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1 Introduction

A child grows up to speak the language of its neighbors. Members of a so-
ciety learn to agree on how to associate monetary values to goods. People
learn to recognize arbitrary handwritten letters, and write their own so that
others understand them. In each of these cases, a group of agents must reach
a common way of associating objects (thoughts, goods, letters) to signals
(sentences, values, symbols) when there is no clear leader whom everyone
follows. In “Modeling Language Evolution” [2], Steve Smale attempts to
model this convergence behavior.

We will begin by describing the space of objects X and the space of sig-
nals Y ; languages will be continuous functions from X to Y . We will also
assume that for our society of k members, or “agents,” there exists a k × k
matrix Γ representing the extent to which members of the society communi-
cate with each other. The “state” f (t) of the society at each time t ∈ N will
be a list of the languages of each member. During each stage of the evolu-
tion, each of the agents receives a sample of “object-signal pairs” from the
other agents. The agents then modify their languages so that they match
all the signals received as closely as possible; in this way, each member of
the society learns from every other member at each stage, and we call this
process a learning dynamic. At first, we will consider the “ideal dynamic,”
in which the agents adjust their languages to the weighted average of all
the languages used at time t. Then, we will move to a more sophisticated
scenario in which the samples received are distributed in a way that only
approximates this average. Denoting by ∆ the set of states in which every
agent has the same language, and using the L2 distance function to compare
two languages, we will culminate in a proof of a quantitative version of the
following theorem:

Main Theorem. Suppose that the communication matrix Γ satisfies a con-
dition called weak irreducibility. Then for any ε > 0, δ > 0, and stage t,
there is a sample size m so that every agent receives at least m object-signal
pairs at every stage, then the distance from f (t) to ∆ will be less than ε with
confidence 1− δ.

In other words, by exchanging enough samples, we can be arbitrarily
sure that the society will be arbitrarily close to sharing a common language.
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2 Definitions Toward a Language-Learning Dynamic

2.1 Languages and Societies

Although the following is a far cry from a linguist’s definition of a language,
it will suffice to serve our purposes, which are in some senses both more
specific and more general than the linguist’s. Certain qualities of language,
however, will be clearly recognizable.

2.1.1 Linguistic Settings

We begin with two Borel spaces: X a compact subset of Rn and Y a subset
of Rl. The set X denotes the space of objects or meanings, which are to be
represented by elements of Y , the space of signals. (It is important to keep
in mind which space is which, since the applications are rather widespread:
In modeling human language, it may be appropriate to let Y be the set of
utterable words. On the other hand, in a handwriting recognition program,
a script converts words to written signals, and so in that case X would be
the space of words.) A particular language, then, would be a function from
X to Y , which associates to each object a point in the space of signals. We
now have enough to define a Linguistic Setting :

Definition 2.1. A linguistic setting L is a triple 〈(X, π), Y,F〉 where X is
a compact subset of Rn and Y is a subset of Rl (where Rl has the full inner
product structure). The function π is a Borel probability measure on X,
and is interpreted as describing the relative frequency of objects occurring in
object-signal pairs (elements of Z = X×Y ). Continuous functions from X to
Y are called language-like functions, and F is a compact set of language-like
functions (with respect to the uniform norm) which we call languages.

It is important to note at this time that this treatment of languages is
robust enough to handle languages in which an object is not consistently
represented with the same signal. Specifically, if the signal used to represent
x is randomly chosen from a finite set {y1, y2, . . . ym} ⊂ Y with probabili-
ties P1, P2, . . . Pm respectively, then it may be appropriate to associate that
language to a language-like function f in which f(x) =

∑m
1 Pjyj . For this

reason, the space of signals Y is often taken to be convex. From this point
forward, we will assume the convexity of both Y and F .
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2.1.2 Linguistic Societies

With a set of k agents, we may form a linguistic society through their inter-
action:

Definition 2.2. A linguistic society P is a triple 〈{1, . . . , k},L,Γ〉 where L
is a linguistic setting and Γ is a k × k matrix with real, nonnegative entries
γij , measuring the linguistic influence of agent j on agent i. Γ is called the
communication matrix of the society.

We will also assume that for i = 1, . . . , k,
∑k

j=1 γij > 0. Then we can
always produce from Γ a normalized communication matrix Λ with entries

λij =
γij∑k
l=1 γil

, (1)

so that
∑k

j=1 λij = 1 for each i.

A state of a linguistic society is a characterization of each agent’s language,
i.e. a k-tuple of elements of F . Those states in which every member of the
society has the same language belong to the diagonal, the subset of Fk in
which every agent’s language is identical: ∆F = {(f, . . . , f) ∈ Fk}.

2.2 Learning Dynamics, Part I

With a linguistic society P in hand, we can now define the evolution of
that system by using a learning dynamic. Consider time indexed in discrete
stages by the natural numbers, so that the state of the society at time t

is f (t) = (f (t)
1 , . . . , f

(t)
k ). Then the dynamic of the system is a method for

producing f (t+1) from f (t). In a learning dynamic, this process is executed
in several stages.

2.2.1 Exchange Functions and Linguistic Fitness

The first stage of the dynamic is to define at each time t and for each agent
i a language-like function F

(t)
i that describes the overall direction in which

the society is pulling the agent’s language. These language-like functions,
which I call the exchange functions, are defined as follows:

F
(t)
i =

∑k
j=1 γijf

(t)
j∑k

j=1 γij

=
k∑

j=1

λijf
(t)
j , (2)
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i.e. F(t) = Λf (t). These exchange functions will also belong to F , since they
are convex combinations of languages in F . If a linguistic society is in the
state f = (f1, f2, . . . , fk), we can also define the linguistic fitness Φi of a
language f for agent i by

Φi(f) = −
∫

X

 k∑
j=1

γij‖f(x)− fj(x)‖2

 dπ(x), (3)

where we are using the norm on Y induced by the Euclidean inner product on
Rl. We can think of linguistic fitness as the extent to which agent i would be
able to communicate with all the members of the society (including i itself)
if i were to use the language f instead of fi. Then we have the following
result:

Proposition 2.3. For all f ∈ F , Φi(f) ≤ Φi(Fi), where Fi is the exchange
function defined by (2). Equality is true only when f = Fi π-a.e.

Proof. Let f ∈ F ⊂ C(X, Rl). Then for each x ∈ X, we have

k∑
j=1

γij‖f(x)− fj(x)‖2 =
∑

j

γij‖(fj(x)− Fi(x)) + (Fi(x)− f(x))‖2

=

∑
j

γij

[
‖fj(x)− Fi(x)‖2 + ‖Fi(x)− f(x)‖2

+2〈fj(x)− Fi(x), Fi(x)− f(x)〉
]

=

∑
j

γij‖fj(x)− Fi(x)‖2 +
(∑

j γij

)
‖Fi(x)− f(x)‖2

+2
〈∑

j γij(fj(x)− Fi(x)), Fi(x)− f(x)
〉

But we have defined Fi so that∑
j

γij(fj − Fi) =
∑

j

γijfj −
(∑

j γij

)
Fi = 0

Hence we have∑
j

γij‖fj(x)− f(x)‖2 =
∑

j

γij‖fj(x)− Fi(x)‖2 +
(∑

j γij

)
‖Fi(x)− f(x)‖2

≥
∑

j

γij‖fj(x)− Fi(x)‖2,
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where equality holds iff f(x) = Fi(x) since
∑

j γij > 0. Hence

∫
X

k∑
j=1

γij‖fj(x)− f(x)‖2dπ(x) ≥
∫

X

k∑
j=1

γij‖fj(x)− Fi(x)‖2dπ(x),

i.e. Φi(f) ≤ Φi(Fi) with equality iff f = Fi π-a.e. This justifies the previous
statement that Fi represents the overall direction in which the society is
“pulling” agent i’s language.

We will also find that in the “ideal” dynamic, given by f (t+1) = F(t) for
each stage t, f (t) will always converge in L2 to a point in the diagonal with
a predictable rate, but we defer the proof of this statement until §3.3.

The next stage of the learning dynamic involves producing sampling mea-
sures from the exchange functions, but before we can explore that step we
need to develop some machinery to handle these new measures.

2.3 A Digression: Measures on Product Spaces

At each stage in the dynamic, some probability measure ρ on the product of
the measurable spaces (X,M) × (Y,N ) produces the sample object-signal
pairs used to define the languages in the next stage. It is important to see
what structure this measure induces on the spaces X and Y .

2.3.1 Induced Measures on the Factor Spaces

Naturally, ρ induces a probability measure ρX on (X,M) defined by:

For any A ∈M, ρX(A) = ρ(A× Y ). (4)

For each fixed x ∈ X, ρ also produces a probability measure on {x} × Y ,
but more subtly. We would like to interpret this measure as the conditional
probability measure that the Y -component is in B ∈ N given that the X-
component is x, i.e. as

ρ(B|x) =
ρ({x} ×B)
ρ({x} × Y )

. (False)

However, this last expression is undefined for nearly all values of x, since
ρX({x}) 6= 0 for at most countably many values of x. We can, however
define the measure as follows:
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Definition 2.4. Let x ∈ X and B ∈ N . Then the function ρB : M→ R :
A 7→ ρ(A × B) is a measure that is absolutely continuous with respect to
ρX , and we may define ρ(B|x) as the Radon-Nikodym derivative of ρB with
respect to ρX , evaluated at x.1 Then ρ(·|x) is a probability measure on Y .

The assertion that ρB is absolutely continuous with respect to ρX fol-
lows immediately from the fact that these are both positive measures and
ρB(A) = ρ(A × B) ≤ ρ(A × Y ) = ρX(A). We also have, since B = Y ⇒
ρB = ρX ,

ρ(Y |x) =
dρB

dρX

∣∣∣∣
x

= 1.

Lastly, suppose that B is the disjoint union of a sequence 〈Bn〉 ⊂ N . Then
letting fn = dρBn/dρX , f =

∑∞
1 fn, we have for any A ∈M:

ρB(A) = ρ(A×B)

=
∞∑
1

ρ(A×Bn)

=
∞∑
1

ρBn(A)

=
∞∑
1

∫
A

fn dρX

=
∫

A
f dρX ,

where the last equality follows from the Dominated Convergence Theorem
since fn ≤ 1 ∈ L1(X). This implies that

ρ(B|x) =
dρB

dρX

∣∣∣∣
x

= f(x) =
∞∑
1

fn(x)

=
∞∑
1

dρBn

dρX

∣∣∣∣
x

=
∞∑
1

ρ(Bn|x)

1Unfortunately, the Radon-Nikodym derivative is unique only up to modification on
any ρX -null set. For this definition, then, we must choose some representative function
and consistently use it, which fortunately does not matter in any of the uses that follow.
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demonstrating countable additivity of ρ(B|x). Hence ρ(·|x) is a probability
measure on Y for each x. Furthermore, in the case in which X and Y are
Borel subspaces of Rn, we find from [3] that for ρX -a.e. x:

ρ(B|x) = lim
r→0

ρ(Ar ×B)
ρ(Ar × Y )

(True)

for every family {Ar} that shrinks nicely to x. This makes it clear why
ρ(B|x) can be interpreted as a conditional probability of B given x.

2.3.2 Fubini’s Theorem for Measures on Product Spaces

We also have the following analogue to Fubini’s Theorem:

Theorem 2.5. Let ρ be a probability measure on (X,M) × (Y,N ). If f ∈
L1(ρ), then the function x 7→

∫
Y f(x, y) dρ(y|x) is well-defined a.e. and is

in L1(ρX), and∫
X×Y

f dρ =
∫

X

[∫
Y

f(x, y) dρ(y|x)
]

dρX(x) (5)

Proof. First, suppose that f is the characteristic function of a measurable
set E. Then let C be the collection of all E for which the theorem is true
with f = 1E , that is, for which ρ(E) =

∫
X ρ(Ex|x) dρX(x). First suppose

E = A×B. Then we must show that ρ(A×B) =
∫
A ρ(B|x) dρX(x), but this

follows obviously from the definition ρ(B|·) = dρB/dρX . Hence products of
measurable sets are in C, and so are finite unions of them by additivity, so
if we can show C is a monotone class then the theorem will be true for all
characteristic functions by the Monotone Class Lemma. If E is the union of
an increasing sequence 〈En〉 in C, then continuity from below of ρ(·, x) shows
that the sequence of functions fn(x) = ρ((En)x|x) converges pointwise to
f(x) = ρ(Ex|x), so by the Monotone Convergence Theorem:∫

X
ρ(Ex|x) dρX(x) = lim

n→∞

∫
X

ρ((En)x|x) dρX(x)

= lim
n→∞

ρ(En)

= ρ(E)

So then E ∈ C as well. Similarly, if E is the intersection of a decreasing
sequence 〈En〉 in C, then the function x 7→ ρ((En)x|x) is measurable and in
L1 since its integral is at most 1, so this time the Dominated Convergence
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Theorem demonstrates the result. Hence C is a monotone class, so the the-
orem holds for all measurable E ⊂ X × Y .

Now, all that remains is to show that the theorem holds for arbitrary func-
tions. We know now that it holds for characteristic functions, so it holds
for all simple functions by linearity. Then if f is a nonnegative measurable
function on X × Y , then there is an increasing sequence of simple functions
converging pointwise to f , so the theorem follows by the Monotone Conver-
gence Theorem. Then for an arbitrary function f in L1(ρ), we may simply
apply the previous to the positive and negative parts of f . This proof closely
mimics that of Fubini’s Theorem in [3], and can easily be extended to apply
to σ-finite measures on X × Y .

Although it is easiest to imagine cases where ρ(B|x) is independent of
x, i.e. ρ decomposes as a product measure, this is the least interesting
possibility. Another extreme is when each ρ(·|x) is a Dirac measure for
some point y = f(x); in general the function uρ(x) =

∫
Y y dρ(y|x) is called

the regression function of ρ, and indicates the expectation value of y given
a supplied value of x.

2.4 Learning Dynamics, Part II

Armed with the machinery of measures on Z = X×Y , we can now constrain
next stage of the learning dynamic: the sampling measures ρ

(t)
i .

2.4.1 Sampling Measures

The sampling measures are the first objects not to be necessarily defined,
or even stochastically produced, by the linguistic setting and initial state of
the society. We will assume that at each step t and for each agent i there
is a probability measure ρ

(t)
i on (X,M)× (Y,N ) that satisfies the following

three conditions:

1. The measure ρ
(t)
iX , induced on X by ρ

(t)
i , is equal to π, the object

probability measure, for every agent i and time t.

2. The regression function x 7→
∫
Y y dρ

(t)
i (y|x) is equal to F

(t)
i .

3. There exists a constant M , independent of i and t, so that for every
f ∈ F ,

‖f(x)− y‖ ≤ M for ρ
(t)
i -a.e. (x, y) ∈ Z. (6)
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These sampling measures are used to sample packets of communication in
the next stage.

2.4.2 Producing Samples

Now that we have measures on Z = X × Y , we can use them to produce
m samples at each time t (here m is allowed implicitly to depend on t).
For each agent i, let S

(t)
i be an m-tuple of independent Z-valued random

variables:
S

(t)
i =

{(
x

(t)
i1 , y

(t)
i1

)
, . . . ,

(
x

(t)
im, y

(t)
im

)}
where every z

(t)
ij is distributed according to ρ

(t)
i , i.e.

P
(
z
(t)
ij ∈ E

)
= ρ

(t)
i (E)

One consequence of this is that the X-coordinates of the zi’s are distributed
according to π, that is

P
(
z
(t)
ij ∈ A× Y

)
= ρ

(t)
i (A× Y ) = π(A)

by Condition 1. We also find, given that the X-coordinate of z
(t)
ij is x, that

the expected value of the Y -coordinate is:

E
(
y

(t)
ij |x

(t)
ij = x

)
=
∫

Y
y dρ

(t)
i (y|x) = F

(t)
i (x)

Returning to our interpretation of Z as the space of object-signal pairs, we
see that S

(t)
i first samples m objects from X according to π, and then to

each object x pairs a signal so that the expected value of the signal is F
(t)
i (x).

One possible way to define ρ
(t)
i is to write that ρ

(t)
i (·|x) is a sum of Dirac

measures at f
(t)
j (x) with weights λij , since then

∫
Y

y dρ
(t)
i (y|x) =

k∑
j=1

λijf
(t)
j (x) = F

(t)
i (x).

Then
(
x

(t)
i1 , y

(t)
i1

)
can be interpreted as first choosing an object randomly

from (X, µ) (as always), and then choosing a member of the society at
random (weighted probabilistically by λij) to pair it with a signal. This can
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be likened to agent i receiving noiseless signals from each of the members
of the society. Of course, in general ρ

(t)
i will not be so simple, to allow for

various types of noise (random Y -valued variables with zero expectation) to
be added.

2.4.3 Minimizing the Empirical Error

The final step in the learning dynamic is to produce f
(t+1)
i from the sample

S
(t)
i . This last step is the easiest to state: simply choose f

(t+1)
i from F so

that the empirical error

Ez(f) =
1
m

m∑
j=1

∥∥∥f(x(t)
ij )− y

(t)
ij

∥∥∥2
is minimized. (7)

(This minimum is guaranteed to be attained in F so long as we assume its
compactness. On the other hand, minimizing functions are not necessarily
unique, in which case we can choose any of them without affecting the
results.) In this way, the map from Fk to Fk is completed, and so the state
of the linguistic society progresses through an arbitrary state t. We are now
farther along in stating the main theorem:

Main Theorem. If Λ satisfies a condition called “weak irreducibility,” then
for every δ > 0 there exist constants α∗ < 1 and C > 0, as well as a
sample size m(t), such that with any initial state f (0), the following holds
with probability at least 1− δ:

d(f (t),∆F ) ≤ Cαt
∗d(f (0),∆F ),

where d is the L2 metric on F .

To prove this, we need to define weak irreducibility and explore its im-
plications, as well as consider a few results from learning theory.

3 The Normalized Communication Matrix Λ and
its Action...

Recall that any k × k normalized communication matrix Λ satisfies the
following two properties:

1. λij ≥ 0 for each 1 ≤ i, j ≤ k.
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2.
∑k

j=1 λij = 1 for each 1 ≤ i ≤ k.

In general, a matrix satisfying those two properties is called a stochastic ma-
trix. Note that the second condition implies that the vector e = (1, 1, . . . , 1)
is an eigenvector of Λ with eigenvalue 1. Along similar lines, we have the fol-
lowing theorem about stochastic matrices, due to Perron and Frobenius[5]:

Lemma 3.1. Let Λ be a stochastic matrix. Then the eigenvalues of Λ are
all no more than 1 in modulus.

Proof. Let α be an arbitrary eigenvalue of Λ, and x be a corresponding
eigenvector of Λ, and without loss of generality normalize x so that for some
index i0, |xj | ≤ |xi0 | = 1 for all j. Then we have the following:

|α| = |αxi0 |

=

∣∣∣∣∣∣
k∑

j=1

λi0jxj

∣∣∣∣∣∣
≤

k∑
j=1

λi0j |xj |

≤
k∑

j=1

λi0j = 1.

If 1 is a simple eigenvalue, and every other eigenvalue is strictly less
than 1 in modulus, then Λ is called weakly irreducible, which amounts to a
kind of connectedness property for the linguistic society. For example, if Λ
decomposes as

Λ =
[

ΛI 0
0 ΛJ

]
with ΛI an n × n square matrix and ΛJ a (k − n) × (k − n) matrix, then
the two vectors e1 = (1, . . . , 1, 0, . . . , 0) (with n ones and k − n zeroes) and
e2 = e − e1 will be two linearly independent eigenvectors of Λ, both with
eigenvalue 1.

3.1 ...On Rk

Since we can describe the exchange functions at a stage t by F(t) = Λf (t),
it is useful to explore the properties of Λ as a linear map from F → F .
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However, it is easiest to begin with the map Λ : Rk → Rk. First, let us
consider the following fact:

Lemma 3.2. For any real square matrix A and ε > 0, there exists a real
nonsingular matrix C such that D = C−1AC is of the block form

D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dn


where each Di is an ki × ki square matrix of either the form


λ ε 0 0 · · · 0
0 λ ε 0 · · · 0
0 0 λ ε · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · λ

 or



[
µ −ν
ν µ

] [
ε 0
0 ε

]
· · · 0

0
[

µ −ν
ν µ

]
· · · 0

...
...

. . .
...

0 0 · · ·
[

µ −ν
ν µ

]


where either λ is a real eigenvalue of A or µ ± iν are conjugate complex
eigenvalues of A.

Proof. With ε = 1 this is just the statement of the fact that every real
square matrix has a real Jordan Canonical Form. The general version with
arbitrary nonzero ε follows by conjugating with respect to

1 0 · · · 0
0 ε · · · 0
...

...
. . .

...
0 0 · · · εki


in the first case, or in the second:

[
1 0
0 1

]
0 · · · 0

0
[

ε 0
0 ε

]
· · · 0

...
...

. . .
...

0 0 · · ·
[

εki/2 0
0 εki/2

]
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Let ∆k be the subspace of Rk consisting of multiples of e, that is, with all
components equal. Then we can now state a few properties Λ has:

Proposition 3.3. For any k × k weakly irreducible stochastic matrix Λ,
there exists a subspace W ⊂ Rk, a norm ‖ · ‖Λ (induced by an inner product
〈·, ·〉Λ), and a constant α∗ < 1 such that:

1. Rk decomposes into the direct sum ∆k ⊕W .

2. If v ∈ ∆k then Λv = v.

3. If w ∈ W then Λw ∈ W .

4. If v ∈ ∆k and w ∈ W , then 〈v,w〉Λ = 0.

5. If w ∈ W then ‖Λw‖Λ ≤ α∗‖w‖Λ.

Proof. 1. Let ε > 0 be small enough that |λ|+ ε < 1 for every eigenvalue
λ 6= 1. (This ε exists by our assumption of Λ’s weak irreducibility.)
Then let C be a nonsingular matrix (with column vectors C1 through
Ck), conjugation by which puts Λ into the form shown in Lemma 3.2,
and without loss of generality let C1 be the eigenvector e. (Hence
the first block in D = C−1ΛC is a 1 × 1 square with the single entry
1.) Then Rk decomposes naturally as the direct sum of ∆k, which is
spanned by C1 = e, and W , which we define as the span of C2 through
Ck. For any x ∈ Rk, define x̃ = C−1x so that x =

∑k
i=1 x̃iCi.

2. If v ∈ ∆k, then Λv = v simply because e is an eigenvector of Λ with
eigenvalue 1, and ∆k is the corresponding eigenspace.

3. Since W is the space spanned by C2 through Ck, we can rewrite it as

W = {x ∈ Rk : x̃1 = 0}. (8)

Then we find that:

w ∈ W ⇒ w̃1 = 0
⇒ (Dw̃)1 = 0 due to our choice of the block-diagonal structure of D

⇒ (C−1ΛCC−1w)1 = 0
⇒ (C−1Λw)1 = 0

⇒ (̃Λw)1 = 0
⇒ Λw ∈ W

Hence Λ maps W into itself.

Page 15 of 32



4. Now define an inner product on Rk by

〈x,y〉Λ = xT (C−1)T (C−1)y. (9)

Then in the basis consisting of column vectors of C, we find that the
vector x has components x̃i = (C−1x)i, so that we may write

〈x,y〉Λ = x̃T ỹ = 〈x̃, ỹ〉, (10)

where the inner product on the right is the Euclidean inner product.
Define the natural norm induced by this inner product to be ‖x‖Λ =√
〈x,x〉Λ = ‖x̃‖. Note that we can express ∆k the following way:

x ∈ ∆k iff x̃j = 0 for j 6= 1. Together with the alternate expression W
from Equation 8, this makes it apparent that if v ∈ ∆k and w ∈ W ,
then 〈v,w〉Λ = 〈ṽ, w̃〉 = 0.

5. Lastly, we will show that Λ is a contraction on W . Let α∗ be ε plus the
magnitude of the largest eigenvalue of Λ not equal to 1; by assumption,
α∗ < 1. Then we must show that ‖Λw‖Λ ≤ α∗‖w‖Λ. The norm on the
right is equal to

√
w̃T w̃ = ‖w̃‖ with the Euclidean norm; the norm on

the left is the square root of:

‖Λw‖2
Λ = wT ΛT (C−1)T C−1Λw by 9

= wT
[
(CT )−1CT

]
ΛT (C−1)T C−1Λ

[
CC−1

]
w

=
[
wT (C−1)T

] [
CT ΛT (C−1)T

] [
C−1ΛC

] [
C−1w

]
= w̃T DT Dw̃ by definition of w̃ and D

= ‖Dw̃‖2 with the Euclidean norm.

Hence w ∈ W ⇒ ‖Λw‖Λ ≤ α∗‖w‖Λ if and only if x1 = 0 ⇒ ‖Dx‖ ≤
α∗‖x‖. We will now prove this second statement. Recall from Lemma
3.2 that D has the following block structure:

D =


D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dn


where Di, i = 1, . . . , n is a square ki × ki of either of the two forms
listed above. (Remember that we chose D1 = [1].) Now given a k-
vector x, decompose it into n separate ki-vectors xi, formed so that
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the concatenation of all these vectors from i = 1 to n is just x. Then
for any x with x1 = x1 = 0, we have (in block format):

‖Dx‖2 =
[

0 xT
2 · · · xT

n

]


1 0 · · · 0
0 DT

2 · · · 0
...

...
. . .

...
0 0 · · · DT

n




1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dn




0
x2
...

xn


=

n∑
i=2

xT
i DT

i Dixi

=
n∑

i=2

‖Dixi‖2.

Hence, if we can show that for each i from 2 to n, ‖Dixi‖ ≤ α∗‖xi‖,
then we will have ‖Dx‖2 ≤ α2

∗
∑n

i=2 ‖xi‖2 = α2
∗‖x‖2 as desired. Con-

sider the first case, in which

Di =


λ ε 0 · · · 0
0 λ ε · · · 0
...

...
...

. . .
...

0 0 0 · · · λ


Then letting x̂i be the ni-vector with (x̂i)j = (xi)j+1 for 1 ≤ j < ni

and (x̂i)ni = 0, we have

‖Dixi‖ = ‖λxi + εx̂i‖
≤ |λ|‖xi‖+ ε‖x̂i‖
≤ |λ|‖xi‖+ ε‖xi‖ ≤ α∗‖xi‖.

Similarly, suppose

Di =



[
µ −ν
ν µ

] [
ε 0
0 ε

]
· · · 0

0
[

µ −ν
ν µ

]
· · · 0

...
...

. . .
...

0 0 · · ·
[

µ −ν
ν µ

]


,

with λ = µ + iν a complex eigenvalue of Λ. Then noticing that if we

identify real column 2-vectors
[

x1

x2

]
with complex numbers x1 + ix2
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(denoting this correspondence by '), we have[
µ −ν
ν µ

] [
x1

x2

]
=

[
x1µ− x2ν
x1ν + x2µ

]
' (µ + iν)(x1 + ix2)

Now if we convert any ki-vector x into a complex ki
2 -vector z by taking

pairs of adjacent elements, we find that

Dix =



[
µ −ν
ν µ

] [
ε 0
0 ε

]
· · · 0

0
[

µ −ν
ν µ

]
· · · 0

...
...

. . .
...

0 0 · · ·
[

µ −ν
ν µ

]





[
x1

x2

]
[

x3

x4

]
...[

xki−1

xki

]



'


µ + iν ε · · · 0

0 µ + iν · · · 0
...

...
. . .

...
0 0 · · · µ + iν




z1

z2
...

zki/2


Since ' preserves the norms of vectors, the result follows in the same
way as the previous case, but with λ = µ+iν. Hence ‖Dixi‖ ≤ α∗‖xi‖
for all i = 2, . . . , n, and so ‖Dx‖ ≤ α∗‖x‖ for any x with x1 = 0, and
so ‖Λw‖Λ ≤ α∗‖w‖Λ for any w ∈ W .

It is worth noting that since all norms on Rk are equivalent, there exist
positive constants CΛ and C ′

Λ such that for every v ∈ Rk,

C ′
Λ‖v‖ ≤ ‖v‖Λ ≤ CΛ‖v‖.

3.2 ...On (Rl)k

Now that we have considered the action of Λ on Rk, we can extend this to an
action on (Rl)k for an arbitrary l ∈ N. Elements of (Rl)k are k× l matrices:

~v =


~v1

~v2
...

~vk

 =
[

v1 v2 · · · vl

]
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where each ~vi, i = 1, . . . , k is a row l-vector, and each vj is a column k-vector
for j = 1, . . . , l. The individual components of ~v are vij for 1 ≤ i ≤ k and
1 ≤ j ≤ l. It is worthwhile to note that if A is any k × k matrix, it acts on
k × l matrices v ∈ (Rl)k by ordinary matrix multiplication:

A~v =


∑k

i=1 A1i~vi∑k
i=1 A2i~vi

...∑k
i=1 Aki~vi

 =
k∑

i=1


A1i~vi

A2i~vi
...

Aki~vi

 =
k∑

i=1

Ai ⊗ ~vi (11)

=
[

Av1 Av2 · · · Avl

]
(12)

where Ai is the ith column k-vector of A. Also, define

∆kl = {~v : ~vi = ~vj for all 1 ≤ i, j ≤ k} (13)
= {e⊗ ~v : ~v ∈ Rl} (14)
= {~v : vj ∈ ∆k for all 1 ≤ j ≤ l} (15)

Proposition 3.4. For any k × k weakly irreducible stochastic matrix Λ
acting on (Rl)k, there exists a subspace W ⊂ (Rl)k, a norm ‖ · ‖Λ (induced
by an inner product 〈·, ·〉Λ), and a constant α∗ < 1 such that:

1. (Rl)k decomposes into the direct sum ∆kl ⊕W .

2. If ~v ∈ ∆kl then Λ~v = ~v.

3. If ~w ∈ W then Λ~w ∈ W .

4. If ~v ∈ ∆kl and ~w ∈ W , then 〈~v, ~w〉Λ = 0.

5. If ~w ∈ W then ‖Λ~w‖Λ ≤ α∗‖~w‖Λ.

Proof. 1. Let α∗ and C be defined as in the proof of Proposition 3.3.
Then because C is nonsingular, we may define ~̃x for any ~x ∈ (Rl)k by
~̃x = (C−1)~x. This relationship between ~x and ~̃x can also be expressed
as

~x = C~̃x

=
k∑

i=1

Ci ⊗ ~̃xi by (12),
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and the invertibility of C guarantees that this expansion is unique.
(These statements are in analogy with those in the proof of Proposition
3.3, where x =

∑k
i=1 x̃iCi.) Then

x ∈ ∆kl ⇐⇒ x = e⊗ ~v for some ~v ∈ Rl by (14)

⇐⇒ x = C1 ⊗ ~̃x1 (since C1 = e)

⇐⇒ ~̃xi = 0 for all 2 ≤ i ≤ k.

Then if we define W as {~x : ~̃x1 = 0}, we find that (Rl)k decomposes
naturally as ∆kl ⊕W .

2. If ~v ∈ ∆kl, then the jth column (1 ≤ j ≤ l) of Λ~v is Λvj by (12). But
vj ∈ ∆k for each j by (15), so (Λ~v)j = Λvj = vj , and hence Λ~v = ~v.

3. Suppose ~w ∈ W . Then by definition, ~̃w1 = 0. Again, because the first
block in D was chosen to be the 1× 1 square [1], this implies that the
first row of D~̃w is zero as well. Since D = C−1ΛC, this is the same
as saying the first row of C−1ΛC ~̃w = C−1Λ~w is zero, i.e. (̃Λ~w)1 = 0.
Hence Λ~w ∈ W .

4. Define an inner product on (Rl)k by

〈~x, ~y〉Λ =
l∑

j=1

〈xj ,yj〉Λ

where the inner product on the right-hand side is that from Proposition
3.3. This inner product has the alternate expression

〈~x, ~y〉Λ =
l∑

j=1

〈xj ,yj〉Λ

=
l∑

j=1

x̃T
j ỹj (N.B.2)

=
l∑

j=1

k∑
i=1

(~̃x)ij(~̃y)ij

=
k∑

i=1

(~̃xi)(~̃yi)
T
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Now, if ~v ∈ ∆kl and ~w ∈ W , this last sum vanishes since for any value
of i, either ~̃vi or ~̃wi is zero, so 〈~v, ~w〉Λ = 0.

5. Suppose ~w ∈ W . This means that ~̃w1 = 0, i.e. that the first entry
in w̃j is zero for any j. This is the same as saying that wj is in the
subspace W ⊂ Rk from Proposition 3.3 for every j. Then we have:

‖Λ~w‖2
Λ =

l∑
j=1

‖Λwj‖2
Λ

≤ α2
∗

l∑
j=1

‖wj‖2
Λ

= α2
∗‖~w‖2

Λ

as desired, where the norm inside the sums is the one defined in Propo-
sition 3.3.

3.3 ...On C(X, (Rl)k)

We have one more extension of our proposition, to Λ acting on k-tuples in
C(X, (Rl)k), where X has a Borel probability measure π. We will now use
the following notation: elements ~f of C(X, (Rl)k) are continuous functions
from X to (Rl)k, that is,

~f =


~f1

~f2
...
~fk


with each ~fi ∈ C(X, Rl). (It is obvious in this notation that for any k × k
matrix A, A(~f(x)) = (A~f)(x). The parentheses in these situations will now
no longer be observed.) We also define

∆C(X,Rl) = {~f ∈ C(X, Rl) : ~fi = ~fj for all 1 ≤ i, j ≤ k}

= {~f ∈ C(X, Rl) : ~f(x) ∈ ∆kl for all x ∈ X}.
2The astute reader will notice that mixing the notations in Propositions 3.3 and 3.4

presents an ambiguity: the equality to the preceding line suggests that x̃j is formed from xj

as in Proposition 3.3, while the equality following this line interprets x̃j as the jth column

of the k × l matrix ~̃x formed directly from ~x. However, since in both interpretations
x̃j = C−1xj , this is a legal ambiguity, and prevents our already cluttered notation from
becoming more so.
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Proposition 3.5. For any k × k weakly irreducible stochastic matrix Λ,
there exists a subspace W ⊂ C(X, (Rl)k), a norm ‖ ·‖Λ (induced by an inner
product 〈·, ·〉Λ), and a constant α∗ < 1 such that:

1. C(X, (Rl)k) decomposes into the direct sum ∆C(X,Rl) ⊕W .

2. If ~f ∈ ∆C(X,Rl) then Λ~f = ~f .

3. If ~g ∈ W then Λ~g ∈ W .

4. If ~f ∈ ∆C(X,Rl) and ~g ∈ W , then 〈~f , ~g〉Λ = 0.

5. If ~g ∈ W then ‖Λ~g‖Λ ≤ α∗‖~g‖Λ.

Proof. 1. Let C and α∗ be as before, but this time, let W be the space of
all ~f such that ~f(x) belongs to the W from Proposition 3.4 for every
x ∈ X. Then it is once again apparent that ~f ∈ W iff the first entry in
~̃f = C−1~f is identically zero. On the other hand, ~f ∈ ∆C(X,Rl) exactly

when every entry, except possibly the first, in ~̃f is zero, demonstrating
the desired decomposition.

2. Let ~f ∈ ∆C(X,Rl). Then ~f(x) ∈ ∆kl for every x ∈ X, which implies
that Λ~f(x) = ~f(x), and hence Λ~f = ~f .

3. Let ~g ∈ W . Then for every x ∈ X, ~g(x) is in the W from Proposition
3.4, which implies Λ~g(x) is in that W , and hence Λ~g ∈ W .

4. Define an inner product 〈~f , ~g〉Λ by
∫
X〈~f(x), ~g(x)〉Λdπ(x), where the

inner product in the integrand is that from Proposition 3.4. Then if
~f ∈ ∆C(X,Rl), ~g ∈ W , we have

〈~f , ~g〉Λ =
∫

X
〈~f(x), ~g(x)〉Λdπ(x)

=
∫

X
0 dπ(x) = 0.

5. Suppose ~g ∈ W . Then we have

‖Λ~g‖2
Λ =

∫
X
‖Λ~g(x)‖2

Λdπ(x)

≤
∫

X
α2
∗‖~g(x)‖2

Λdπ(x)

= α2
∗‖~g‖2

Λ.
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3.4 ...On Fk

Now we can finally restrict our attention to Λ acting on Fk, where F is a
convex subset of C(X, Rl). Since λij ≥ 0 and

∑
j λij = 1 for each i, the

rows of Λ~f are convex combinations of the rows ~fi, so if ~fi ∈ F for each
i, so is (Λ~f)i, and hence Λ can be considered a linear map Λ : Fk → Fk.
Henceforth, we will no longer use arrows above function names, and denote
elements of F by f or g, and elements of Fk by f or g.

Using the notation that any f ∈ Fk can be written uniquely as

f = f∆ + fW ,

where f∆ ∈ ∆C(X,Rl) and fW ∈ W , then Λf = Λ(f∆ + fW ) = f∆ + ΛfW , and
ΛfW ∈ W , so (Λf)∆ = f∆. Then denoting by dΛ(f ,g) the Λ-norm of the
difference between f and g, and dΛ(f , S) = infg∈S{dΛ(f ,g)}, we have the
following:

Lemma 3.6. dΛ(f ,∆C(X,Rl)) = dΛ(f , f∆) = ‖fW ‖Λ.

Proof. This follows easily by writing, for any g ∈ ∆C(X,Rl):

dΛ(f ,g)2 = ‖f − g‖2
Λ

= ‖fW + f∆ − g‖2
Λ

= ‖fW ‖2
Λ + ‖f∆ − g‖2

Λ

(by the orthogonality of ∆C(X,Rl) and W with respect to 〈·, ·〉Λ)

≥ ‖fW ‖2
Λ,

with equality in the last statement exactly when g = f∆.

Corollary 3.7. The following hold for any f ∈ F :

1. dΛ(Λf , f∆) ≤ α∗dΛ(f , f∆)

2. dΛ(Λf ,∆C(X,Rl)) ≤ α∗dΛ(f ,∆C(X,Rl))

3. dΛ(Λnf , f∆) → 0 as n →∞

4. Λnf → f∆ ∈ ∆C(X,Rl) as n →∞ with respect to the L2 norm

Hence in the ideal dynamic f (t+1) = Λf (t), we find that f (t) → f (0)
∆ as

t → ∞, where the distance (in the Λ-norm) to the diagonal shrinks by at
least a factor of α∗ at each stage.
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4 Learning Theory

4.1 Some Notions from Learning Theory

We need to develop a few concepts from learning theory before we can finish
the proof of the main theorem. One such idea is that of the error of a
function f ∈ F with respect to a probability measure ρ on Z = X × Y
(Y ⊂ Rl), defined as

E(f) =
∫

Z
‖f(x)− y‖2 dρ(x, y).

This quantity can be thought of as the deviation of f from the pair (x, y),
where we have sampled (x, y) over all of Z, with respect to the measure ρ.
If we define

uρ(x) = E(y|x) =
∫

Y
y dρ(y|x),

then we have the following alternate characterization of the error:

Lemma 4.1. E(f) = E(uρ) +
∫

X
‖f(x)− uρ(x)‖2 dρX(x).

Proof. We have

E(f) =
∫

Z
‖f(x)− y‖2 dρ(x, y)

=
∫

Z
‖f(x)− uρ(x) + uρ(x)− y‖2 dρ(x, y)

=
∫

X

∫
Y
‖f(x)− uρ(x)‖2 dρ(y|x) dρX(x)

+
∫

X

∫
Y
‖uρ(x)− y‖2 dρ(y|x) dρX(x)

+ 2
∫

X

∫
Y
〈f(x)− uρ(x), uρ(x)− y〉Y dρ(y|x) dρX(x).

Consider these three integrals one at a time. The first integrand does not
actually depend on Y , so its integral is equal to

∫
X ‖f(x)−uρ(x)‖2 dρX(x).

The second integral is E(uρ) by definition. The integral over Y in the third
term can be shifted into the second slot of the inner product in the integrand,
but since

∫
Y (uρ(x) − y) dρ(y|x) is defined to vanish, the entire third term

does as well.
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In the event that we have a sample z = ((x1, y1), . . . , (xm, ym)) in Zm,
we can also define the empirical error of a function f by

Ez(f) =
1
m

m∑
i=1

‖f(xi)− yi‖2,

which measures how well the values assumed by f match the sample. Since
F is compact, there exists a (not necessarily unique) minimizing function fz

such that Ez(f) ≥ Ez(fz) for all f ∈ F . Sometimes we will want to refer to
only the error due to f being different from uρ, and so we will define

Eρ(f) = E(f)− E(uρ)
Ez,ρ(f) = Ez(f)− Ez(uρ)

Note that Lemma 4.1 guarantees that Eρ(f) =
∫
X ‖f(x)−uρ(x)‖2 dρX(x) ≥

0 for all f ∈ F , but Ez,ρ(f) can in general assume negative values. In
this section, we will also use the probabilist’s notation Prob{z : z ∈ A}
to indicate the probability of choosing a sample from A ⊂ Zm, and the
expectation value E(f) to indicate the integral of f over the appropriate
probability space. Then in this notation, for example, E(‖f(x) − y‖2) =
E(f), E(‖f(x)− uρ(x)‖2) = Eρ(f), and E(Ez(f)) = E(f).

4.2 Pointwise Probability Estimates

For the remainder of this section, let ρ be one of the sampling measures
on Z produced in the learning dynamic defined in §2.4.1, so that ρX = π,
uρ ∈ F , and ‖f(x)− y‖ ≤ M for every f ∈ F and ρ-a.e. (x, y) ∈ Z. We can
also use the following result, due to Bernstein:

Theorem 4.2 (Bernstein’s Inequality). Let ξ be a random variable on a
probability space Z with mean E(ξ) = µ and variance σ2. If |ξ(z)− µ| ≤ M
for a.e z ∈ Z, then for all ε > 0,

Prob

{
z ∈ Zm : µ− 1

m

m∑
i=1

ξ(zi) ≥ λ

}
≤ exp

(
−mλ2

2
(
σ2 + 1

3Mε
))

Proof. This inequality, like many similar inequalities, follows by assuming
µ = 0, writing the probability as Prob

{
exp[ 1

m

∑
tξ(zi)] ≥ exp(tε)

}
for arbi-

trary t > 0, applying Chebyshev’s Inequality, and then carefully estimating
the bound produced while choosing a clever value for t. For a complete
proof, see [4].
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We can apply this result to get the following proposition:

Proposition 4.3. Let f ∈ F , and let M satisfy (6). Then for all ε > 0,
0 < α ≤ 1,

Prob
{
z ∈ Zm :

Eρ(f)− Ez,ρ(f)
Eρ(f) + ε

≥ α

}
≤ exp

(
−α2mε

8M2

)
Proof. For any f ∈ F let `(f) be a random variable on Z defined by

`(f)(x, y) = ‖f(x)− y‖2 − ‖uρ(x)− y‖2.

Then we have the following identities:

E(`(f)) = E(‖f(x)− y‖2)−E(‖uρ(x)− y‖2) = E(f)− E(uρ) = Eρ(f)

1
m

m∑
i=1

`(f)(zi) = Ez(‖f(x)− y‖2)−Ez(‖uρ(x)− y‖2) = Ez(f)− Ez(uρ) = Ez,ρ(f)

Letting µ = Eρ(f), we also find that |`(f)(z)| ≤ M2 for a.e. z, and hence
|`(f)(z) − µ| ≤ M2 + µ.3 Also, denote by σ2 the variance of `(f). Now we
can apply Bernstein’s Inequality to `(f) and we obtain:

Prob
{
Eρ(f)− Ez,ρ(f)

µ + ε
≥ α

}
= Prob

E[`(f)]− 1
m

m∑
j=1

`(f)(zi) ≥ α(µ + ε)


≤ exp

[
−mα2(µ + ε)2

2
(
σ2 + 1

3(M2 + µ)α(µ + ε)
)]

We need to find an estimate for σ2. To do this, we first expand note that
for any two functions f and g in F ,(
‖f(x)− y‖2 − ‖g(x)− y‖2

)2 =
(
‖f(x)‖2 − 2〈f(x), y〉+ ‖y‖2 − ‖g(x)‖2 + 2〈g(x), y〉 − ‖y‖2

)2
=
(
‖f(x)‖2 − ‖g(x)‖2 − 2〈f(x), y〉+ 2〈g(x), y〉

)2
= (〈f(x)− g(x), f(x) + g(x)〉 − 〈f(x)− g(x), 2y〉)2

= 〈f(x)− g(x), f(x) + g(x)− 2y〉2

≤ ‖f(x)− g(x)‖2‖(f(x)− y) + (g(x)− y)‖2,

3In [2], the latter estimate is not made and Bernstein’s Inequality is incorrectly applied.
Fortunately, the proposition is still true, and the argument has been adjusted to account
for the extra term µ.
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where the last inequality comes from the Cauchy-Schwarz inequality for the
Euclidean inner product on Y . Then(
‖f(x)− y‖2 − ‖g(x)− y‖2

)2 ≤ ‖f(x)− g(x)‖2 (‖f(x)− y‖+ ‖g(x)− y‖)2

≤ ‖f(x)− g(x)‖2(M + M)2

= 4M2‖f(x)− g(x)‖2 (16)

So by writing σ2 = E[`(f)2]−E[`(f)]2 we have

σ2 = E[`(f)2]− µ2

= E[(‖f(x)− y‖2 − ‖uρ(x)− y‖2)2]− µ2

≤ 4M2E[‖f(x)− uρ(x)‖2]− µ2 by (16)

= 4M2µ− µ (17)

So σ2 ≤ 4M2µ−µ2, and in particular µ ≤ 4M2 in order that σ2 be nonneg-
ative. To finish the proof, we need to show that

ε

8M2
≤ (µ + ε)2

2
(
σ2 + 1

3(M2 + µ)α(µ + ε)
) ,

which is true iff

ε

4M2

(
σ2 +

1
3
(M2 + µ)α(µ + ε)

)
≤ (µ + ε)2,

i.e.
εσ2

4M2
+
(
εµ + ε2

) ( α

12

(
1 +

µ

M2

))
≤ (µ + ε)2

The first term on the left is at most ε
4M2 (4M2µ−µ2) ≤ εµ by (17), and the

quantity α
12

(
1 + µ

M2

)
is at most 5

12 < 1 since µ ≤ 4M2 and α ≤ 1. Then
we must only show that 2εµ + ε2 ≤ (µ + ε)2, but this is obvious since the
difference is µ2 ≥ 0. Hence

Prob
{
z ∈ Zm :

Eρ(f)− Ez,ρ(f)
Eρ(f) + ε

≥ α

}
≤ exp

(
−mα2ε

8M2

)
as desired.

4.3 Uniform Probability Estimates

In Proposition 4.3, we find that for each f ∈ F , a condition on z holds
with a particular confidence. We would like a similar result that handles all
f ∈ F simultaneously. To do this, we first require a lemma:
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Lemma 4.4. Let 0 < α < 1, ε > 0, f ∈ F and z ∈ Zm so that Eρ(f)−Ez,ρ(f)
Eρ(f)+ε <

α. Then for any g ∈ F with ‖f(x)− g(x)‖ ≤ αε
4M , we have the similar esti-

mate Eρ(g)−Ez,ρ(g)
Eρ(g)+ε < 3α.

Proof. Rewrite the expression involving g as follows:

Eρ(g)− Ez,ρ(g)
Eρ(g) + ε

=
E(g)− E(uρ)− Ez(g) + Ez(uρ)

Eρ(g) + ε

=
E(f)− E(uρ)− Ez(f) + Ez(uρ)

Eρ(g) + ε

+
E(g)− E(f)− Ez(g) + Ez(f)

Eρ(g) + ε

=
Eρ(f)− Ez,ρ(f)
Eρ(g) + ε

+
E(g)− E(f)− Ez(g) + Ez(f)

Eρ(g) + ε

Consider the numerator of the second term. First, we know that:∣∣‖f(x)− y‖2 − ‖g(x)− y‖2
∣∣ ≤ 2M‖f(x)− g(x)‖ by (16)

≤ 2M
αε

4M
=

αε

2

Hence |E(f) − E(g)| ≤ αε
2 and |Ez(f) − Ez(g)| ≤ αε

2 , so magnitude of the
numerator of the second term is

|E(f)− E(g)− Ez(f) + Ez(g)| ≤ αε.

Since the denominator of the second term is Eρ(g)+ ε ≥ ε, the whole second
term is at most α.

Now consider the first term. We just showed that

Eρ(f)− Eρ(g) = E(f)− E(g) ≤ αε

2
< ε ≤ ε + Eρ(g),

i.e. Eρ(f) + ε < 2Eρ(g) + 2ε, so Eρ(f)+ε
Eρ(g)+ε < 2. On the other hand, by

assumption Eρ(f)−Ez,ρ(f)
Eρ(f)+ε < α, so

Eρ(f)− Ez,ρ(f)
Eρ(g) + ε

=
(
Eρ(f)− Ez,ρ(f)
Eρ(f) + ε

)(
Eρ(f) + ε

Eρ(g) + ε

)
< 2α.

Hence the sum of the two terms is less than 3α.

We can now extend the result of Proposition 4.3:
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Proposition 4.5. Let F ⊂ C(X, Y ) be compact in the uniform topology,
so that N (F , δ) (the minimum number of discs (in the uniform norm) of
radius δ needed to cover F) is finite for each δ > 0, and let M satisfy (6).
Then for all ε > 0, 0 < α < 1,

Prob

{
z ∈ Zm : sup

f∈F

Eρ(f)− Ez,ρ(f)
Eρ(f) + ε

≥ 3α

}
≤ N

(
F ,

αε

4M

)
exp

(
−mα2ε

8M2

)
.

Proof. Let ` = N
(
F , αε

4M

)
, so that there exist D1, D2, . . . , D` ⊂ F discs of

radius αε
4M centered at f1, . . . , f` that together cover F . Then we have:

Prob

{
sup
f∈F

Eρ(f)− Ez,ρ(f)
Eρ(f) + ε

≥ 3α

}
≤

∑̀
j=1

Prob

{
sup
f∈Dj

Eρ(f)− Ez,ρ(f)
Eρ(f) + ε

≥ 3α

}

≤
∑̀
j=1

Prob
{
Eρ(fj)− Ez,ρ(fj)

Eρ(fj) + ε
≥ α

}

≤
∑̀
j=1

exp
(
−mα2ε

8M2

)

= N
(
F ,

αε

4M

)
exp

(
−mα2ε

8M2

)
The second inequality follows from Lemma 4.4, since for any η > 0 there ex-
ists f ∈ Dj with Eρ(f)−Ez,ρ(f)

Eρ(f)+ε ≥ 3α−3η, and so we must have Eρ(fj)−Ez,ρ(fj)
Eρ(fj)+ε ≥

α−η, and we can let η → 0. The third inequality is just Proposition 4.3.

We can now take a special case of this proposition at a single point:

Theorem 4.6. Suppose that F ⊂ C(X, Rl) is compact and convex, and that
the probability measure ρ on X × Y ⊂ X × Rl (with regression function uρ

satisfies: ∀f ∈ F , ‖f(x)−y‖ ≤ M ρX-a.e. If for each z, fz is any minimizer
of Ez, then for all ε > 0,

Prob
{
z ∈ Zm :

∫
X
‖fz(x)− uρ(x)‖2 dρX(x) ≥ ε

}
≤ N

(
F ,

ε

24M

)
exp

(
−mε

288M2

)
.

Proof. Let α = 1
6 and f = fz in Proposition 4.5 to obtain

Prob
{
z ∈ Zm :

Eρ(fz)− Ez,ρ(fz)
Eρ(fz) + ε

≥ 1
2

}
≤ N

(
F ,

ε

24M

)
exp

(
−mε

288M2

)
.
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(Note that since fz depends on z, we could not use Proposition 4.3.) Now if
Eρ(fz)−Ez,ρ(fz)

Eρ(fz)+ε < 1
2 , we can rewrite this as Eρ(fz) < 2Ez,ρ(fz) + ε. However,

Ez,ρ(fz) = Ez(fz) − Ez(uρ) ≤ 0 since fz minimizes Ez. Hence in this case
Eρ(fz) < ε. Therefore, if Eρ(fz) ≥ ε, we must have Eρ(fz)−Ez,ρ(fz)

Eρ(fz)+ε ≥ 1
2 , and

so

Prob {z ∈ Zm : Eρ(fz) ≥ ε} ≤ N
(
F ,

ε

24M

)
exp

(
−mε

288M2

)
.

5 Proof of the Main Theorem

We are now ready to prove the main theorem:

Main Theorem. Suppose Λ is weakly irreducible. Then there exist con-
stants α∗ and C such that whenever m ≥ 288M2

ε

[
ln
(
δ−1tkN

(
F , ε

24M

))]
,

where ε = k−1α2t
∗ d(f (0),∆F )2(1− α∗)2, we have

d(f (t),∆F ) ≤ Cαt
∗d(f (0),∆F )

with probability at least 1− δ.

Proof. Let us consider stage t of a learning dynamic discussed in §2. Then
since to produce f

(t)
i from samples distributed by ρ

(t−1)
i , the regression func-

tion for which is F
(t−1)
i , we can rephrase Theorem 4.6 as

Prob
{
z(t)

i ∈ Zm :
∫

X
‖f (t)

i (x)− F
(t−1)
i (x)‖2 dπ(x) ≥ ε

}
≤ N

(
F ,

ε

24M

)
exp

(
−mε

288M2

)
.

Applying this to each i = 1, . . . , k, we find that

Prob
{
‖f (t) − F(t−1)‖2 ≥ kε

}
≤ kN

(
F ,

ε

24M

)
exp

(
−mε

288M2

)
,

where the norm comparing f (t) to F(t−1) is the sum of the L2 norms com-
paring f

(t)
i to F

(t−1)
i . Suppose now that we have chosen samples so that

d(f (t),F(t−1))2 = ‖f (t) − F(t−1)‖2 < kε. Recalling that we chose constants
CΛ and C ′

Λ so that C ′
Λ‖v‖ ≤ ‖v‖Λ ≤ CΛ‖v‖ for every v ∈ Rk, it follows

that for every f ,g ∈ F , C ′
Λd(f ,g) ≤ dΛ(f ,g) ≤ CΛd(f ,g) where dΛ is the

metric defined in §3.4. This means that

dΛ(f (t),F(t−1)) ≤ CΛ‖f (t) − F(t−1)‖ < CΛ

√
kε.
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This allows us to estimate:

dΛ(f (t),∆F ) ≤ dΛ(f (t),F(t−1)) + dΛ(F(t−1),∆F )

= dΛ(f (t),F(t−1)) + dΛ(Λf (t−1),∆F )

≤ CΛ

√
kε + α∗dΛ(f (t−1),∆F )

Then a simple induction on t shows that

dΛ(f (t),∆F ) ≤ CΛ

√
kε

t−1∑
n=0

αn
∗ + αt

∗dΛ(f (0),∆F )

≤ CΛ

√
kε

1− α∗
+ αt

∗dΛ(f (0),∆F ), i.e.

d(f (t),∆F ) ≤ CΛ

C ′
Λ

[ √
kε

1− α∗
+ αt

∗d(f (0),∆F )

]
What is the probability of this failing to hold? We know that each of the t
induction steps will fail with probability at most kN

(
F , ε

24M

)
exp

( −mε
288M2

)
,

so our confidence in the above statement is at least

1− tkN
(
F ,

ε

24M

)
exp

(
−mε

288M2

)
.

We can make this confidence 1− δ by letting

m ≥ 288M2

ε

[
ln
(
δ−1tkN

(
F ,

ε

24M

))]
Then letting ε = k−1α2t

∗ d(f (0),∆F )2(1− α∗)2 and C = 2CΛ
C′

Λ
, we have

d(f (t),∆F ) ≤ Cαt
∗d(f (0),∆F ) with confidence 1− δ

as advertised.
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