accurately. In addition to providing
error bounds for computed eigenvalues, we will also relate eigenvalue condition
numbers to related quantities, including the distance to the nearest matrix
with an infinitely ill-conditioned eigenvalue, and the condition number of the
matrix of eigenvectors.

We begin our study by asking when eigenvalues have infinite condition
numbers. This is the case for multiple eigenvalues, as the following example
illustrates.

EXAMPLE 4.4. Let
01

A=
'•• 1

E 0
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Nonsymmetric Eigenvalue Problems 149

be an n-by-n matrix. Then A has characteristic polynomial ) — c = 0 so
= E (n possible values). The nth root of e grows much faster than any

multiple of e for small e. More formally, the condition number is infinite because

d = En = oo at e = 0 for n >_ 2. For example, take n = 16 and e = 10 -1s
Then for each eigenvalue I I = .1. o

So we expect a large condition number if an eigenvalue is "close to multi-
ple"; i.e., there is a small SA such that A+SA has exactly a multiple eigenvalue.
Having an infinite condition number does not mean that they cannot be com-
puted with any correct digits, however.

PROPOSITION 4.4. Eigenvalues of A  are continuous functions of A , even if
they are not differentiable.

Proof. It suffices to prove the continuity of roots of polynomials, since the
coef lcients of the characteristic polynomial are continuous (in fact polynomial)
functions of the matrix entries. We use the argument principle from complex
analysis [2]: the number of roots of a polynomial p inside a simple closed curve
ry is 2i jry P^ z^ dz. If p is changed just a little, Pz is changed just a little,

so 1. p ) dz is changed just a little. But sincep( nce it is an integer, it must be27rz , z)
constant, so the number of roots inside the curve ry is constant. This means
that the roots cannot pass outside the curve -y (no matter how small ry is,
provided that we perturb p by little enough), so the roots must be continuous.

In what follows, we will concentrate on computing the condition number
of a simple eigenvalue. If \ is a simple eigenvalue of A and SA is small, then
we can identity an eigenvalue ). + 6,\ of A  + 6A "corresponding to" )^: it is
the closest one to ) . We can easily compute the condition number of a simple
eigenvalue.

THEOREM 4.4. Let .X  be a simple eigenvalue of A  with right eigenvector x and
left eigenvector y, normalized so that IIx1I2 = IIYII2 = 1. Let ) + S,\ be the
corresponding eigenvalue of A  + 6A. Then

Sa = ó^x + O(II6AII 2 ) or
SaI < ,1 + O(A) = sec e(y, x) IISAII + 0 (IISAII 2 ),

where O(y, x) is the acute angle between y and x. In other words, sec e(y, x) _
1/Iy*xI is the condition number of the eigenvalue .

Proof. Subtract Ax =)Xx from (A  + SA) (x + bx) _ (,\ + 6)..)(x + 5x) to get

ASx+6Ax+SA6x = )%bx+b.\x+S\6x.

Ignore the second-order terms (those with two "S terms" as factors: 5A6x and
S)Sx) and multiply by y* to get y*A6x + y*bAx = y*) 6x + y*S)x.
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150 Applied Numerical Linear Algebra

Now y*ASx cancels y*.XSx, so we can solve for S.\ = (y*SAx)/(y*x) as
desired. ❑

Note that a Jordan block has right and left eigenvectors el and e n , respec-
tively, so the condition number of its eigenvalue is 1/Ienell = 1/0 = oo, which
agrees with our earlier analysis.

At the other extreme, in the important special case of symmetrie matrices,
the condition number is 1, so the eigenvalues are always accurately determined
by the data.

COROLLARY 4.1. Let A  be symmetrie (or normal: AA* = A*A). Then I"I <
II6A1I + o(11bAII 2 )•

Proof. If A is symmetric or normal, then its eigenvectors are all orthogonal,
i.e., Q*AQ = A with QQ* = I. So the right eigenvectors x (columns of Q) and
left eigenvectors y (conjugate transposes of the rows of Q*) are identical, and
1 /Iy*xI = 1. ❑

To see a variety of numerical examples, run the Matlab code referred to in
Question 4.14.

Later, in Theorem 5.1, we will prove that in fact Ib.XI < II6AII2 if SA = SA T ,
no matter how large II6A11 2 is.

Theorem 4.4 is useful only for sufficiently small IIbAII. We can remove the
O(IISA^I 2 ) term and so get a simple theorem true for any size perturbation
IISAII , at the cost of increasing the condition number by a factor of n.

THEOREM 4.5. Bauer—Fike. Let A  have all simple eigenvalues (i.e., be diago-
nalizable). Call them A2, with right and left eigenvectors xi and y2, normalized
80 IIxiII2 = ^IyjII2 = 1. Then the eigenvalues of A  + SA lie in disks Bi, where
Bi has center A2 and radius n  jy ̂ ^^ .

Our proof will use Gershgorin's theorem (Theorem 2.9), which we repeat
here.

GERSHGORIN'S THEOREM. Let B be an arbitrary matrix. Then the eigen-
values A  of B are located in the union of the n disks defined by I,\ — bijl <_
> Ibi I for i = 1 to

 will also need two simple lemmas.

LEMMA 4.1. Let S = [xl, ... ,x], the nonsingular matrix of right eigenvec-
tors. Then

yi /yixl

S,_1 _ y2/y2x2

ynlynxn
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Nonsymmetric Eigenvalue Problems 151

Proof of Lemma. We know that AS = SA, where A = diag(.^,, . .. , .^ n), since
the columns xi of S are eigenvectors. This is equivalent to S — 'A  = AS -1 , so
the rows of S — ' are conjugate transposes of the left eigenvectors y2. So

yi'cl
S -1 =

ynen

for some constants ci. But I = S -1 S, so 1 = (S -1 S)22 = yZ xj • ci, and c2 — y2 xi

as desired. ❑

LEMMA 4.2. If each column of (any matrix) S has two-norm equal to 1, IIS112 <_
^. Similarly, if each row of a matrix has two-norm equal to 1, its two-norm
is at most \.

Proof of Lemma. IIS112 = IIST11 2 = max11x112=1 IIS TxIl2• Each component
of ST x is bounded by 1 by the Cauchy—Schwartz inequality, so I I ST x 112 <_

Proof of the Bauer—Fike theorem. We will apply Gershgorin's theorem to
S -1 (A + SA)S = A + F, where A = S — 'AS = diag(,X,, ... ,)^ n ) and F =
S -1 5AS. The idea is to show that the eigenvalues of A + 6A lie in balls cen-
tered at the .\i with the Biven radii. To do this, we take the disks containing
the eigenvalues of A + F that are defined by Gershgorin's theorem,

l a — (\i + f^z)1 <— ^ I fz^ 1
j^i

and enlarge them slightly to get the disks

 la — az I < Ifz,
1/2

< n11 . I fii 12 by Cauchy—Schwarz

 = n1 /2 . IIF(i, :) II2. (4.5)

Now we need to bound the two-norm of the ith row F(i,:) of F = S -1 5AS:

F(i, :)112 = II (S-1bAS)(i, :)112
II(S-1 )(i,:)112' IlsAII2' IIS112 by Lemma 1.7
n1/2

 <  . 11 SA1 12 by Lemmas 4.1 and 4.2.
IyixiI

Combined with equation (4.5), this proves the theorem. El
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152 Applied Numerical Linear Algebra

We do not want to leave the impression that multiple eigenvalues cannot
be computed with any accuracy at all just because they have infinite condition
numbers. Indeed, we expect to get a fraction of the digits correct rather than
lose a fixed number of digits. To illustrate, consider the 2-by-2 matrix with a

double eigenvalue at 1: A = [ 0 1 ]. If we perturb the (2,1) entry (the most

sensitive) from 0 to machine epsilon e, the eigenvalues change from 1 to 1± ^.
In other words the computed eigenvalues agree with the true eigenvalue to half
precision. More generally, with a triple root, we expect to get about one third
of the digits correct, and so on for higher multiplicities. See also Question 1.20.

We now turn to a geometric property of the condition number shared by
other problems. Recall the property of the condition number IIAII - IIA-l II
for matrix inversion: its reciprocal measured the distance to nearest singular
matrix, i.e., matrix with an infinite condition number (see Theorem 2.1). An
analogous fact is true about eigenvalues. Since multiple eigenvalues have infi-
nite condition numbers, the set of matrices with multiple eigenvalues plays the
same role for computing eigenvalues as the singular matrices did for matrix
inversion, where being "close to singular" implied ill-conditioning.

THEOREM 4.6. Let .\ be a simple eigenvalue of A , with unit right and left
eigenvectors x and y and condition number c = 1/Iy*xh. Then there is a SA
such that A  + SA has a multiple eigenvalue at A , and

IIbAII2 1
IIAII2

When c » 1, i.e., the eigenvalue is ill-conditioned, then the upper bound on
the distance is 1//c2 — 1 1/c, the reciprocal of the condition number.

Proof. First we show that we can assume without loss of generality that A is
upper triangular (in Schur form), with all = ) . This is because putting A in
Schur form is equivalent to replacing A by T = Q*AQ, where Q is unitary. If
x and y are eigenvectors of A, then Q*x and Q*y are eigenvectors of T. Since
(Q*y)*(Q*x) = y*QQ*x = y*x, changing to Schur form does not change the
condition number of A. (Another way to say this is that the condition number
is the secant of the angle O(x, y) between x and y, and changing x to Q*x
and y to Q*y just rotates x and y the same way without changing the angle
between them.)

So without loss of generality we can assume that A = [ A2
A22

2
 ]• Then0 

x = el and y is parallel to y = [1, Al2(,\I — A22) -1 ]*, or y = y/IIyII2• Thus

1 IIYII2 = 1 2 1
C 

_ _
I y*xI I^*xI 

IIyII2 = (1 + IIAl2(aI — A 22 ) II /22)
or

c2 —1 = IIAl2(I — A22) -1 112 <_ IIAl2II2 • II(aI — A22) -1 II2
IIAII2

Qmin( , ^I — A22)
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Nonsymmetric Eigenvalue Problems 153

By definition of the smallest singular value, there is a 5A22 where II6A22112 =
Qmin(AI — A22) such that A22 + 6A22 — AI is singular; i.e., A is an eigenvalue

of A22 + 5A22. Thus [ o A22 Al2 
] has a double eigenvalue at A, where

Il A22 11 2 = umin7I — A22) < JIA112
1

as desired. ❑
Finally, we relate the condition numbers of the eigenvalues to the smallest

possible condition number IISI IS-1 of any similarity S that diagonalizes
A: S — 'AS = A = diag(A1, ... , .)n,). The theorem says that if any eigenvalue
has a large condition number, then S has to have an approximately equally
large condition number. In other words, the condition numbers for finding the
(worst) eigenvalue and for reducing the matrix to diagonal form are nearly the
same.

THEOREM 4.7. Let A  be diagonalizable with eigenvalues A  and right and left
eigenvectors xi and y2, respectively, normalized so that IIx2II2 = IIYihI2 = 1 •
Let us suppose that S satisfies S — 'AS = A = diag(Ai, ... , .\n). Then IISII2
11S -1 11 2 >_ maxi 1 /IyZ x i l. If we choose S = [x 1i ... , xn], then I1SJ1 2 • IIS-1 11 2

n • maxi 1 /IyzxjI; i.e., the condition number of S is within a factor of n of its
smallest value.

For a proof, see [69].
For an overview of condition numbers for the eigenproblem, including eigen-

vectors, invariant subspaces, and the eigenvalues corresponding to an invariant
subspace, see chapter 4 of the LAPACK manual [10], as well as [161, 237]. Al-
gorithms for computing these condition numbers are available in subroutines
strsna and strsen of LAPACK or by calling the driver routines sgeevx and
sgeesx.

4.4. Algorithms for the Nonsymmetric Eigenproblem

We will build up to our ultimate algorithm, the shifted Hessenberg QR algo-
rithm, by starting with simpler ones. For simplicity of exposition, we assume
A is real.

Our first and simplest algorithm is the power method (section 4.4.1), which
can find only the largest eigenvalue of A in absolute value and the correspond-
ing eigenvector. To find the other eigenvalues and eigenvectors, we apply the
power method to (A—uI) -1 for some shift u, an algorithm called inverse itera-
tion (section 4.4.2); note that the largest eigenvalue of (A—uI) — ' is l/ —o),
where Ai is the closest eigenvalue to a, so we can choose which eigenvalues to
find by choosing a. Our next improvement to the power method lets us com-
pute an entire invariant subspace at a time rather than just a single eigenvector;
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154 Applied Numerical Linear Algebra

we call this orthogonal iteration (section 4.4.3). Finally, we reorganize orthog-
onal iteration to make it convenient to apply to (A  — aI) -1 instead of A; this
is called QR iteration (section 4.4.4).

Mathematically speaking, QR iteration (with a shift o) is our ultimate
algorithm. But several problems remain to be solved to make it sufficiently
fast and reliable for practical use (section 4.4.5). Section 4.4.6 discusses the
first transformation designed to make QR iteration fast: reducing A from dense
to upper Hessenberg form (nonzero only on and above the first subdiagonal).
Subsequent sections describe how to implement QR iteration efficiently on
upper Hessenberg matrices. (Section 4.4.7 shows how upper Hessenberg form
simplifies in the cases of the symmetrie eigenvalue problem and SVD.)

4.4.1. Power Method

ALGORITHM 4.1. Power method: Given xo, we iterate

i=0

repeat

Y i+1 = Axi
xi+i = yi+1 / I I yi+1 11 2

Ai+1 = x +JAxi+1
i=i+1

until convergence

(approximate eigenvector)
(approximate eigenvalue)

Let us first apply this algorithm in the very simple case when A = diag(.X1,
with 1 1 > 1  > ••• > IA,I. In this case the eigenvectors are

just the columns ei of the identity matrix. Note that xi can also be written
xi = A i xo/JI AZxoII2, since the factors 1/IIyi+1112 only scale xi+l to be a unit
vector and do not change its direction. Then we get

1
 1

C ^2 ( )12 ) '

i

 

Axo-A i ^2 
52)

= =1^1

[ en ] SnAn ^ 1 ^n 1 Z
^1 Al

where we have assumed 1 0. Since all the fractions X /)\ i are less than 1
in absolute value, A ixo becomes more and more nearly parallel to e l , so xi =
AZ xo/IIAZ xo112 becomes closer and closer to +el , the eigenvector corresponding
to the largest eigenvalue ) i . The rate of convergence depends on how much
smaller than 1 the ratios I)'2/)'1I > • • • > I)n/) 1 are, the smaller the faster.
Since xi converges to fel, Xi = xTAxi converges to ) i, the largest eigenvalue.

In showing that the power method converges, we have made several as-
sumptions, most notably that A is diagonal. To analyze a more general case,
we now assume that A = SAS -1 is diagonalizable, with A = diag(\1, ... , \n)

D
ow

nl
oa

de
d 

12
/2

6/
12

 to
 1

28
.9

5.
10

4.
10

9.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



Nonsymmetric Eigenvalue Problems 155

and the eigenvalues sorted so that ,I > I •X21 > • • • > P 'n I. Write S =
[s,, ... , s„], where the columns si are the corresponding eigenvectors and also
satisfy 118i112 = 1; in the last paragraph we had S = I. This lets us write
xp = S(S -1x0) - S([^1, ... Also, since A = SAS — ', we can write

A i = (SAS- ') ... (SAS - ') = SAS'

i times

since all the S -1 • S pairs cancel. This finally lets us write

1
1 lei

Z

AZx0 = (SA'S-1 )S 2 = S 2^2 = 1Ai  

L n ] n^n Stpe 1 ^n Z
Sl  )1

As before, the vector in brackets converges to el, so A 5x0 gets closer and closer
to a multiple of Sel = sl, the eigenvector corresponding to Al. Therefore,
.^i = xTAxi converges to s1 As, = sl 

)tlsl =
A minor drawback of this method is the assumption that 0, i.e., that

xo is not the invariant subspace span{s2, ... , sn }; this is true with very high
probability if xo is chosen at random. A major drawback is that it converges
to the eigenvalue/eigenvector pair only for the eigenvalue of largest absolute
magnitude, and its convergence rate depends on ^.\2/,\1^, a quantity which may
be close to 1 and thus cause very slow convergence. Indeed, if A is real and
the largest eigenvalue is complex, there are two complex conjugate eigenvalues
of largest absolute value 1).11 = ^.^2^, and so the above analysis does not work
at all. In the extreme case of an orthogonal matrix, all the eigenvalues have
the same absolute value, namely, 1.

To plot the convergence of the power method, see HOMEPAGE/Matlab/
powerplot.m.

4.4.2. Inverse Iteration

We will overcome the drawbacks of the power method just described by ap-
plying the power method to (A—uI) — ' instead of A, where u is called a shift.
This will let us converge to the eigenvalue closest to a, rather than just A1.
This method is called inverse iteration or the inverse power method.

ALGORITHM 4.2. Inverse iteration: Given xp, we iterate

i=0

repeat

Y i+1 = (A — oI) —l xi
 xi+i = yi+l/IIyi+1112 (approximate eigenvector)
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156 Applied Numerical Linear Algebra

i+l = x +,Axi+l (approximate eigenvalue)
i=i+1

until convergence

To analyze the convergence, note that A = SAS -1 implies A — al = S(A —
uI)S -1 and so (A  — QI) — ' = S(A — aI) -1 S -1 . Thus (A  — QI) -1 has the same
eigenvectors si as A with corresponding eigenvalues ((A—aI)—')  = (>,^— Q)-1

The same analysis as before tells us to expect xi to converge to the eigenvector
corresponding to the largest eigenvalue in absolute value. More specifically,
assume that P'k — al is smaller than all the other l)^i — a^ so that (,\k — Q) -1

is the largest eigenvalue in absolute value. Also, write xo = S[^1 i ... , n ] T as
before, and assume 0. Then

 (A — QI)-ixo _ (S(A — QI)-iS•-1) S = s

^1 ^ ak — a l
 ̂ k  i)

 - U)-is 1

i

Sk (Q%n — )

where the 1 is in entry k. Since all the fractions ()k — a)/(Ai — a) are less than
one in absolute value, the vector in brackets approaches ek, so (A  — QI) —i xo
gets closer and closer to a multiple of Sek = sk, the eigenvector corresponding
to )'k. As before, ).i = xT Axi 'also converges to .'k.

The advantage of inverse iteration over the power method is the ability to
converge to any desired eigenvalue (the one nearest the shift a). By choosing
o, very close to a desired eigenvalue, we can converge very quickly and thus
not be as limited by the proximity of nearby eigenvalues as is the original
power method. The method is particularly effective when we have a good
approximation to an eigenvalue and want only its corresponding eigenvector
(for example, see section 5.3.4). Later we will explain how to choose such a Q
without knowing the eigenvalues, which is what we are trying to compute in
the first place!

4.4.3. Orthogonal Iteration

Our next improvement will permit us to converge to a (p > 1)-dimensional
invariant subspace, rather than one eigenvector at a time. It is called orthogonal
iteration (and sometimes subspace iteration or simultaneous iteration).
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Nonsymmetric Eigenvalue Problems 157

ALGORITHM 4.3. Orthogonal iteration: Let Zo be an n x p orthogonal matrix.
Then we iterate

i=0
repeat

Y +1 = All
Factor Y +1 = Zz+lRj+l

i=i+1
until convergence

using Algorithm 3.2 (QR decomposition)
(Zz+l spans an approximate
invariant subspace)

Here is an informal analysis of this method. Assume ] Ap I > 1 AP+1 . If p = 1,
this method and its analysis are identical to the power method. When p > 1, we
write span{Zi+i} = span{Y+1} = span {All }, so span{Zi} = span{Allo} _
span{SAZ S— 'Zo}. Note that

SAZS— 'Zo = S diag(, . .. , ^n)S -1 Zo
(X1/X ) Z

= AIS 1 S-1Zo.

Since 1>1ifj<p, and ^^p^<1ifj>p,weget

[ 

(i/) 1 Vpxp

( l )i S—^Zo 
Wz(n—v)xp 

]

where Wi approaches zero like (.Xp+l/.\P)Z, and V does not approach zero.
Indeed, if Vo has full rank (a generalization of the assumption in section 4.4.1
that 0), then V will have full rank too. Write the matrix of eigenvectors

S = [si, ... ,s] - [Sp xP S,P x (n-p)] i.e., Sp = [s1, ... ,s]. Then SA'S -1 Z0 =
A'S[ WZ ] _ A '(S Vi+$ Wi). Thus

span(Z) = span(SA'S— 'Zo) = span(SpV + S^) = span(SpXZ)

converges to span(SpV) = span(Sp), the invariant subspace spanned by the
first p eigenvectors, as desired.

The use of the QR decomposition keeps the vectors spanning
span{A2 Zo} of full rank despite roundof.
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158 Applied Numerical Linear Algebra

Note that if we follow only the first p <p columns of Zz through the it-
erations of the algorithm, they are identical to the columns that we would
compute if we had started with only the first p columns of Zo instead of p
columns. In other words, orthogonal iteration is effectively running the algo-
rithm for p = 1, 2, . .. ,p all at the same time. So if all the eigenvalues have
distinct absolute values, the same convergence analysis as before implies that
the first p <p columns of ZZ converge to span{sl, ... , sp} for any p <p.

Thus, we can let p = n and Zo = I in the orthogonal iteration algorithm.
The next theorem shows that under certain assumptions, we can use orthogonal
iteration to compute the Schur form of A.

THEOREM 4.8. Consider running orthogonal iteration on matrix A  with p = n
and Zo = I. If all the eigenvalues of A  have distinct absolute values and if
all the principal submatrices S(1 : j, 1 : j) have full rank, then AZ - ZTAll
converges to the Schur form of A , i.e., an upper triangular matrix with the
eigenvalues on the diagonal. The eigenvalues will appear in decreasing order
of absolute value.

Sketch of Proof. The assumption about nonsingularity of S(1 : j, 1 : j) for
all j implies that Xo is nonsingular, as required by the earlier analysis. Geo-
metrically, this means that no vector in the invariant subspace span{si, ... , sj}
is orthogonal to span{e2, .. . , e^ }, the space spanned by the first j columns of
ZOI. First note that ZZ is a square orthogonal matrix, so A and Ai = ZT All
are similar. Write ZZ = [Zli, Z2i], where Zli has p columns, so

T f Zl AZ12 Zl AZ2i 1 .A i = Zi AZi =
 Z2 AZlz ZZ AZ2i

Since span{Zli} converges to an invariant subspace of A, span{AZi2} converges
to the same subspace, so Z2 AZli converges to 4Z1 = 0. Since this is true
for all p < n, every subdiagonal entry of Ai converges to zero, so Ai converges
to upper triangular form, i.e., Schur form. ❑

In fact, this proof shows that the submatrix Z2 AZi2 = Ai (p + 1 : n, 1: p)
should converge to zero like I Xp+1/ ,\P l i . Thus, )p should appear as the (p, p)
entry of Ai and converge like max(.p+1/)t I , )p/Xp_1I 2 ).

EXAMPLE 4.5. The convergence behavior of orthogonal iteration is illustrated
by the following numerical experiment, where we took A = diag(1, 2,6,30) and
a random S (with condition number about 20), formed A = S • A • S- ', and
ran orthogonal iteration on A with p = 4 for 19 iterations. Figures 4.3 and
4.4 show the convergence of the algorithm. Figure 4.3 plots the actual errors
AZ (p, p)-A p 1 in the computed eigenvalues as solid lines and the approximations

max(I.Xp+l/)pl2, l,x/\_1 J2) as dotted lines. Since the graphs are (essentially)
straight lines with the same slope on a semilog scale, this means that they are
both graphs of functions of the form y = c • r', where c and r are constants
and r (the slope) is the same for both, as we predicted above.
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Nonsymmetric Eigenvalue Problems 159

Similarly, Figure 4.4 plots the actual values Ai(p+ 1: n, 1 : p)112 as solid
lines and the approximations JAP+1/,\PiZ as dotted lines; they also match well.
Here are Ao and A19 for comparison:

3.5488
2.3595

 A  = Ao = 8.9953• 10 -2

1.9227

30.000

 

_ 6.7607• 10 -13

`419 1.5452 • 10-23

7.3360• 10-29

15.593 8.5775
24.526 14.596
27.599 21.483
55.667 39.717

—32.557
6.0000
1.1086 • 10 -9

3.3769 • 10-15

—4.0123
—5.8157
—5.8415
—10.558

—70.844 14.984
1.8143 —.55754
2.0000 —.25894
4.9533• 10 -6 1.0000

See HOMEPAGE/Matlab/qriter.m for Matlab software to run this and similar
examples. o

EXAMPLE 4.6. To see why the assumption in Theorem 4.8 about nonsingular-
ity of S(1 : j, 1 : j) is necessary, suppose that A is diagonal with the eigenval-
ues not in decreasing order on the diagonal. Then orthogonal iteration yields
ZZ = diag(±1) (a diagonal matrix with diagonal entries ±l) and Ai = A for
all i, so the eigenvalues do not move into decreasing order. To see why the
assumption that the eigenvalues have distinct absolute values is necessary, sup-
pose that A is orthogonal, so all its eigenvalues have absolute value 1. Again,
the algorithm leaves Ai essentially unchanged. (The rows and columns may
be multiplied by —l.)

4.4.4. QR Iteration

Our next goal is to reorganize orthogonal iteration to incorporate shifting and
inverting, as in section 4.4.2. This will make it more efficient and eliminate
the assumption that eigenvalues differ in magnitude, which was needed in
Theorem 4.8 to prove convergente.

ALGORITHM 4.4. QR iteration: Given A0, we iterate

i=0
repeat

Factor Ai = QiR2 (the QR decomposition)
A2+, = RZQz
i=i+1

until convergence
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Fig. 4.3. Convergence of diagonal entries during orthogonal iteration.

105
 Convergente of Schur form(2:4 , 1:1) 2 Convergence of Schur form(3:4 , 1:2)

10

10°
10°
 10 2

10-410 5

10 6
 10 10 

10 8

10 1010_15

 0  5 10 15 20 0 5 10 15 20

Convergence of Schur form(4:4 , 1:3)
10Z

 10° - ----

10 2 ----- -- ------------------

10 6
 0  5 10 15 20
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Nonsymmetric Eigenvalue Problems 161

Since Ai+1 = RjQz = QT (QzRj)Qi = QT AiQ2, A2 +1 and Ai are orthogo-
nally similar.

We claim that the Az computed by QR iteration is identical to the matrix
ZT A ll implicitly computed by orthogonal iteration.

LEMMA 4.3. Let Ai be the matrix computed by Algorithm 4.4. Then AZ
ZT A ll, where ZZ is the matrix computed from orthogonal iteration (Algo-
rithm 4.3) starting with Zo = I. Thus Ai converges to Schur foren if all the
eigenvalues have different absolute values.

Proof. We use induction. Assume AZ = ZT AZz. F4om Algorithm 4.3,
we can write AZZ = Zz +1Ri+l, where Zz+l is orthogonal and RZ+1 is upper
triangular. Then ZTAll = ZT(ZZ+1Ri+1) is the product of an orthogonal
matrix Q = ZT Z2+1 and an upper triangular matrix R = Ri+l = Z +1 AZ2 ;
this must be the QR decomposition AZ = QR, since the QR decomposition
is unique (except for possibly multiplying each column of Q and row of R by
—1). Then

Z+1All+1 = (Z+IAll)(ZTZi+i) = Rz+i(ZTZi+i) = RQ.

This is precisely how the QR iteration maps Ai to Ai+l, so Z +1 AZ2+1 = Az+l
as desired. ❑

To see a variety of numerical examples illustrating the convergence of QR
iteration, run the Matlab code referred to in Question 4.15.

trom earlier analysis, we know that the convergence rate depends on the
ratios of eigenvalues. To speed convergence, we use shifting and inverting.

ALGORITHM 4.5. QR iteration with a shift: Given A0, we iterate

i=0
repeat

Choose a shift ui near an eigenvalue of A
Factor Az — uiI = QiRj (QR decomposition)
Ai+l = RQi + al
i=i+1

until convergence

LEMMA 4.4. Ai and Ai+l are orthogonally similar.

Proof. A i+l = RQi + al = QT QZR Qi + a QT Qi = QT (QiRZ + a I )Qi =
QTAiQi. ❑

If Ri is nonsingular, we may also write

Ai+l = RiQi + o-iI = R QiRzR2 ' + a RiRi 1 = Ri(QZRz + QiI)Rz 1

= RiAiRT 1.
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162 Applied Numerical Linear Algebra

If ui is an exact eigenvalue of Ai, then we claim that QR iteration converges
in one step: since ui is an eigenvalue, AZ - ci I is singular, so RZ is singular, and
so some diagonal entry of RZ must be zero. Suppose Ri (n, n) = 0. This implies
that the last row of RiQi is 0, so the last row of Ai+l = RiQi+cZI equals uien,
where en is the nth column of the n-by-n identity matrix. In other words, the
last row of Az+l is zero except for the eigenvalue uZ appearing in the (n, n)
entry. This means that the algorithm has converged, because Ai+l is block
upper triangular, with a trailing 1-by-1 block ui; the leading (n - 1)-by-(n - 1)
block A' is a new, smaller eigenproblem to which QR iteration can be solved

without ever modifying uZ again: Ai+l = [ a 1.
When ui is not an exact eigenvalue, then we will accept Ai+l (n, n) as having

converged when the lower left block Ai+l (n, 1: n - 1) is small enough. Recall
from our Barlier analysis that we expect Ai+l (n, 1 : n - 1) to shrink by a factor
4 — Qi I / mini j — Qi 1, where 1 A k — Ui 1 = mini — ui 1. So if ui is a very

good approximation to eigenvalue Xk, we expect fast convergence.
Here is another way to see why convergence should be fast, by recognizing

that QR iteration is implicitly doing inverse iteration. When uZ is an exact
eigenvalue, the last column  qi of Qi will be a left eigenvector of Ai for eigenvalue
ui, since q*Ai = q*(QiRi +QZI) = en R2 +uiq*. = uiq*. When ui is close to an
eigenvalue, we expect qi to be close to an eigenvector for the following reason:
q. is parallel to ((Ai — QiI)*) —l en (we explain why below). In other words qi

is the same as would be obtained from inverse iteration on (Ai — uiI)* (and so
we expect it to be close to a left eigenvector).

Here is the proof that q2 is parallel to ((Ai — ciiI) * ) —l en. Ai — ciii = QiRi
implies (Ai — uiI)RT 1 = Q. Inverting and taking the conjugate transpose of
both sides leave the right-hand side Qi unchanged and change the left-hand side
to ((Ai —QiI)*) -1 Rz , whose last column is ((Ai —QjI)*) -1 • [0, . ..
which is proportional to the last column of ((Ai — o i I)*) -1 .

How do we choose uz to be an accurate approximate eigenvalue, when we
are trying to compute eigenvalues in the first place? We will say more about
this later, but for now note that near convergence to a real eigenvalue Ai (n, n)
is close to that eigenvalue, so ui = Ai(n, n) is a good choice of shift. In fact,
it yields local quadratic convergence, which means that the number of correct
digits doubles at every step. We explain why quadratic convergence occurs as
follows: Suppose at step i that Ai (n, 1 : n - 1) I I / I A I I -- 9l « 1. If we were
to set Ai(n,1 : n - 1) to exactly 0, we would make AZ block upper triangular
and so perturb a true eigenvalue \k to make it equal to Ai(n, n). If this
eigenvalue is far from the other eigenvalues, it will not be ill-conditioned, so
this perturbation will be 0 (TIII AI U. In other words, I)'k - A i (n, n) I = 0(iiil A ll ).
On the next iteration, if we choose ui = Ai(n, n), we expect Ai+1(n,1 : n-1) to
shrink by a factor R.4 -Qi / mini#k .\j -Ui = O(17), implying that 1I Ai+i(n,1 :
n — 1 )11 = O(i2 hlAhI), or Il A i+i(n,1 : n — 1 )11 /IIAII = O(j2 ). Decreasing the
error this way from rl to O(ï 2 ) is quadratic convergence.

D
ow

nl
oa

de
d 

12
/2

6/
12

 to
 1

28
.9

5.
10

4.
10

9.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



Nonsymmetric Eigenvalue Problems 163

EXAMPLE 4.7. Here are some shifted QR iterations starting with the same
4-by-4 matrix Ao as in Example 4.5, with shift cri = AZ(4, 4). The convergence
is a bit erratic at first but eventually becomes quadratic near the end, with
IIAZ(4,1 : 3)I IAi(4,3)I approximately squaring at each of the last three
steps. Also, the number of correct digits in Ai (4, 4) doubles at the fourth
through second-to-last steps.

Ao(4,:) = +1.9 +56. +40. -10.558
Al (4, :) = -.85 -4.9 +2.2 • 10 -2 -6.6068
A2(4,:) = +.35 +.86 +.30 0.74894
A3(4,:) = -1.2 • 10 -2 -.17 -.70 1.4672
A4(4,:) = -1.5 • 10 -4 -1.8 • 10 -2 -.38 1.4045
A5 (4,:) = -3.0 • 10 -6 -2.2. 10 -3 -.50 1.1403
A6(4,:) = -1.4 • 10 -8 -6.3.10 -5 -7.8 • 10 -2 1.0272
A7(4,:) = -1.4 • 10 -11 -3.6 • 10 -7 -2.3 • 10 -3 0.99941
A8(4,:) = +2.8 • 10 -16 +4.2 • 10 -11 +1.4. 10 -6 0.9999996468853453
A9(4,:) = -3.4.10 -24 -3.0 • 10 -18 -4.8 • 10 -13 0.9999999999998767
A10(4, :) = +1.5 • 10 -38 +7.4 • 10 -32 +6.0 • 10 -26 1.000000000000001

By the time we reach A10, the rest of the matrix has made a lot of progress
toward convergence as well, so later eigenvalues will be computed very quickly,
in one or two steps each:

30.000 -32.557 -70.844 14.985
_ 6.1548 • 10 -6 6.0000 1.8143 -.55754

A10 2.5531 • 10 -13 2.0120 • 10-6 2.0000 -.25894
1.4692 • 10 -38 7.4289 • 10 -32 6.0040. 10 -26 1.0000

4.4.5. Making QR Iteration Practical

Here are some remaining problems we have to solve to make the algorithm
more practical:

1. The iteration is too expensive. The QR decomposition costs O(n3 ) flops,
so if we were lucky enough to do only one iteration per eigenvalue, the
cost would be O(n4 ). But we seek an algorithm with a total cost of only
0(n3 ).

2. How shall we choose ai to accelerate convergence to a complex eigen-
value? Choosing ui complex means all arithmetic has to be complex,
increasing the cost by a factor of about 4 when A is real. We seek an
algorithm that uses all real arithmetic if A is real and converges to real
Schur form.

3. How do we recognize convergence?

The solutions to these problems, which we will describe in more detail later,
are as follows:
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1. We will initially reduce the matrix to upper Hessenberg form; this means
that A is zero below the first subdiagonal (i.e., = 0 if i > j + 1) (see
section 4.4.6). Then we will apply a step of QR iteration implicitly, i.e.,
without computing Q or multiplying by it explicitly (see section 4.4.8).
This will reduce the cost of one QR iteration from O(n3 ) to O(n2 ) and
the overall cost from O(n4) to O(n3) as desired

When A is symmetrie we will reduce it to tridiagonal form instead, re-
ducing the cost of a single QR iteration further to O(n). This is discussed
in section 4.4.7 and Chapter 5.

2. Since complex eigenvalues of real matrices occur in complex conjugate
pairs, we can shift by ui and Qi simultaneously; it turns out that this
will permit us to maintain real arithmetic (see section 4.4.8). If A is
symmetrie, all eigenvalues are real, and this is not an issue.

3. Convergente occurs when subdiagonal entries of Ai are "small enough."
To help choose a practical threshold, we use the notion of backward sta-
bility: Since A;, is related to A by a similarity transformation by an or-
thogonal matrix, we expect Ai to have roundoff errors of size O (e A I) in
it anyway. Therefore, any subdiagonal entry of Ai smaller than O (e I I A II)
in magnitude may as well be zero, so we set it to zero. 16 When A is
upper Hessenberg, setting ap+l,p to zero will make A into a block upper

triangular matrix A = [ A l' 
A22
Al2 ], where Al, is p-by-p and Al, and0 

A22 are both Hessenberg. Then the eigenvalues of All and A22 may be
found independently to get the eigenvalues of A. When all these diagonal
blocks are 1-by-1 or 2-by-2, the algorithm has finished.

4.4.6. Hessenberg Reduction

Given a real matrix A, we seek an orthogonal Q so that QAQT is upper
Hessenberg. The algorithm is a simple variation on the idea used for the QR
decomposition.

EXAMPLE 4.8. We illustrate the general pattern of Hessenberg reduction with
a 5-by-5 example. Each Qi below is a 5-by-5 Householder reflection, chosen to
zero out entries i + 2 through n in column i and leaving entries 1 through i
unchanged.

16 In practice, we use a slightly more stringent condition, replacing IIAII with the norm of
a submatrix of A, to take into account matrices which may be "graded" with large entries
in one place and small entries elsewhere. We can also set a subdiagonal entry to zero when
the product a,+1,Pa,+2,P+1 of two adjacent subdiagonal entries is small enough. See the
LAPACK routine slahqr for details.
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Nonsymmetric Eigenvalue Problems 165

1. Choose Q1 so

x x x x x
x x x x x

Q1A = o x x x x
o x x x x
o x x x x

x
x

and Al - Q1AQ1 = o
0

0

x x x x
x x x x
x x x x
XXIX
x x x x

Q1 leaves the first row of Q1A unchanged, and Q1 leaves the first column
of Q1AQ1 unchanged, including the zeros.

2. Choose Q2 SO

x x x x x x x x x x
x x x x x x x x x x

Q2A1 = o x x x x and A2 - Q2A1Q2 = 0 x x x x
0 0 X x x o o x x x
0 o x x x 00 x x x

Q2 changes only the last three rows of Al, and QZ leaves the first two
columns of Q2A1 Q2 unchanged, including the zeros.

3. Choose Q3 SO

x x x x x x x x x x
x x x x x x x x x x

Q3A2 = 0 x x x x and A3 = Q3A2Q3 = 0 x x x x
0 o x x x 00 x x x
0 0 o x X o 0 o x x

which is upper Hessenberg. Altogether A3 = (Q3Q2Q1) - A(Q3Q2Q1) T
QAQT . o

The general algorithm for Hessenberg reduction is as follows.

ALGORITHM 4.6. Reduction to upper Hessenberg foren:

if Q is desired, set Q = I
for i=1:n-2

ui = House(A(i + 1 : n, i))
PZ = I — 2uiuT /* Qi = diag(Izxi, Pi) */
A(i +1:n,i:n)= Pi•A(i +1:n,i:n)
A(1 : n,i + 1: n) = A(1 n,i+1:n)-Pi
if Q is desired

 Q(i+1:n,i:n)= P2-Q(i +1:n,i:n) /* Q=Qi-Q */
end if

end for
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166 Applied Numerical Linear Algebra

As with the QR decomposition, one does not form PZ explicitly but instead
multiplies by I — 2uiuT via matrix-vector operations. The ui vectors can also
be stored below the subdiagonal, similar to the QR decomposition. They can
be applied using Level 3 BLAS, as described in Question 3.17. This algorithm
is available as the Matlab command hess or the LAPACK routine sgehrd.

The number of floating point operations is easily counted to be 3 n3 +
O(n2 ), or 3 n3 + O(n2 ) if the product Q = Q„_1 • • • Q 1 is computed as well.

The advantage of Hessenberg form under QR iteration is that it costs only
6n2 + O(n) flops per iteration instead of O(n3 ), and its form is preserved so
that the matrix remains upper Hessenberg.

PROPOSITION 4.5. Hessenberg form is preserved by QR iteration.

Proof. It is easy to confirm that the QR decomposition of an upper Hessenberg
matrix like Ai — uI yields an upper Hessenberg Q (since the jth column of Q
is a linear combination of the leading j columns of Ai — Q1). Then it is easy
to confirm that RQ remains upper Hessenberg and adding al does not change
this. ❑

DEFINITION 4.5. An upper Hessenberg matrix H is unreduced if all subdiag-
onals are nonzero.

It is easy to see that if H is reduced because hi+l,i = 0, then its eigenvalues
are those of its leading i-by-i Hessenberg submatrix and its trailing (n — i)-by-
(n — i) Hessenberg submatrix, so we need consider only unreduced matrices.

4.4.7. Tridiagonal and Bidiagonal Reduction

If A is symmetric, the Hessenberg reduction process leaves A symmetric at
each step, so zeros are created in symmetrie positions. This means we need
work on only half the matrix, reducing the operation count to 3n3 + O(n2 ) or
3 n3 + O(n2 ) to form Qn_l ... Qi as well. We call this algorithm tridiagonal
reduction. We will use this algorithm in Chapter 5. This routine is available
as LAPACK routine ssytrd.

Looking ahead a bit to our discussion of computing the SVD in section 5.4,
we recall from section 3.2.3 that the eigenvalues of the symmetric matrix ATA
are the squares of the singular values of A. Our eventual SVD algorithm will
use this fact, so we would like to find a form for A which implies that A T A is
tridiagonal. We will choose A to be upper bidiagonal, or nonzero only on the
diagonal and first superdiagonal. Thus, we want to compute orthogonal ma-
trices Q and V such that QAV is bidiagonal. The algorithm, called bidiagonal
reduction, is very similar to Hessenberg and tridiagonal reduction.

EXAMPLE 4.9. Here is a 4-by-4 example of bidiagonal reduction, which illus-
trates the general pattern:
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Nonsymmetric Eigenvalue Problems 167

1. Choose Ql so

x x x xl rx X 0 0

Q1A_ 0 x x x andV,soAl =Q1AV1= o x x x
0 x x X 0 x x X

0 X  X  X o x X x

Q1 is a Householder reflection, and Vl is a Householder reflection that
leaves the first column of Q1A unchanged.

2. Choose Q2 so

x x 0 o  rx X 0 0

0 X  x X 0 x x o
Q2A1 = o o x x and V2 so A2 - Q2AiV2 = o o x x

0 0 X  x o 0 x x

Q2 is a Householder reflection that leaves the first row of Al unchanged.
V2 is a Householder reflection that leaves the first two columns of Q2A1
unchanged.

3. Choose Q3 so

x x 0 0

o x x o
Q3`42= 00 x x and V3=IsoA3=Q3A2.

0 0 0 x

Q3 is a Householder reflection that leaves the first two rows of A2 un-
changed. o

In general, if A is n-by-n, then we get orthogonal matrices Q = Qn_1 • • • Ql
and V = Vl • • V,_2 such that QAV = A ' is upper bidiagonal.

Note that A FT A ' = V T A T QT QAV = V T A T AV , so A'TA ' has the same
eigenvalues as A T A; i.e., A' has the same singular values as A.

The cost of this bidiagonal reduction is 3n3 + 0(n2 ) flops, plus another
4n3 + 0(n2 ) flops to compute Q and V. This routine is available as LAPACK
routine sgebrd.

4.4.8. QR Iteration with Implicit Shifts

In this section we show how to implement QR iteration cheaply on an upper
Hessenberg matrix. The implementation will be implicit in the lense that we do
not explicitly compute the QR factorization of a matrix H but rather construct
Q implicitly as a product of Givens rotations and other simple orthogonal
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168 Applied Numerical Linear Algebra

matrices. The implicit Q theorem described below shows that this implicitly
constructed Q is the Q we want. Then we show how to incorporate a single shift
o- , which is necessary to accelerate convergence. To retain real arithmetic in
the presence of complex eigenvalues, we then show how to do a double shift, i.e.,
combine two consecutive QR iterations with complex conjugate shifts o and Q;
the result after this double shift is again real. Finally, we discuss strategies for
choosing shifts o and u to provide reliable quadratic convergence. However,
there have been recent discoveries of rare situation where convergence does not
occur [25, 65], so finding a completely reliable and fast implementation of QR
iteration remains an open problem.

Implicit Q Theorem

Our eventual implementation of QR iteration will depend on the following
theorem.

THEOREM 4.9. Implicit Q theorem. Suppose that QTAQ = H is unreduced
upper Hessenberg. Then columns 2 through n of Q are determined uniquely
(up to signs) by the first column of Q.

This theorem implies that to compute Ai+l = QTAQ from Ai in the QR
algorithm, we will need only to

1. compute the first column of QZ (which is parallel to the first column of
Ai — o-ZI and so can be gotten just by normalizing this column vector).

2. choose other columns of QZ so Qi is orthogonal and AZ +1 is unreduced
Hessenberg.

Then by the implicit Q theorem, we know that we will have computed
Ai+l correctly because Qi is unique up to signs, which do not matter. (Signs
do not matter because changing the signs of the columns of QZ is the same
as changing Ai — ajI = QiR2 to (QiS2)(SZRi), where Si = diag(±1, ... , ±1).
Then Ai+l = (SZRZ)(QiSi) + aiI = SZ(RzQi + o -iI)Si, which is an orthogonal
similarity that just changes the signs of the columns and rows of A2+1.)
Proof of the implicit Q theorem. Suppose that QTAQ = H and V T AV = G are
unreduced upper Hessenberg, Q and V are orthogonal, and the first columns
of Q and V are equal. Let (X) denote the ith column of X. We wish to show
(Q)i = +(V)i for all i> 1, or equivalently, that W - V T Q = diag(+1, ... , ±1).

Since W = VTQ, we get GW = GVTQ = VTAQ = V T QH = WH.
Now GW = WH implies C(W) i = (GW)i = (WH) i = so

hz+l,i(W)i+l = G(W)i — h^Z(W)» Since (W)1 = [1, 0, ... , 0] T and G is
upper Hessenberg, we can use induction on i to show that (W)i is nonzero in
entries 1 to i only; i.e., W is upper triangular. Since W is also orthogonal, W
is diagonal = diag(+1, ... ,:1). ❑
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Nonsymmetric Eigenvalue Problems 169

Implicit Single Shift QR Algorithm

To see how to use the implicit Q theorem to compute Al from Ao = A, we use
a 5-by-5 example.

EXAMPLE 4.10. 1. Choose

Cl Si X X X X  X

—S1 Cl X X X X  X

Qi = 1 soA1=QTAQi= + x x x x
1 0 0 X XX

1 0 00 x x

We discuss how to choose cl and sl below; for now they may be any
Givens rotation. The + in position (3,1) is called a bulge and needs to
be gotten rid of to restore Hessenberg form.

2. Choose

1 XX X x X

C2 S2 X X X X X

Q2 = —82 C2 so Q2 Al = O x x x x
1 00 X X X

1 o O O x x

and
XXX x x
XXX X X

A2 — Q2 A1Q2 = 0 X X X X

o + XXX

0 0 0 x x

Thus the bulge has been "chased" from (3,1) to (4,2).

3. Choose

1 XX X x x
1 XX X X x

Q3 = C3 S3 50 Q3A2 = 0 X X X X

— 33 C3 0 0 X X X

1 0 o O x X

and

XXX x x
x X x x x

A3 = 3 A2Q3 = 0 X X X X

O o x X X
o o + x x

The bulge has been chased from (4,2) to (5,3).
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4. Choose

1 XXX x x
1 XXX x x

Q4 = 1 so Q4 A3 = 0 X  X  X  X
C4 S4 0 0 X  X  X

—84 C4 0 0 0 X  X

and
XXX x x
XXX x x

A4 = Q4 A3Q4 = 0 X  X  X  X
00 XXX
0 o a x x

so we are back to upper Hessenberg form.
Altogether QTAQ is upper Hessenberg, where

Cl X  X  X  X

si X X X  X

Q = QIQ2Q3Q4 = 82 X X X
S3 X  X

S4 X

so the first column of Q is [el, si, 0, ... , 0]T , which by the implicit Q theorem
has uniquely determined the other columns of Q (up to signs). We now choose
the first column of Q to be proportional to the first column of A — al, [all —
a, a21, 0, ... 0]T . This means Q is the same as in the QR decomposition of
A — QI, as desired. o

The cost of one implicit QR iteration for an n-by-n matrix is 6n2 + O(n).

Implicit Double Shift QR Algorithm

This section describes how to maintain real arithmetic by shifting by a and Q
at the same time. This is essential for an efficient practical implementation but
not for a mathematical understanding of the algorithm and may be skipped
on a first reading.

The results of shifting by o and Q in succession are

Ao — aI = Q1R1,
Al = R1Q1 + QI so Al = Qi AoQ1,

Al — QI = Q2R2,
A2 = R2Q2 + if  so A2 = QZ A1Q2 = Q2 Qf AoQ1Q2•

LEMMA 4.5. We can choose Q1 and Q2 so
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(1) Q1Q2 is real,
(2) A2 is therefore real,
(3) the first column of Q1Q2 is easy to compute.

Proof. Since Q2R2 = Al — QI = R1Q1 + (u — Q)I, we get

Q1Q2R2R1 = Q1(R1Q1 + (a — Q)I)Ri

= Q1R1Q1R1 + (a — Q)Q1R1
_ (Ao—o-I)(Ao— al) +(a—iT)(Ao—al)
= Aó — 2( ia)Ao + Q^ 2I - M.

Thus (Q1Q2)(R2R1) is the QR decomposition of the real matrix M, and
therefore Q1Q2, as well as R2R1, can be chosen real. This means that A2 =
(Q1Q2) T A(Q 1 Q2) also is real.

The first column of Q1Q2 is proportional to the first column of A 2 -2 iaAo+
Ja 2 1I, which is

ai1 + a12a21 — 2(Ra)all + lul 2

a21(al1 + a22 — 2(Ro- ))
a21a32

 0  ❑

0

The rest of the columns of Q1Q2 are computed implicitly using the implicit
Q theorem. The process is still called "bulge chasing," but now the bulge is
2-by-2 instead of 1-by-1.

EXAMPLE 4.11. Here is a 6-by-6 example of bulge chasing.

1. Choose Q1 = [ 0l ], where the first column of Qi is given as above,
so

x X  X  X  X  xl rx x x x x x

 

X XXX x x x XXX x x
_ x x x x x — T + XXX x x

Q1 4 0 0 XXX x 
and Ai = Q 1

 AQ1 = ++ x x x x

 

0 00 x x x o 0 0 XXX

 

0 0 0 o x x o 0 00 x x

We see that there is a 2-by-2 bulge, indicted by plus signs.
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2. Choose a Householder reflection Q, which affects only rows 2, 3, and 4
of Q2 Al, zeroing out entries (3, 1) and (4, 1) of Al (this means that Q2
is the identity matrix outside rows and columns 2 through 4):

x x x x x x x x x x x x
XXX x x x  IX X X  XXX

T _ 0 x x x X x T 0 X X X  X  x
Q2 Al o + x x x x and A2 - Q2 A,Q2 = o+ x x x x

o o 0 x x x o++ x x x
o o 0 0 X  x o 0 o o x x

and the 2-by-2 bulge has been "chased" one column.

3. Choose a Householder reflection Q, which affects only rows 3, 4, and 5
of Q3 A2 i zeroing out entries (4, 2) and (5, 2) of A2 (this means that Q3
is the identity outside rows and columns 3 through 5):

x x x x x xl x x x x x
x x x x x x x x x x x x

O O x x x x
T A2 _ o X X  X  X  X  and 

A3 Q
_ TA

2Q3 
_ 0 X  X  X  X  X

3 3  0 O x x x xQ 
o o+ x x X o o+ x x x
0 0 0 0 X  x o o + + x x

4. Choose a Householder reflection Q, which affects only rows 4, 5, and 6
of Q4 A3 i zeroing out entries (5, 3) and (6, 3) of A3 (this means that Q4
is the identity matrix outside rows and columns 4 through 6):

X X X  X  X  X

x x x x x x
o x x x x x

A4 = nw4 A3Q4 
= O O x x x x

0 o O XXX

O o o + X  X

5. Choose

Q5 —

xI x
0so A5 = Q5 A4Q5 =
01 0

0

XXX x x
XXX x x
XXX x x
0 XXX X

00 XXX

0 0 o x x
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Nonsymmetric Eigenvalue Problems 173

Choosing a Shift for the QR Algorithm

To completely specify one iteration of either single shift or double shift Mes-
senberg QR iteration, we need to choose the shift u (and Q). Recall from the
end of section 4.4.4 that a reasonable choice of single shift, one that resulted
in asymptotic quadratic convergence to a real eigenvalue, was a = an,n , the
bottom right entry of A. The generalization for double shifting is to use the
Francis shift, which means that a and Q are the eigenvalues of the bottom 2-by-
2 corner of Ai: [ an-1 'n-1 an-1 'n ] This will let us converge to either two real

an ,.,_1 an,n

eigenvalues in the bottom 2-by-2 corner or a single 2-by-2 block with complex
conjugate eigenvalues. When we are close to convergence, we expect a_1,_2
(and(and possibly an ,n_1) to be small so that the eigenvalues of this 2-by-2 matrix
are good approximations for eigenvalues of A. Indeed, one can show that this
choice leads to quadratic convergence asymptotically. This means that once
an_ 1 , n_2 (and possibly an ,n_1) is small enough, its magnitude will square at
each step and quickly approach zero. In practice, this works so well that on
average only two QR iterations per eigenvalue are needed for convergence for
almost all matrices. This justifies calling QR iteration a "direct" method.

In practice, the QR iteration with the Francis shift can fail to converge
(indeed, it leaves

0 0 1
1 0 0
0 1 0

unchanged). So the practical algorithm in use for decades had an "exceptional
shift" every 10 shifts if convergence had not occurred. Still, tiny sets of
matrices where that algorithm did not converge were discovered only recently
[25, 65]; matrices in a small neighborhood of

01 00
10 h 0
0 —h 0 1
0 0 1 0

where h is a few thousand times machine epsilon, form such a set. So another
"exceptional shift" was recently added to the algorithm to patch this case.
But it is still an open problem to find a shift strategy that guarantees fast
convergence for all matrices.

4.5. Other Nonsymmetric Eigenvalue Problems

4.5.1. Regular Matrix Pencils and Weierstrass Canonical Form

The standard eigenvalue problem asks for which scalars z the matrix A — zI
is singular; these scalars are the eigenvalues. This notion generalizes in several
important ways.
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174 Applied Numerical Linear Algebra

DEFINITION 4.6. A — ) B, where A and B are m-by-n matrices, is called a
matrix pencil, or just a pencil. Here ) is an indeterminate, not a particular,
numerical value.

DEFINITION 4.7. If A  and B are square and det(A — ) B) is not identically
zero, the pencil A  — ) B is called regular. Otherwise it is called singular. When
A — .AB is regular, p7) - det(A — )B) is called the characteristic polynomial
of A  — AB and the eigenvalues of A  — AB are defined to be

(1) the roots of p(.X) = 0,
(2) oo (with multiplicity n — deg(p)) if deg(p) < n.

EXAMPLE 4.12. Let

1 2
A—AB= 1 —A 0

0

Then p(\) = det(A — )B) = (1 — 2)^) • (1 — 0)) • (0 — A) = (2\ — 1).\, so the
eigenvalues are ). = 2, 0 and oo. o

Matrix pencils arise naturally in many mathematical models of physical
systems; we give examples below. The next proposition relates the eigenvalues
of a regular pencil A — ) B to the eigenvalues of a single matrix.

PIfoPosITIOlu 4.6. Let A  — AB be regular. If B is nonsingular, all eigenvalues
of A  — AB are finite and the same as the eigenvalues of AB — ' or B — 'A . If B
is singular, A  — AB has eigenvalue oo with multiplicity n — rank(B). If A  is
nonsingular, the eigenvalues of A  — AB are the same as the reciprocals of the
eigenvalues of A -1 B or BA -1 , where a zero eigenvalue of A -1 B corresponds
to an infinite eigenvalue of A  — .AB.

Proof. If B is nonsingular and )^' is an eigenvalue, then 0 = det(A — .V B) =
det(AB-1 — )^'I) = det(B-1 A — )1'I), so A' is also an eigenvalue of AB -1 and
B -1A. If B is singular, then take p(.^) = det(A — )B), write the SVD of B as
B = UEV T , and substitute to get

p(A) = det(A — ,\UEV T ) = det(U(UT AV — )E)V T ) = fdet(UTAV — ^E).

Since rank(B) = rank(), only rank(B) )'s appear in UTAV — AE, so the
degree of the polynomial det(UT AV — )^E) is rank(B).

If A is nonsingular, det(A — )B) = 0 if and only if det(I — ).A -1 B) = 0
or det(I — )BA -1 ) = 0. This equality can hold only if ). 54 0 and 1/) is an
eigenvalue of A-1 B or BA —l . ❑
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Nonsymmetric Eigenvalue Problems 175

DEFINITION 4.8. Let )^' be a finite eigenvalue of the regelar pencil A  — AB.
Then x 0 is a right eigenvector if (A—)!B)x = 0, or equivalently Ax = )'Bx.
If ,\' = oo is an eigenvalue and Bx = 0, then x is a right eigenvector. A  left
eigenvector of A  — AB is a right eigenvector of (A  — )B)*.

EXAMPLE 4.13. Consider the pencil A —)^B in Example 4.12. Since A and B
are diagonal, the right and left eigenvectors are just the columns of the identity
matrix. o

EXAMPLE 4.14. Consider the damped mass-spring system from Example 4.1.
There are two matrix pencils that arise naturally from this problem. First, we
can write the eigenvalue problem

M -1 B —M — 'K
Ax= 

1 0 
x=.fix

as

L ^ 0 jx=[ 0 I ]x.

This may be a superior formulation if M is very ill-conditioned, so that M -1 B
and M -1 K are hard to compute accurately.

Second, it is common to consider the case B = 0 (no damping), so the
original differential equation is Mï(t) + Kx(t) = 0. Seeking solutions of the
form x(t) = e tx2(0), we get ))?eA i tMxi(0) + e tKxi(0) = 0, or )?Mx2(0) +
Kxz (0) = 0. In other words, —) is an eigenvalue and x2 (0) is a right eigen-
vector of the pencil K — AM. Since we are assuming that M is nonsingular,
these are also the eigenvalue and right eigenvector of M -1 K. o

Infinite eigenvalues also arise naturally in practice. For example, later
in this section we will show how infinite eigenvalues correspond to impulse
response in a system described by ordinary differential equations with linear
constraints, or differential-algebraic equations [41]. See also Question 4.16 for
an application of matrix pencils to computational geometry and computer
graphics.

Recall that all of our theory and algorithms for the eigenvalue problem of a
single matrix A depended on finding a similarity transformation S — 'AS of A
that is in "simpler" form than A. The next definition shows how to generalize
the notion of similarity to matrix pencils. Then we show how the Jordan form
and Schur form generalize to pencils.

DEFINITION 4.9. Let PL and PR be nonsingular matrices. Then pencils A—AB
and PLAPR — )PLBPR are called equivalent.

PROPOSITION 4.7. The equivalent regular pencils A—) B and PLAPR—/\PLBPR
have the same eigenvalues. The vector x is a right eigenvector of A  — AB if
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176 Applied Numerical Linear Algebra

and only if PR l x is a right eigenvector of PLAPR - .\PLBPR. The vector y
is a left eigenvector of A  - AB if and only if (PL) -ly is a left eigenvector of
PLAPR — )^PLBPR.

Proof.
det(A - .AB) = 0 if and only if det(PL(A - )B)PR) = 0.
(A  - AB)x = 0 if and only if PL(A -)^B)PRPR 1 x = 0.
(A  - .\B)*y = 0 if and only if PR(A - ) B)*PL(PL) -ly = 0. ❑
The following theorem generalizes the Jordan canonical form to regular

matrix pencils.

THEOREM 4.10. Weierstrass canonical form. Let A  — AB be regular. Then
there are nonsingular PL and PR such that

PL(A - )B)PR = diag(J l ) — —) Inl , ... , Jnk (''nk) - XInk , Nml, ...

where Jn,(Ai) is an n i -by-ni Jordan block with eigenvalue Ai,

1

Jni (Ai) =
1
Ai

and Nmz is a "Jordan block for ). = oo with multiplicity mi, "

1)

Nm;. = 1 = Im2 - AJmi(0)•

1

For a proof, see [110].

Application of Jordan and Weierstrass Forms to Differential Equa-
tions

Consider the linear differential equation x(t) = Ax(t) + f (t), x(0) = xo. An
explicit solution is given by x(t) = eAtxo + fó eA(t—T) f(T)dr. If we know
the Jordan form A = SJS -1 , we may change variables in the differential
equation to y(t) = S- lx(t) to get y(t) = Jy(t) + S - 1 f (t), with solution y(t) =
eJtyo + fo eJ(t-T)S-1 f (r)dr. There is an explicit formula to compute e't or
any other function f (J) of a matrix in Jordan form J. (We should not use this
formula numerically! For the basis of a better algorithm, see Question 4.4.)
Suppose that is given by its Taylor series °O f (z) (0)zz and J is aPP f g Y Y f (z) = ^i_0 i!
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Nonsymmetric Eigenvalue Problems 177

single Jordan block J = .V + N, where N has ones on the first superdiagonal
and zeros elsewhere. Then

 Í(J) _ 
f(2)(0)(AI+N)i

i!
i=0

co f(i) ( ) i0 (i )  by the binomial theoremj J
i=0 Z' j-0 _ f (Z) (0) Z ) reversing the order of summation
j=0 i=j
n-1 co f (i) (0) i_ EN'E i! ( j ^a',
j=0 i=j

where in the last equality we used the fact that N = 0 for j > n — 1. Note
that N has ones on the jth superdiagonal and zeros elsewhere. Finally, note

that ^°°   ; °) (^ )^i—J is the Taylor expansion for f(i) (^)/j!. Thus

 

1 nxn

... ii j )f (J) =  
= 

0

Nj f (j) (^)

2! (n-1)!Ir .

(4.6) =  f"(a)
2!

f(A)

so that f (J) is upper triangular with f(i) 7)/j! on the jth superdiagonal.
To solve the more general problem Bx = Ax + f (t), A  — AB regular, we use

the Weierstrass form: let PL(A — )B)PR be in Weierstrass form, and rewrite
the equation as PLBPRPR 1 = PLAPRP, 1 x + PL f (t). Let PR 1x = y and
PL f (t) = g(t). Now the problem has been decomposed into subproblems:

Ini

Ink

Jml (0 )

J., (0)
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178 Applied Numerical Linear Algebra

J1 p'.')

_ I g + g .ml 

Imr

Each subproblem y = Jni (.X j)y+g(t) - Jy+D(t) is a standard linear ODE
as above with solution

y(t) = y(0)eJt +in t eJ(t—T)9( T)dy

The solution of Jm (0)y = y + g(t) is gotten by back substitution starting
from the last equation: write Jm (0)y = y + g(t) as

0 1 yl yl gl

_ +

0 Ym ^m 9m

The mth (last) equation says 0 = y.,,,, + gm or ym = —g,m The ith equation
says yi+l = yi + gi, so yi = y i+l — gi and thus

m dk—i

 

ui = — dtk-i 9k (t)
k=i

Therefore the solution depends on derivatives of g, not an integral of g as in
the usual ODE. Thus a continuous g which is not differentiable can cause a
discontinuity in the solution; this is sometimes called an impulse response and
occurs only if there are infinite eigenvalues. Furthermore, to have a continuous
solution y must satisfy certain consistency conditions at t = 0:

i dk—i

 Yi(0) _ dtk-i9k(0)•k=m

Numerical methods, based on time-stepping, for solving such differential
algebraic equations, or ODEs with algebraic constraints, are described in [41].

Generalized Schur Form for Regular Pencils

Just as we cannot compute the Jordan form stably, we cannot compute its
generalization by Weierstrass stably. Instead, we compute the generalized
Schur form.
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Nonsymmetric Eigenvalue Problems 179

THEOREM 4.11. Generalized Schur form. Let A  — ATB be regular. Then there
exist unitary QL and QR so that QLAQR = TA and QLBQR = TB are both
upper triangular. The eigenvalues of A  — AB are then TA„ITB z2 , the ratios of
the diagonal entries of TA and TB.

Proof. The proof is very much like that for the usual Schur form. Let A' be an
eigenvalue and x be a unit right eigenvector: 1X112 = 1. Since Ax — .V 'Bx = 0,
both Ax and Bx are multiples of the same unit vector y (even if one of Ax
or Bx is zero). Now let X = [x, X] and Y  = [y, Y ] be unitary matrices with

first columns x and y, respectively. Then Y *AX = [ all Á22 and Y *BX

[

bll b12 ] by construction. Apply this process inductively to A22 — ) B22. ❑0 B22

If A and B are real, there is a generalized real Schur form too: real or-
thogonal QL and QR, where QLAQR is quasi—upper triangular and QLBQR is
upper triangular.

The QR algorithm and all its refinements generalize to compute the gener-
alized (real) Schur form; it is called the QZ algorithm and available in LAPACK
subroutine sgges. In Matlab one uses the command eig(A,B).

Definite Pencils

A simpler special case that often arises in practice is the pencil A — AB, where
A = AT, B = BT, and B is positive definite. Such pencils are called definite
pencils.

THEOREM 4.12. Let A  = A T , and let B = BT be positive definite. Then
there is a real nonsingular matrix X  so that XTAX = diag(al, ... , ca,) and
XTBX = diag(/31, . .. , j3,). In particular, all the eigenvalues ai//3 are real
and finite.

Proof. The proof that we give is actually the algorithm used to solve the
problem:

(1) Let LLT = B be the Cholesky decomposition.
(2) Let H = L —l AL —T ; note that H is symmetrie.
(3) Let H = QAQT , with Q orthogonal, A real and diagonal.

Then X = L —T Q satisfies XTAX = QT L -1 AL — T Q = A and X T BX =
QT L -1 BL —T Q =1. ❑

Note that the theorem is also true if cA + ,QB is positive definite for some
scalars a and f3.

Software for this problem is available as LAPACK routine ssygv.

EXAMPLE 4.15. Consider the pencil K — AM from Example 4.14. This is a
definite pencil since the stiffness matrix K is symmetrie and the mass matrix
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180 Applied Numerical Linear Algebra

M is symmetric and positive definite. In fact, K is tridiagonal and M is
diagonal in this very simple example, so M's Cholesky factor L is also diagonal,
and H = L -1KL —T is also symmetric and tridiagonal. In Chapter 5 we will
consider a variety of algorithms for the symmetric tridiagonal eigenproblem.
0

4.5.2. Singular Matrix Pencils and the Kronecker
Canonical Form

Now we consider singular pencils A — AB. Recall that A — AB is singular if
either A and B are nonsquare or they are square and det(A — ) B) = 0 for
all values of ) . The next example shows that care is needed in extending the
definition of eigenvalues to this case.

EXAMPLE 4.16. Let A = [ 0 0 ] and B = [ 0 0 ] . Then by making arbi-

trarily small changes to get A = [ 1 €1 and B = [ 1 €3 the eigenvalues
become e1/E3 and E2/E4, which can be arbitrary complex numbers. So the
eigenvalues are infinitely sensitive. o

Despite this extreme sensitivity, singular pencils are used in modeling cer-
tain physical systems, as we describe below.

We continue by showing how to generalize the Jordan and Weierstrass forms
to singular pencils. In addition to Jordan and "infinite Jordan" blocks, we get
two new "singular blocks" in the canonical form.

THEOREM 4.13. Kronecker canonical form. Let A  and B be arbitrary rectan-
gular m-by-n matrices. Then there are square nonsingular matrices PL and
PR so that PL APR — ) PLBPR is block diagonal with four kinds of blocks:

)V —A 1

 Jm W) — .W = , m-by-m Jordan block;
1
-a

1)

m-by-m Jordan block

 

Nm — ,A for

1
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Nonsymmetric Eigenvalue Problems 181

1 )
m-by-(m + 1) right

L„,
_
 singular block;

1 .\

1

_ .^ (m + 1)-by-m left
Lm singular block.

A

We call Lm a right singular block since it has a right null vector [.gym, -gym-i
±1] for all A. L has an analogous left null vector.

For a proof, see [110].
Just as Schur form generalized to regular matrix pencils in the last section,

it can be generalized to arbitrary singular pencils as well. For the canonical
form, perturbation theory and software, see [27, 79, 246].

Singular pencils are used to model systems arising in systems and control.
We give two examples.

Application of Kronecker Form to Differential Equations

Suppose that we want to solve Bx = Ax + f (t), where A - .AB is a singular
pencil. Write PLBPRPR lx = PLAPRP, lx + PL f (t) to decompose the prob-
lem into independent blocks. There are four kinds, one for each kind in the
Kronecker form. We have already dealt with J„,,(,X ') -) I and N„ blocks when
we considered regular pencils and Weierstrass form, so we have to consider
only Lm and L n blocks. From the Lm blocks we get

0 1 y1 1 0 yl gl
_ +

0 1 1 0 9m+1 9m

or

Y2 = IJl+9i or y2(t) = ^J2(0)+ fó(yl(T)+91(T))dT^
93 = 92+g2 or 93(t) = 93(0) +JO(92(T)+92( -r»dT,

Y m+l = ym I gm or ym+l(t) = 9m{1(0)+ f0(9m(T)+9m(T))d-.

This means that we can choose yl as an arbitrary integrable function and use
the above recurrence relations to get a solution. This is because we have one
more unknown than equation, so the the ODE is underdetermined. From the
L blocks we get
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182 Applied Numerical Linear Algebra

0 1
1 y1 0 yl 91

0 ym, ó 2Jm, 9m+1

or
0 = yl + 91,
U1 = y2 + 92,

2Jm-1 = gm + 9m,
Ym = gm+l

Starting with the first equation, we solve to get

yl = —91,
Y2 = —92 — g1,

dm-1
gm = — 9m — 9m-1 — • • • — dtm-1 91

and the consistency condition gm+l = — g,,,, — • • • — dt„^ gl . So unless the gi
satisfy this equation, there is no solution. Here we have one more equation
than unknown, and the subproblem is overdetermined.

Application of Kronecker Form to Systems and Control Theory

The controllable subspace of i(t) = Ax(t) + Bu(t) is the space in which the
system state x(t) can be "controlled" by choosing the control input u(t) starting
at x(0) = 0. This equation is used to model (feedback) control systems, where
the u(t) is chosen by the control system engineer to make x(t) have certain
desirable properties, such as boundedness. From

x(t) = J t eA(t-T ) Bu(T)dr = f (t-T)Z ABu()dT
20  i=0

A'B ƒo (t — I
i• 

T)i u(r)d'ro 
i=0

one can prove the controllable space is span{[B, AB, A 2 B, ... , An-1B]}; any
components of x(t) outside this space cannot be controlled by varying u(t).
To compute this space in practice, in order to determine whether the physical
system being modeled can in fact be controlled by input u(t), one applies a QR-
like algorithm to the singular pencil [B, A  - )J]. For details, see [78, 246, 247].
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Nonsymmetric Eigenvalue Problems 183

4.5.3. Nonlinear Eigenvalue Problems

Finally, we consider the nonlinear eigenvalue problem or matrix polynomial

d

d >,'A i= dA d +̂ d- 'A d_ 1 + ... + A 1 + A 0 . (4.7)
i=o

Suppose for simplicity that the A i are n-by-n matrices and Ad is nonsingular.

DEFINITION 4.10. The characteristic polynomial of the matrix polynomial (4.7)
is p(X) = det(Ed_0 )'Ai). The roots of p(,) = 0 are defined to be the eigenval-
ues. One can confirm that p(X) has degree d • n, so there are d • n eigenvalues.
Suppose that -y is an eigenvalue. A  nonzero vector x satisfying ^a ry iAix = 0
is a right eigenvector for 'y. A  left eigenvector y is defined analogously by
Ed 7iy* Ai = 0.

EXAMPLE 4.17. Consider Example 4.1 once again. The ODE arising there
in equation (4.3) is Mï(t) + B(t) + Kx(t) = 0. If we seek solutions of the
form x(t) = e^i txi(0), we get ex i t () 2Mxi(0) + )^iBxi(0) + Kxi(0)) = 0, or
.)2Mxi(0) + )iBxi(0) + Kxi(0) = 0. Thus Xi is an eigenvalue and xi(0) is an
eigenvector of the matrix polynomial ) 2M + .)B + K. o

Since we are assuming that Ad is nonsingular, we can multiply through
by Ad 1 to get the equivalent problem ,dj + Ad 1 Ad-1X d-1 + • • • + Ad'Ao.
Therefore, to keep the notation simple, we will assume Ad = I (see section 4.6
for the general case). In the verg simplest case where each Ai is 1-by-1, i.e., a
scalar, the original matrix polynomial is equal to the characteristic polynomial.

We can turn the problem of finding the eigenvalues of a matrix polynomial
into a standard eigenvalue problem by using a trick analogous to the one used
to change a high-order ODE into a first-order ODE. Consider first the simplest
case n = 1, where each Ai is a scalar. Suppose that ry is a root. Then the
vector x' = [-yd-1 7d-2  1]T satisfies

—Ad-1 —Ad-2d1 i... ... ... _Ao _ ^ —i—o ,y Ai

1 0 ... ... ... 0 7d-1

Cx' - 0 1 0 ... 0 x =
72

0 ... ... 01 0 7

^d-1

72

7
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184 Applied Numerical Linear Algebra

Thus x' is an eigenvector and -y is an eigenvalue of the matrix C, which is
called the companion matrix of the polynomial (4.7).

(The Matlab routine roots for finding roots of a polynomial applies the
Hessenberg QR iteration of section 4.4.8 to the companion matrix C, since this
is currently one of the most reliable, if expensive, methods known [100, 117,
241]. Cheaper alternatives are under development.)

The same idea works when the Ai are matrices. C becomes an (n • d)-by-
(n • d) block companion matrix, where the 1's and O's below the top row become
n-by-n identity and zero matrices, respectively. Also, x' becomes

d-1 x
7d-2x

ryx
x

where x is a right eigenvector of the matrix polynomial. It again turns out
that Cx' = yx'.

EXAMPLE 4.18. Returning once again to X 2M + ) B + K, we first convert it
to ) 2 + AM- 'B + M -1K and then to the companion matrix

_ [—M -1 B —M -1 KC — L I 0 1.
This is the same as the matrix A in equation 4.4 ofJExample 4.1. o

Finally, Question 4.16 shows how to use matrix polynomials to solve a
problem in computational geometry.

4.6. Summary

The following list summarizes all the canonical forms, algorithms, their costs,
and applications to ODEs described in this chapter. It also includes pointers
to algorithms exploiting symmetry, although these are discussed in more detail
in the next chapter. Algorithms for sparse matrices are discussed in Chapter 7.

• A  - AI

- Jordan form: For some nonsingular S,

)Z -) 1 ntxnz

A—AI = S•diag ... , , ... S—i
1

^i - x
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Nonsymmetric Eigenvalue Problems 185

— Schur form: For some unitary Q, A — AI = Q(T — )I)Q*, where T
is triangular.

— Real Schur form of real A: For some real orthogonal Q, A — AI =
Q(T — XI)QT , where T is real quasi-triangular.

Application to ODEs: Provides solution of x(t) = Ax(t) + f (t).

— Algorithm: Do Hessenberg reduction (Algorithm 4.6), followed by
QR iteration to get Schur form (Algorithm 4.5, implemented as
described in section 4.4.8). Eigenvectors can be computed from the
Schur form (as described in section 4.2.1).

— Cost: This costs 10n3 flops if eigenvalues only are desired, 25n 3 if
T and Q are also desired, and a little over 27n 3 if eigenvectors are
also desired. Since not all parts of the algorithm can take advantage
of the Level 3 BLAS, the cost is actually higher than a comparison
with the 2n3 cost of matrix multiply would indicate: instead of tak-
ing (10n3 )/(2n3 ) = 5 times longer to compute eigenvalues than to
multiply matrices, it takes 23 times longer for n = 100 and 19 times
longer for n = 1000 on an IBM RS6000/590 [10, page 62]. Instead
of taking (27n3)/(2n3 ) = 13.5 times longer to compute eigenvalues
and eigenvectors, it takes 41 times longer for n = 100 and 60 times
longer for n = 1000 on the same machine. Thus computing eigen-
values of nonsymmetric matrices is expensive. (The symmetric case
is much cheaper; see Chapter 5.)

— LAPACK: sgees for Schur form or sgeev for eigenvalues and eigen-
vectors; sgeesx or sgeevx for error bounds too.

— Matlab: schur for Schur form or eig for eigenvalues and eigenvec-
tors.

— Exploiting symmetry: When A = A*, better algorithms are dis-
cussed in Chapter 5, especially section 5.3.

• Regular A — ) B (det(A — AB) 0)

— Weierstrass form: For some nonsingular PL and PR,

A — AB = PL • diag Jordan,

1 ), nixni

PR 1 .

1

— Generalized Schur form: For some unitary QL and QR, A — AB =
QL(TA — )TB)Q* , where TA and TB are triangular.
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186 Applied Numerical Linear Algebra

- Generalized real Schur form of real A and B: For some real orthog-
onal QL and QR, A - AB = QL(TA - .\TB)QR, where TA is real
quasi-triangular and TB is real triangular.

- Application to ODEs: Provides solution of B(t) = Ax(t) + f (t),
where the solution is uniquely determined but may depend non-
smoothly on the data (impulse response).

- Algorithm: Hessenberg/triangular reduction followed by QZ itera-
tion (QR applied implicitly to AB -1 ).

- Cost: Computing TA and TB costs 30n3 . Computing QL and QR in
addition costs 66n3 . Computing eigenvectors as well costs a little
less than 69n3 in total. As before, Level 3 BLAS cannot be used in
all parts of the algorithm.

- LAPACK: sgges for Schur form or sggev for eigenvalues; sggesx
or sggevx for error bounds too.

- Matlab: eig for eigenvalues and eigenvectors.

- Exploiting symmetry: When A = A*, B = B*, and B is positive
definite, one can convert the problem to finding the eigenvalues
of a single symmetric matrix using Theorem 4.12. This is done in
LAPACK routines ssygv, sspgv (for symmetric matrices in "packed
storage"), and ssbgv (for symmetric band matrices).

• Singular A - AB

- Kronecker form: For some nonsingular PL and PR,

A—AB=PL

1 ni x ni

 1 m^xmy

diag Weierstrass, PR 1

1

- Generalized upper triangular form: For some unitary QL and QR,
A - AB = QL(TA - \TB )QR, where TA and TB are in generalized
upper triangular form, with diagonal blocks corresponding to dif-
ferent parts of the Kronecker form. See [79, 246] for details of the
form and algorithms.

- Cost: The most general and reliable version of the algorithm can
cost as much as O(n4), depending on the details of the Kronecker
Structure; this is much more than for regular A - AB. There is also
a slightly less reliable O(n3) algorithm [27].
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Nonsymmetric Eigenvalue Problems 187

— Application to ODEs: Provides solution of B±(t) = Ax(t) + f (t),
where the solution may be overdetermined or underdetermined.

— Software: NETLIB/linalg/guptri.

• Matrix polynomials Ed o ,V Ai [118]

— If Ad = I (or Ad is square and well-conditioned enough to replace
each Ai by Ad'Ai), then linearize to get the standard problem

— Ad-1 —Ad-2 ... ... ... —A a
1 0 ... ... ... 0

0 1 0 ... ... 0 —.I.

0 •.. ... 0 1 0

If Ad is ill-conditi, ^ned or s ingular, linearize to get the pencil

—Ad_1 —Ad_2 —Ao Ad
1 0
 

0 I
0 1
 

0 •••
 0 ̂ I

0 •••
 

0
 

1 0 I

4.7. References and Other Topics for Chapter 4

For a general discussion of properties of eigenvalues and eigenvectors, see [139].
For more details about perturbation theory of eigenvalues and eigenvectors,
see [161, 237, 52], and chapter 4 of [10]. For a proof of Theorem 4.7, see [69].
For a discussion of Weierstrass and Kronecker canonical forms, see [110, 118].
For their application to systems and control theory, see [246, 247, 78]. For
applications to computational geometry, graphics, and mechanical CAD, see
[181, 182, 165]. For a discussion of parallel algorithms for the nonsymmetric
eigenproblem, see [76] .

4.8. Questions for Chapter 4

QUESTION 4.1. (Easy) Let A be defined as in equation (4.1). Show that
det(A) = j jb_ 1 det(A) and then that det(A — AI) = rjb_ 1 det(A22 — XI).
Conclude that the set of eigenvalues of A is the union of the sets of eigenvalues
of All through Abb.

QUESTION 4.2. (Medium; Z. Bai) Suppose that A is normal; i.e., AA* = A*A.
Show that if A is also triangular, it must be diagonal. Use this to show that
an n-by-n matrix is normal if and only if it has n orthonormal eigenvectors.
Hint: Show that A is normal if and only if its Schur form is normal.
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188 Applied Numerical Linear Algebra

QUESTION 4.3. (Easy; Z. Bai) Let A and µ be distinct eigenvalues of A, let x
be a right eigenvector for )., and let y be a left eigenvector for [t. Show that x
and y are orthogonal.

QUESTION 4.4. (Medium) Suppose A has distinct eigenvalues. Let f(z) =
°° aiz 2 be a function which is defined at the eigenvalues of A. Let Q*AQ =

T be the Schur form of A (so Q is unitary and T upper triangular).

1. Show that f (A) = Q f (T)Q*. Thus to compute f (A) it suffices to be
able to compute f (T). In the rest of the problem you will derive a
simple recurrence formula for f (T).

2. Show that (f (T)) = f (TZZ) so that the diagonal of f (T) can be computed
from the diagonal of T.

3. Show that T f (T) = f(T)T.

4. From the last result, show that the ith superdiagonal of f (T) can be
computed from the (i — 1)st and earlier subdiagonals. Thus, starting
at the diagonal of f (T), we can compute the first superdiagonal, second
superdiagonal, and so on.

QUESTION 4.5. (Easy) Let A be a square matrix. Apply either Question 4.4
to the Schur form of A or equation (4.6) to the Jordan form of A to conclude
that the eigenvalues of f (A) are f (AZ), where the Az are the eigenvalues of A.
This result is called the spectral mapping theorem.

This question is used in the proof of Theorem 6.5 and section 6.5.6.

QUESTION 4.6. (Medium) In this problem we will show how to solve the
Sylvester or Lyapunov equation AX — XB = C, where X and C are m-by-n,
A  is m-by-m, and B is n-by-n. This is a system of mn linear equations for the
entries of X.

1. Given the Schur decompositions of A and B, show how AX — XB = C
can be transformed into a similar system A M Y  — Y B' = C', where A' and
B' are upper triangular.

2. Show how to solve for the entries of Y one at a time by a process analo-
gous to back substitution. What condition on the eigenvalues of A and
B guarantees that the system of equations is nonsingular?

3. Show how to transform Y  to get the solution X.

QUESTION 4.7. (Medium) Suppose that T = [ B ] is in Schur form. We

want to find a matrix S so that S -1TS = [ 0 B  ]. It turns out we can choose

S of the form [ 0 R J. Show how to solve for R.

D
ow

nl
oa

de
d 

12
/2

6/
12

 to
 1

28
.9

5.
10

4.
10

9.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



Nonsymmetric Eigenvalue Problems 189

QUESTION 4.8. (Medium; Z. Bai) Let A be m-by-n and B be n-by-m. Show
that the matrices

B 0) and (B BA)

are similar. Conclude that the nonzero eigenvalues of AB are the same as
those of BA.

QUESTION 4.9. (Medium; Z. Bai) Let A be n-by-n with eigenvalues ).i, ... , An.
Show that n

I^iI 2 = min IJS—'ASJIF
i=1

det(S)^0

QUESTION 4.10. (Medium; Z. Bai) Let A be an n-by-n matrix with eigenval-
ues

1. Show that A can be written A = H + S, where H = H* is Hermitian
and S = —S* is skew-Hermitian. Give explicit formulas for H and S in
terms of A.

2. Show that EZ 1 I i)i I 2 < I I H II F'
3. Show that 1 Is^i I 2 IISIIF'
4. Show that A is normal (AA* = A* A) if and only if  I \i 2 = I I A I F

QUESTION 4.11. (Easy) Let ). be a simple eigenvalue, and let x and y be right
and left eigenvectors. We define the spectral projection P coiresponding to ).
as P = xy*/(y*x). Prove that P has the following properties.

1. P is uniquely defined, even though we could use any nonzero scalar mul-
tiples of x and y in its definition.

2. P2 = P. (Any matrix satisfying P2 = P is called a projection matrix.)

3. AP = PA = .\P. (These properties motivate the name spectral projec-
tion, since P "contains" the left and right invariant subspaces of ).)

4. IIP^I 2 is the condition number of .\.

QUESTION 4.12. (Easy; Z. Bai) Let A = [ 0 b ]. Show that the condition

numbers of the eigenvalues of A are both equal to (1 + (acb)2)1/2 Thus, the
condition number is large if the differente a—b between the eigenvalues is small
compared to c, the offdiagonal part of the matrix.

QUESTION 4.13. (Medium; Z. Bai) Let A be a matrix, x be a unit vector
(IIxII2 = 1), p be a scalar, and r = Ax — px. Show that there is a matrix E
with I I E I F= 11 r112  such that A + E has eigenvalue t and eigenvector x.
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190 Applied Numerical Linear Algebra

QUESTION 4.14. (Medium; Programming) In this question we will use a
Matlab program to plot eigenvalues of a perturbed matrix and their condi-
tion numbers. (It is available at HOMEPAGE/Matlab/eigscat.m.) The input
is

a = input matrix,
err = size of perturbation,
m = number of perturbed matrices to compute.

The output consists of three plots in which each symbol is the location of an
eigenvalue of a perturbed matrix:

"o" marks the location of each unperturbed eigenvalue.
"x" marks the location of each perturbed eigenvalue, where a real
perturbation matrix of norm err is added to a.
"." marks the location of each perturbed eigenvalue, where a com-
plex perturbation matrix of norm err is added to a.

A table of the eigenvalues of A and their condition numbers is also printed.
Here are some interesting examples to try (for as large an m as you want

to wait; the larger the m the better, and m equal to a few hundred is good).

(1) a = randn(5) (if a does not have complex eigenvalues,
try again)

err=le-5, le-4, le-3, le-2, .1, .2

(2) a = diag(oaes(4,1),1); err=le-12, le-10, le-8

(3) a=[[1 1e6 0 0] ;
[0 2 le-3 0] ; .. .
[00 3 10]; ...
[0 0 -1 4] ]
err=le-8, le-7, le-6, le-5, le-4, le-3

(4) [q,r]=qr(randn(4,4));a=q*diag(ones(3,1),1)*q'
err=le-16, le-14, le-12, le-10, le-8

(5) a = [ [1 1e3 1e6] ; [0 1 1e3] ; [0 0 1]],
err=le-7, le-6, 5e-6, 8e-6, le-5, 1.5e-5, 2e-5

(6) a = [[1 0 0 0 0 0] ; .. .
[0 2 1 0 0 0] ; .. .
[0 0 2 0 0 0] ; .. .
[0 0 0 3 1e2 1e4] ; .. .
[0 0 0 0 3 1e2] ; .. .
[0 0 0 0 0 3] ]

err= le-10, le-8, le-6, le-4, le-3
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Nonsymmetric Eigenvalue Problems 191

Your assignment is to try these examples and compare the regions occupied
by the eigenvalues (the so-called pseudospectrum) with the bounds described
in section 4.3. What is the difference between real perturbations and complex
perturbations? What happens to the regions occupied by the eigenvalues as
the perturbation err goes to zero? What is limiting size of the regions as err
goes to zero (i.e., how many digits of the computed eigenvalues are correct)?

QUESTION 4.15. (Medium; Programming) In this question we use a Matlab
program to plot the diagonal entries of a matrix undergoing unshifted QR
iteration. The valnes of each diagonal are plotted after each QR iteration, each
diagonal corresponding to one of the plotted curves. (The program is available
at HOMEPAGE/Matlab/qrplt.m and also shown below.) The inputs are

a = input matrix,
m = number of QR iterations,

and the output is a plot of the diagonals.
Examples to try this code on are as follows (choose m large enough so that

the curves either converge or go into cycles):
a = randn(6);
b = randn(6); a = b*diag([1,2,3,4,5,6])*inv(b);
a = [ [1 10] ; [-1 1] ] ; m = 300
a = diag((1.5*ones(1,5)).\verb+"+(0:4)) +

.01*(diag(ones(4,1),1)+diag(ones(4,1),-1)); m=30
What happens if there are complex eigenvalues?
In what order do the eigenvalues appear in the matrix after many itera-

tions?
Perform the following experiment: Suppose that a is n-by-n and symmetric.

In Matlab, let perm=(n:-1:1). This produces a list of the integers from n down
to 1. Run the iteration for m iterations. Let a=a(perm,perm); we call this
"flipping" a, because it reverses the order of the rows and columns of a. Run
the iteration again for m iterations, and again form a=a(perm,perm). How
does this value of a compare with the original value of a? You should not let
m be too large (try m = 5) or else roundoff will obscure the relationship you
should see. (See also Corollary 5.4 and Question 5.25.)

Change the code to compute the error in each diagonal from its final value
(do this just for matrices with all real eigenvalues). Plot the log of this error
versus the iteration number. What do you get asymptotically?

hold off
e=diag(a);
for i=1:m,

[q,r]=gr(a);dd=diag(sign(diag(r)));r=dd*r;q=q*dd;a=r*q; ...
e=[e,diag(a)] ;

end
clg
plot (e','w'),grid

D
ow

nl
oa

de
d 

12
/2

6/
12

 to
 1

28
.9

5.
10

4.
10

9.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



192 Applied Numerical Linear Algebra

QUESTION 4.16. (Hard; Programming) This problem describes an application
of the nonlinear eigenproblem to computer graphics, computational geometry,
and mechanical CAD; see also [181, 182, 165].

Let F = [fZ^ (x1, x2, x3)] be a matrix whose entries are polynomials in the
three variables xi. Then det(F) = 0 will (generally) define a two-dimensional
surface S in 3-space. Let xl = gi(t), x2 = g2(t), and x3 = g3(t) define a (one-
dimensional) curve C parameterized by t, where the gi are also polynomials.
We want to find the intersection S f1 C. Show how to express this as an
eigenvalue problem (which can then be solved numerically). More generally,
explain how to find the intersection of a surface det(F(xl, ... , x n )) = 0 and
curve {xz = gi(t), 1 < i < n}. At most how many discrete solutions can there
be, as a function of n, the dimension d of F, and the maximum of the degrees
of the polynomials fik and gk?

Write a Matlab program to solve this problem, for n = 3 variables, by
converting it to an eigenvalue problem. It should take as input a compact
description of the entries of each f2j(xk) and g2(t) and produce a list of the
intersection points. For instance, it could take the following inputs:

• Array NumTerms(1:d,1:d), where NumTerms(i,j) is the number of terms
in the polynomial f2^ (x1, x2, x3).

• Array Sterms(1:4, l:TotalTerms), where TotalTerms is the sum of all the
entries in NumTerms(.,.). Each column of Sterms represents one term in
one polynomial: The first NumTerms(1,1) columns of Sterms represent
the terms in fll, the second Numterm(2,1) columns of Sterms represent
the terms in f21, and so on. The term represented by Sterms(1:4,k) is

]g) . xSterm(1,k) xSterm(2,k) xSterm(3,k)
Sterm(4 , 

• Array tC(1:3) contains the degrees of polynomials gl, g2, and 93 in that
order.

• Array Curve(1: tC(1)+tC(2)+tC(3)+3) contains the coefficients of the
polynomials gl, 92, and g3, one polynomial after the other, from the
constant term to the highest order coefficient of each.

Your program should also compute error bounds for the computed answers.
This will be possible only when the eigenproblem can be reduced to one for
which the error bounds in Theorems 4.4 or 4.5 apply. You do not have to
provide error bounds when the eigenproblem is a more general one. (For a
description of error bounds for more general eigenproblems, see [10, 237].

Write a second Matlab program that plots S and C for the case n = 3 and
marks the intersection points.

Are there any limitations on the input data for your codes to work? What
happens if S and C do not intersect? What happens if S lies in C?

Run your codes on at least the following examples. You should be able to
solve the first five by hand to check your code.
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Nonsymmetric Eigenvalue Problems

1. g1 = t,g2 =l +t, g3= 2+t,F= xl +x2+x3 0
0 3x1 +5x2-7x3 +10,

2.g1= t3,92= 1 +t3,9s= 2+t3,F= xi +x2+x3 0
]0 3x1 + 5x2 — 7x3 + 10

3.g1= t2,92= 1+t2,g3= 2+t2,F= xl +x2+x3 0
]0 3x1 +5x2-7x3 +10

4. gl = t2 , g2 = 1 + t2 , g3 = 2 + t2 , F = 10
0 3x 1 + 5x2 – 7x3 + 9

5.gl = t2 , g2 = 1 + t2 , g3 = 2 + t2 , F = xl + x 2 + x 3 0
].0 3x1+5x2-7x3 +8

6. gl = t2 , 92 = 1 + t 2 , 93 = 2 + t2 , F = xl + x 2 + x3 xl
]x3 3x1 + 5x2 – 7x3 + 10

7. g1= 7 - 3t +t5 ,92 = 1 +t2 +t5 ,93 = 2 +t2— t5 ,

x1x2 +x 3-z 5+x1  + x2 +X3 + xlx2 + X1X3 + X2x3
F= x2-7x 1 - xl + xlx2x3 3 + xl + 3x3 - 9x2x3

2 3x1 + 5x2 - 7x3 + 8 xl - xZ + 4x3

You should turn in
• mathematical formulation of the solution in terms of an eigenproblem.
• the algorithm in at most two pages, including a road map to your code

(subroutine names for each high level operation). It should be easy to see how
the mathematical formulation leads to the algorithm and how the algorithm
matches the code.

— At most how many discrete solutions can there be?
Do all compute eigenvalues represent actual intersections? Which ones

do?
What limits does your code place on the input for it to work correctly?
What happens if S and C do not intersect?

— What happens if S contains C?
• mathematical formulation of the error bounds.
• the algorithm for computing the error bounds in at most two pages,

including a road map to your code (subroutine names for each high-level op-
eration). It should be easy to see how the mathematical formulation leads to
the algorithm and how the algorithm matches the code.

• program listing.
For each of the seven examples, you should turn in
• the original statement of the problem.
• the resulting eigenproblem.
• the numerical solutions.
• plots of S and C; do your numerical solutions match the plots?
• the result of substituting the computed answers in the equations defining

S and C: are they satisfied (to within roundoff)?
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