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1 Introduction

In this paper, we will attempt to give a demonstration that General Rel-
ativity predicts a rate of perihelion precession equal to that of Mercury’s
orbit around the Sun (when the influences due to other planets have already
all been accounted for). First, we will use classical physics to serve a two-
fold purpose: to demonstrate that classical orbits are (closed) ellipses, and
also to illustrate the methods involved in the relativistic solution. Second,
we will apply these methods to a general relativistic treatment of geodesics
in the Schwarzschild metric, and show that an “orbit” matching Mercury’s
specifications can be expected to shift by approximately 43 arcseconds per
century.

2 The Classical Solution

We will begin with three-dimensional polar coordinates, where the metric is

ds2 = dr2 + r2dΩ2

with dΩ2 = dθ2 + sin2 θdφ2. In these coordinates, we can express the La-
grangian as

L =
1
2
mẋ2 − V (x)

=
1
2
m

[
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

]
+

GMm

r

where we have substituted the gravitational potential V (x) = −GMm
|x| . The

equations of motion for a particle are then given by the Euler-Lagrange
equations ∂L

∂xi = d
dt

∂L
∂ẋi . These become, with xi = r, θ, φ respectively:

mr
[
θ̇2 + sin2 θφ̇2

]
− GMm

r2
=

d

dt
(mṙ) = mr̈

mr2 sin θ cos θφ̇2 =
d

dt

(
mr2θ̇

)
0 =

d

dt

(
mr2 sin2 θφ̇

)
Notice that these equations are invariant under θ 7→ π − θ, under which
sin θ 7→ sin θ, cos θ 7→ − cos θ, and θ̇ 7→ −θ̇. Then for an initial value
problem with θ(0) = π

2 , θ̇(0) = 0 (that is, the motion of the particle begins
in the equatorial plane), any solution with (r(t), θ(t), φ(t)) immediately gives
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us another solution (r(t), π − θ(t), φ(t)), which contradicts local uniqueness
of the solution to the initial value problem unless θ(t) ≡ π

2 . Since any initial
value problem can be rotated into one of this form, we will now assume that
θ ≡ π

2 , reducing the Euler Lagrange equations (where we have also canceled
m) to:

rφ̇2 − GM

r2
= r̈

0 =
d

dt

(
r2φ̇

)
The second equation says that L = r2φ̇ is a constant of the motion; if it is
zero we find that −GM

r2 = r̈ < 0 and hence r is concave down. Since concave
down functions are unbounded below, we would find that for some t, r = 0,
which describes the uninteresting event in which the object crashes into the
sun. Hence, we will restrict our attention to L 6= 0. In that case, φ̇ is either
always negative or always positive, in which case φ(t) is monotone and we
can write t = t(φ). (Here we are letting φ range through R, and considering
the fact that φ and φ+2π describe the same point only as a curiosity.) Then

∂

∂t
= φ̇

∂

∂φ
=

L

r2

∂

∂φ
.

Hence we may rewrite the other equation of motion as

rφ̇2 − GM

r2
= r̈

⇒ L2

r3
− GM

r2
=

L

r2

∂

∂φ

(
L

r2

∂r

∂φ

)
.

To make this equation more readily solvable, we make a change of variables
to u = 1/r. Then denoting differentiation with respect to φ by a prime, we
have u′ = −r′/r2, and so the differential equation becomes

L2u3 −GMu2 = −L2u2u′′

⇒ u′′ + u =
GM

L2

We can easily solve this equation as u(φ) = A cos(φ−φ0)+ GM
L2 . By suitably

translating φ, we can choose φ0 = 0 and A ≤ 0, in which case we can rewrite
this as

u(φ) =
GM

L2
(1− e cos(φ)) (1)

with e = −AL2

GM ≥ 0. It is well-known [1] that Equation 1 describes an ellipse
of eccentricity e.
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3 Classical Calculation of the Period

As an alternate demonstration that r(φ) is periodic with period 2π, consider
that the binding energy (per unit mass) of the system is another constant
of the motion:

−E =
1
2

(
ṙ2 + r2φ̇2

)
− GM

r
,

where we have used −E instead of E so that E > 0. Then we can solve this
for ṙ:

ṙ2 = −2E +
2GM

r
− L2

r2(
L

r2
r′

)2

= −2E +
2GM

r
− L2

r2

(r′)2 = −2E

L2
r4 +

2GM

L2
r3 − r2 (2)

= r2

(
1− r

R+

) (
r

R−
− 1

)
r′ = ±r

√(
1− r

R+

) (
r

R−
− 1

)
where we have introduced the notation R± for the nonzero roots of the
quartic polynomial in (2); since these are the only places where r′ = 0 and
r 6= 0, we may identify them as the aphelion and the perihelion of a closed
orbit. Since r′ = ∂r

∂φ = 1
∂φ/∂r , we can find the amount of φ required to pass

from R− to R+ by integrating:

φ+ − φ− =
∫ R+

R−

dr

r

√(
1− r

R+

) (
r

R−
− 1

)
= arctan

[
(R+ − r)(r −R−) + r2 −R+R−

2
√

(R+ − r)(r −R−)R−R+

]R+

R−

→ arctan[+∞]− arctan[−∞] =
π

2
+

π

2
= π

Hence the particle will travel from R− to R+ and back every time φ → φ+2π,
so the orbit r(φ) is periodic with period 2π, and so closed.
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4 The Relativistic Solution

In the general relativistic case, we assume that the particle is a test par-
ticle traveling along a geodesic through spacetime. Geodesics can also be
described as stationary points of the integral

I =
∫
〈ẋ, ẋ〉 dτ,

which is the formulation of the geodesics we will use. Assume that the metric
for the solar system is spherically symmetric, static, and asymptotically flat,
so that it can be represented as follows:

ds2 = −e2α(R)dT 2 + e2β(R)dR2 + e2γ(R)dΩ2, (3)

where the dΩ2 = dθ2+sin2 θdφ2 term comes from spherical symmetry and T
is the coordinate produced by the timelike Killing vector field, of which the
metric components are all independent. We would like to change coordinates
from R to r, where r corresponds to physical measurements of radius. If we
define the radius r of a sphere as the square root of its area divided by 4π,
then the coefficient of dΩ2 is fixed as r2, and so we can reexpress (3) as

ds2 = −e2A(r)dT 2 + e2B(r)dr2 + r2dΩ2, (4)

where we define A(r) = α(R) = α ◦ γ−1(ln r) and similarly for B(r). If
we assume that the orbit of Mercury is a geodesic in a vacuum, this further
constrains ds2 to satisfy the vanishing of the Ricci Tensor: Rµν = 0. We can

compute the nonvanishing Christoffel symbols Γλ
µν = 1

2gλρ
(

∂gρµ

∂xν + ∂gρν

∂xµ − ∂gµν

∂xρ

)
for (4) as [2]:

Γr
rr = B′(r) Γr

θθ = −re−2B(r)

Γr
φφ = −r sin2 θe−2B(r) Γr

tt = A′(r)e2A(r)−2B(r)

Γθ
rθ = Γθ

θr =
1
r

Γθ
φφ = − sin θ cos θ

Γφ
rφ = Γφ

φr =
1
r

Γφ
φθ = Γφ

θφ = − sin θ cos θ

Γt
tr = Γt

rt = A′(r)

Then we can compute the Ricci tensor components [2]:

Rµν =
∂Γλ

µλ

∂xν
−

∂Γλ
µν

∂xλ
+ Γη

µλΓλ
νη − Γη

µνΓ
λ
λη as
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Rrr = A′′ + 2(A′)2 −A′(A′ + B′)− 2
r
B′

Rθθ = −1 + re−2B(A′ −B′) + e−2B

Rφφ = sin2 θRθθ

Rtt = −[A′′ + 2(A′)2]e2A−2B + A′e2A−2B(A′ + B′)− 2
r
A′e2A−2B

Rµν = 0 µ 6= ν

Note that if we take the combination Rrr+Rtte
2B−2A, we obtain−2

r (A′+B′).
Then the vacuum requirement Rµν = 0 implies that A′+B′ = 0, i.e. A+B =
const. Since A,B → 0 as r → ∞ by asymptotic flatness, we must have
A = −B. Then the vacuum conditions become:

Rθθ = −1 + 2rA′e2A + e2A = 0

Rrr = A′′ + 2(A′)2 +
2
r
A′ =

1
2re2A

R′
θθ = 0

Since the second condition follows from the first, we need only choose A so
that 1 = 2rA′e2A + e2A = (re2A)′. The general solution to this is re2A− r =
const., i.e. e2A = 1 − const.

r . It is known that in a gravitational field that
resembles Newtonian gravity, we must have grr ≈ 1−2Φ, where Φ = −GM

r is
the Newtonian potential. Then the observation that our gravitational field
approximates Newtonian gravity gives us the Schwarzschild metric:

ds2 = −
[
1− RS

r

]
dT 2 +

[
1− RS

r

]−1

dr2 + r2dΩ2, (5)

where RS = 2GM is the Schwarzschild radius of the sun.

Now if we parameterize a curve x(τ) = (T (τ), r(τ), θ(τ), φ(τ)) by proper
time, then we find that letting L = 〈ẋ, ẋ〉 (where the dot refers to differenti-
ation with respect to proper time), L is both a constant of the motion (−1,
in fact) and also satisfies the Euler-Lagrange equations so that I =

∫
L dτ

is stationary. By exactly the same reasoning as in the classical case, we may
restrict our attention to motion in the equatorial plane and assume that
θ(τ) ≡ π/2, so that the “Lagrangian” becomes

L = −
[
1− RS

r

]
Ṫ 2 +

[
1− RS

r

]−1

ṙ2 + r2φ̇2 (6)
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Then the Euler-Lagrange equations for φ and T read:

0 =
d

dτ

(
2r2φ̇

)
0 =

d

dτ

(
−2

(
1− RS

r

)
Ṫ

)
This implies that L = r2φ̇ and E = Ṫ (RS/r − 1) are two constants of the
motion. Then the relation L = −1 gives us:

1 =
[
1− RS

r

]
Ṫ 2 −

[
1− RS

r

]−1

ṙ2 − r2φ̇2

=
E2

1−RS/r
− ṙ2

1−RS/r
− L2

r2
, i.e.

(ṙ)2 = (E2 − 1) +
RS

r
− L2

r2
+

RSL2

r3

Once again, assuming L 6= 0 allows us to invert φ = φ(τ), so we may obtain
r as a function of φ with ṙ = L

r2 r′, and hence we have

(r′)2 =
E2 − 1

L2
r4 +

RS

L2
r3 − r2 + RSr

Now the requirement that of a closed orbit with (r′)2 ≥ 0 imposes some
constraints on L,E, and RS ; we need a connected component of {r : r′ ≥ 0}
to be a compact subset of R+. This means there exist at least two values
R+ and R− where r′ = 0, i.e. aphelion and perihelion. Then the angle shift
from R− to R+ is given, as in the classical case, by

φ+ − φ− =
∫ R+

R−

dr√
E2−1

L2 r4 + RS
L2 r3 − r2 + RSr

. (7)

Given that (r−R+) and (r−R−) are factors of E2−1
L2 r4 + RS

L2 r3− r2 + RSr,
we can solve for E2 − 1 and L2 in terms of R± and RS :

(E2 − 1)R4
+ + (L2)(−R2

+ + RSR+) = RSR3
+

(E2 − 1)R4
− + (L2)(−R2

− + RSR−) = RSR3
−

which give

E2 − 1 =
−R+R−RS + (R+ + R−)R2

S

R+R−(R+ + R− + RS)− (R+ + R−)2RS

L2 =
R2

+R2
−RS

R+R−(R+ + R− + RS)− (R+ + R−)2RS

Page 7 of 10



It is convenient to introduce the combination

D =
R+R−

R+ + R−
,

which has units of distance. Then the above expressions for E2 − 1 and L2

become:

E2 − 1 =
(−RS/R+R−) + (R2

S/DR+R−)
1/D + (RS/R+R−)− (RS/D2)

L2 =
RS

1/D + (RS/R+R−)− (RS/D2)

We would like an expression for ε, the third nonzero root of E2−1
L2 r4+ RS

L2 r3−
r2 + RSr = 0. We know that the sum of the three nonzero roots is RS

E2−1

(the coefficient of r3 with the polynomial in standard form); using the above
expressions we can swiftly obtain:

ε =
RS

1−RS/D

Now we can approximate (7), by writing

E2 − 1
L2

r4 +
RS

L2
r3 − r2 + RSr =

1− E2

L2
(R+ − r)(r −R−)(r − ε)r.

We obtain:

φ+ − φ− =

√
L2

1− E2

∫ R+

R−

1√
r(R+ − r)(r −R−)(r − ε)

dr

=

√
L2

1− E2

∫ R+

R−

1
r
√

(R+ − r)(r −R−)

(
1− ε

r

)−1/2
dr

Now use the Taylor series expansion (1− ε/r)−1/2 ≈ 1+ ε/2r, with an error
E bounded by |E| ≤ 3

8(1− ε/r)−5/2(ε/r)2 ≤ 3
8(1− ε/R+)−5/2(ε/R−)2, which

produces:

=

√
L2

1− E2

∫ R+

R−

1 + E
r
√

(R+ − r)(r −R−)
+

ε/2
r2

√
(R+ − r)(r −R−)

dr

We already evaluated the integral of the first term in the classical case; it is
just π(1+E)/

√
R+R−. The second integral is trickier, but can be evaluated

in closed form:∫ R+

R−

ε/2
r2

√
(R+ − r)(r −R−)

dr =
πε/2

2
√

R+R−

R+ + R−
R+R−

=
1√

R+R−

πε

4D
.

Page 8 of 10



Then if we recognize that L2/R+R−
1−E2 = 1

1−RS/D , we find that

φ+ − φ− = π(1 + E)

√
L2/R+R−

1− E2
+

√
L2/R+R−

1− E2

πε

4D

=
π√

1−RS/D

(
1 +

1
4

RS/D

1−RS/D

)
+

π√
1−RS/D

E .

Using the observed values R+ = 69.8·106km, R− = 46.0·106km (from which
we obtain D = 27.7 ·106km), and RS = 2GM/c2 = 2.95km, we find that the
second term is bounded above by π 3

8(1−ε/R+)−5/2(ε/R−)2/
√

1−RS/D ≈
4.88·10−15, making the first term π√

1−RS/D

(
1 + 1

4
RS/D

1−RS/D

)
≈ π+2.515·10−7

a trustworthy estimate of φ+ − φ− (half a revolution, in radians). Since
Mercury completes 415.2 revolutions each century, and there are 360 · 60 ·
60/2π arcseconds per radian, we find that Mercury’s perihelion advances by

(2.515 · 10−7)
(

360 · 60 · 60
π

)
· 415.2 = 43.084 arcseconds per century.

5 Remarks

In the general relativity solution, we opted to estimate a single integral,
rather than attempt a sort of “first-order” approximation to a differential
equation. The reason for this is that such approximations are typically not
well justified, and neglect certain terms as small without providing estimates
for the neglected error.

On the other hand, we made some assumptions in our treatment as well.
Apart from the standard assumptions that the solar system is spherically
symmetric (which it is not), Mercury is a test particle and travels along a
geodesic of this background spacetime (which it is not and does not), and
that spacetime is asymptotically flat (who knows?), etc., we also assumed
that there even existed a geodesic corresponding to the specifications we
gave for Mercury’s orbit. In addition, in our derivation of the Schwarzschild
metric, we used a few arguments that stand on somewhat shaky ground
(such as the use of

√
A(SR)/4π, with A(SR) the area of the foliating sphere

of “radius” R in our original coordinates, as a smooth coordinate), though
the use of the Schwarzschild metric is also standard. In any case, we need
to match our physical observations to theory at some point, and we have
demonstrated that the assumption of Mercury traveling along a geodesic of
the Schwarzschild metric models our observations well.
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