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1. Basic Definitions and Conventions

By a graph with boundary we mean an undirected graph X with vertex set V
where

(1) X is finite and has no loops
(2) disjoint subsets ∂X and Xo of V are given, where ∂X is nonempty and

V = ∂X ∪ Xo

(3) each connected component of X contains an element of ∂X
(4) an identification of V with the first |V | positive integers is given, such that

all elements of ∂X precede all elements of Xo.

Elements of ∂X are called boundary nodes (of X), and elements of Xo are called
interior nodes. When drawing graphs, boundary nodes will be represented by
black dots, and interior nodes will be represented by black circles. As all graphs
considered in this paper will be graphs with boundary, we will henceforth use the
terms graph and graph with boundary interchangeably.

In general, the notation E(X) denotes the edge set of X, and V (X) denotes the
vertex set of X. We say that two nodes in X are adjacent if there is an edge in
X between them (in particular, a node is not adjacent to itself). We say that two
distinct edges in X are parallel if they have the same endpoints.

When we draw graphs, we may or may not draw the same node more than once.
If a given node is drawn more than once, all instances of that node will be labeled
with the same number. Thus, the graphs shown in Figures 1 and 2 are in fact the
same.

A conductivity on a graph is a positive function on the edges of that graph. If
X is a graph and γ is a conductivity on X, the pair (X, γ) is called an electrical
network.

Let (X, γ) be an electrical network. If i and j are distinct nodes in X, we define

(1) γi,j =
∑

edges e
joining i and j

γ(e),

where the empty sum is defined to be 0. If n is the number of nodes in X, we define
the Kirchhoff matrix of the network (X, γ) to be the n × n matrix K given by

(2) Ki,j =

{

γi,j i 6= j

−
∑

k 6=i γi,k i = j
.

When multiple networks are under consideration, we will typically add the conduc-
tivity or the network as a subscript to K. Thus, K = Kγ = K(X,γ). If X has m
boundary nodes, then K has the following useful block structure

(3) K =

(

A B
BT C

)

,

where A is m× m and C is (n − m) × (n − m). We prove in Lemma 1.1 that C is
invertible. We define the response matrix1 of (X, γ) to be the m × m matrix

(4) Λ = A − BC−1BT = K/C,
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that is, Λ is the Schur complement of C in K. Subscripting conventions for Λ are
the same as those for K.

Lemma 1.1. If the Kirchhoff matrix K of a network (X, γ) is decomposed as in
(3), then the submatrix C is invertible.

Proof. Let n be the number of nodes in X, and m the number of boundary nodes,
so that K is n × n and C is (n − m) × (n − m).

Suppose y ∈ Rn−m and yT Cy = 0. To show that C is invertible, it suffices to
show that y = 0. Define x ∈ Rn by

(5) xi =

{

0 i ≤ m

yi−m i > m
.

Thus, by the definition of x, the hypothesis yT Cy = 0, and (3), we have

(6) xTKx = 0T A0 + yT Cy = 0.

We claim that x is constant on each (connected) component of X. We have

0 =
∑

i,j

Ki,jxixj by (6)

=
∑

i 6=j

γi,jxixj +
∑

i

∑

j 6=i

(−γi,j)xixi by (2)

=
∑

i 6=j

γi,j(xixj − xixi)

=
∑

i<j

γi,j(2xixj − xixi − xjxj) as γi,j = γj,i

= −
∑

i<j

γi,j(xi − xj)
2.

As γi,j ≥ 0 by (1), it follows from the above calculation that xi = xj if γi,j > 0,
i.e., if there is an edge joining nodes i and j in X. Thus, x is constant on each
component of X. Since each component of X contains a boundary node (by the
definition of graph) and x is zero on ∂X (i.e., xi = 0 for i ≤ m) by the definition
of x, it follows that x = 0, and thus that y = 0. �

If X is a graph, we will say that a matrix M is a Kirchhoff matrix for X if there
is a conductivity γ on X with K(X,γ) = M . If the graph X is understood and γ
is a conductivity on X, we will call K(X,γ) the Kirchhoff matrix of γ. The same
conventions apply for response matrices. The inverse problem is then as follows:
given a graph X and a matrix L, find all conductivities on X with response matrix
L.

It will be convenient to have some terminology regarding how ‘well-behaved’ a
graph is with respect to the inverse problem. We say that a graph X is recoverable
if any matrix L is the response matrix of at most one conductivity on X (so if we
know that L is a response matrix for X, we can at least theoretically ‘recover’ the

1The term response matrix comes from the following ‘physical’ characterization of Λ(X,γ) : if

φ ∈ R
n, we can consider applying a potential to the boundary nodes of X (where the edges of X

have conductances given by γ) whose value at a boundary node i is φi; in this situation, for each
i, the ith component of the vector Λ(X,γ)φ is the (signed) current out of the boundary node i due

to the applied voltage φ. See [1] for details.
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conductivity on X with response matrix L from the information contained in L). If
n > 1 is an integer, we say that a graph X is n-to-1 if some matrix is the response
matrix of precisely n distinct conductivities on X. Finally, we say that a graph
X is ∞-to-1 (read ‘infinite to one’) if any response matrix for X is the response
matrix of infinitely many distinct conductivities on X.

Note that nothing we have said thus far precludes the possibility of a particular
graph being n-to-1 for more than one value of n, and nothing guarantees that a
given graph will be either recoverable, n-to-1 for some n, or ∞-to-1. However,
it is immediate from the definitions that a graph cannot be more than one of
recoverable, n-to-1 for some n, and ∞-to-1. Also, it is worth remarking (though it
may not be obvious from the point of view we have taken, and it is not necessary
for the purposes of this paper) that the properties ‘recoverable’, ‘n-to-1’, and ‘∞-
to-1’ are independent of node-integer identification, in the sense that if X and X′

are two graphs which differ only in the identification of their vertices with positive
integers, then X is recoverable (resp. n-to-1, ∞-to-1) iff X′ is recoverable (resp.
n-to-1, ∞-to-1).

2. Historical Motivation

In this section, we sketch how the problem of finding n-to-1 graphs arose. When
first considering the inverse problem, Morrow, Curtis, and Ingerman were interested
in finding recoverable graphs. Work on this problem is documented at http://

math.washington.edu/~reu/. A notable result in this direction is that a circular
planar graph is recoverable iff it is critical. (Definitions of circular planar and
critical (for circular planar graphs) can be found in [1].)

The search for recoverable graphs led naturally to consideration of non-recoverable
graphs and ways in which a graph can fail to be recoverable. Certain graphs are ob-
viously not recoverable: perhaps the simplest examples are the so-called series and
parallel connections in Figure 3. Simple algebra and the definition of response ma-
trix shows that these graphs are ∞-to-1. Somewhat relatedly, the aforementioned
recoverability result was strengthened by Jeff Giansiracusa, who showed that a non-
critical circular planar graph is ∞-to-1. Prior to this, Ernie Esser, when considering
recoverability of so-called ‘annular networks’, discovered (by purely symbolic meth-
ods) a (rather simple) 2-to-1 graph, shown in Figure 1 (and also in Figure 2).

The existence of this single 2-to-1 graph (and some closely related 2n-to-1 graphs)
together with the fact that a large class of graphs (i.e., circular planar graphs)
could not be n-to-1 led to the question of whether or not n-to-1 graphs existed
for each n. (For a while, it was in fact conjectured that 2n-to-1 graphs were the
only possibilities.) The first significant progress on this problem was made by Ilya
Grigoriev, who succeeded in constructing (albeit largely without proof) a 3-to-1
graph. This paper describes a modification and generalization of his approach,
which works for arbitrary n.

3. Preliminary Notions

Denote by G the space of graphs with the following properties:

• no two interior nodes are adjacent
• every interior node is adjacent to at least three boundary nodes
• no more than one edge joins a given interior node and boundary node.

We define Γ to be the space of electrical networks whose underlying graph is in G.
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3.1. Operation on Graphs. Throughout this subsection, X will be a fixed but
arbitrary graph in G, n will be the number of nodes in X, and m the number of

boundary nodes. For p ∈ Xo, we denote by ApX the set of (boundary) nodes in X
adjacent to p.

We define a graph SX as follows. The nodes of SX are the boundary nodes
1, . . . , m of X (identified with positive integers in the obvious way), and each node
in SX is a boundary node in SX. If i and j are distinct nodes in SX, then the
edges between i and j in SX are those in X together with an additional edge,
denoted ep

ij, for each interior node p of X which is adjacent to both i and j. (We

may also call this edge ep
ji, e

p
j,i, or ep

i,j.) It is clear that SX meets our requirements

for a graph (and moreover that SX ∈ G).
We call SX the star-K transformation of X. We will denote SX by X∗ when

it is convenient to do so. Note that as X∗ has no interior nodes, we have

(7) K(X∗,γ∗) = Λ(X∗,γ∗)

for any conductivity γ∗ on X∗.
We say that a conductivity γ∗ on X∗ satisfies the quadrilateral rule2 if whenever

p ∈ Xo and i, j, k, l are distinct nodes in ApX we have

(8) γ∗(ep
ij)γ

∗(ep
kl) = γ∗(ep

ik)γ∗(ep
jl).

This is equivalent to what we call the triangle condition: if i is a given element in
ApX, then the quantity

(9)
γ∗(ep

ij)γ
∗(ep

ik)

γ∗(ep
jk)

is the same for any choice of j and k in ApX which are distinct from each other
and from i.

We say that a Kirchhoff matrix K for X∗ satisfies the quadrilateral rule if when-
ever p ∈ Xo and i, j, k, l are distinct nodes in ApX with a unique edge joining i to
j, k to l, i to k, and j to l in X∗, we have

(10) Ki,jKk,l = Ki,kKj,l.

Note that if γ∗ is a conductivity on X∗ which satisfies the quadrilateral rule, then
Kγ∗ satisfies the quadrilateral rule. By the preceding sentence and Corollary 3.3,
(11)
any response matrix for X satisfies the quadrilateral rule as a Kirchhoff matrix for X∗.

In particular, Corollary 3.3 implies that any response matrix for X is a Kirchhoff
matrix for X∗.

As an example of the star-K transformation, consider the graph Θ in Figure
2. We have computed Θ∗ in Figure 4. Edges produced by this process are also
labeled according to the above definition. As for the quadrilateral rule, we have the
following:

• a conductivity γ∗ on Θ∗ satisfies the quadrilateral rule iff it satisfies

(12) γ∗(e6
0,1)γ

∗(e6
2,3) = γ∗(e6

0,2)γ
∗(e6

1,3) = γ∗(e6
1,2)γ

∗(e6
0,3),

(13) γ∗(e7
2,3)γ

∗(e7
4,5) = γ∗(e7

2,4)γ
∗(e7

3,5) = γ∗(e7
3,4)γ

∗(e7
2,5),

and

(14) γ∗(e8
0,1)γ

∗(e8
4,5) = γ∗(e8

0,4)γ
∗(e8

1,5) = γ∗(e8
1,4)γ

∗(e8
0,5);
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• a Kirchhoff matrix K for Θ∗ satisfies the quadrilateral rule iff it satisfies

(15) K0,2K1,3 = K1,2K0,3,

(16) K2,4K3,5 = K3,4K2,5,

and

(17) K0,4K1,5 = K1,4K0,5.

3.2. Operation on Networks. We now extend S to an operation from Γ to itself.

Given (X, γ) ∈ Γ, we define a conductivity Sγ on SX as follows. For p ∈ Xo, let

(18) σp =
∑

i 6=p

γi,p.

If e is an edge in both SX and X, then we set

(19) Sγ(e) = γ(e).

If e is an edge in SX but not in X, then e is ep
ij for some p ∈ Xo and distinct i, j

in ApX, and we set

(20) Sγ(ep
ij ) =

γi,pγj,p

σp

.

Thus, we have (SX, Sγ) ∈ Γ, and we set S(X, γ) = (SX, Sγ).
Note that Sγ satisfies the quadrilateral rule: if p is an interior node of X and

i, j, k, l are distinct nodes in ApX, we have

(21) Sγ(ep
ij )Sγ(ep

kl) =
γi,pγj,p

σp

·
γk,pγl,p

σp

=
γi,pγk,p

σp

·
γj,pγl,p

σp

= Sγ(ep
ik)Sγ(ep

jl).

3.3. Some Basic Results. We now compile some useful properties of the map S.

Lemma 3.1. If (X, γ) ∈ Γ then Λ(X,γ) = ΛS(X,γ) = KS(X,γ).

Proof. The assertion ΛS(X,γ) = KS(X,γ) follows immediately from (7), so it is
enough to show that Λ(X,γ) = KS(X,γ).

Let n be the number of nodes in X, m the number of boundary nodes, K =
K(X,γ), and A, B, C as in (3) for K. By the definition of S, for any distinct i, j ∈ SX
we have

(22) (KS(X,γ))i,j = Sγi,j = γi,j +
∑

p∈Xo

γi,pγj,p

σp

= Ki,j +
∑

p∈Xo

Ki,pKj,p

σp

,

where the quantity
γi,pγj,p

σp
=

Ki,pKj,p

σp
may very well be zero for some (or all) p.

As X ∈ G, the submatrix C of K is diagonal, with diagonal values given explicitly
by

(23) Ck,k = Km+k,m+k = −σm+k for 1 ≤ k ≤ n − m,

2Note that such notions as conductivities and Kirchhoff matrices satisfying the quadrilateral
rule on X∗ are only well-defined with respect to a fixed choice of ‘base’ graph X ; if X and Y are

different graphs with the same star-K transformation, then what it means for, e.g., a conductivity
on X∗ to satisfy the quadrilateral rule is not in general the same as what it means for a conductivity

on Y ∗ to satisfy the quadrilateral rule, even though X∗ and Y ∗ are the same graph. In practice,
it will always be clear from the context (and usually just from the notation) what ‘base’ graph we

have in mind.
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so that C−1 is diagonal, with values

(24) (C−1)k,k = (Ck,k)
−1 = −

1

σm+k

.

Thus, by the definition of Λ(X,γ) in (4), for any i, j ∈ ∂X (not necessarily distinct)
we have

(Λ(X,γ))i,j = (A − BC−1BT )i,j(25)

= Ai,j −

n−m
∑

k=1

Bi,k(C−1BT )k,j(26)

= Ki,j +

n−m
∑

k=1

Bi,k

1

σm+k

BT
k,j(27)

= Ki,j +
∑

p∈Xo

Ki,pKj,p

σp

.(28)

Thus, we have (Λ(X,γ))i,j = (KS(X,γ))i,j for i 6= j. By the definition of Kirchhoff
matrix, KS(X,γ) has row sum zero, so to complete the proof we need only show that
Λ(X,γ) has row sum zero. Observe that for any p ∈ Xo, we have

(29) σp = −
∑

j∈Xo

Kj,p,

by (18), (2), and the definition of G. Thus, given i ∈ ∂X, we have

∑

j∈∂X

(Λ(X,γ))i,j =
∑

j∈∂X

Ki,j +
∑

p∈Xo

Ki,p

∑

j∈∂X Kj,p

σp

by (28)

= −
∑

j∈Xo

Ki,j +
∑

p∈Xo

Ki,p

(

−
∑

j∈Xo Kj,p

)

σp

as K has row sum zero

= 0 by (29)

thus completing the proof. �

Lemma 3.2. If X ∈ G, then S defines a bijection from conductivities on X to
conductivities on SX satisfying the quadrilateral rule.

Proof. First, we introduce some notation. Let

(30) ΓX = {conductivities on X},

and

(31) Γ′
SX = {conductivities on SX satisfying the quadrilateral rule}.

The claim is that S : ΓX → Γ′
SX is a bijection.

If p ∈ Xo and i ∈ ApX, we will denote by ep
i the (unique) edge in X between

i and p. If δ ∈ Γ′
SX , p ∈ Xo, and i ∈ ApX are given, then by the definition of G

there exist nodes j, k ∈ ApX which are distinct from each other and from i, and by
(9) the quantity

(32) δp
i =

√

δ(ep
ij)δ(e

p
ik)

δ(ep
jk)

,
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depends only on δ, p, and i. Observe that for distinct i and j in ApX, we have

(33) δp
i δp

j =

√

δ(ep
ik)δ(ep

ij)

δ(ep
kj)

√

δ(ep
jk)δ(ep

ji)

δ(ep
ki)

= δ(ep
ij),

where k ∈ ApX is distinct from both i and j but is otherwise arbitrary.
Now, we define a map T : Γ′

SX → ΓX . Let δ ∈ Γ′
SX be given, and define a

conductivity Tδ on X as follows. If e is an edge in X which is also in SX, set

(34) Tδ(e) = δ(e).

Any other edge e in X is ep
i for some (unique) p and i, and we define

(35) Tδ(ep
i ) = δp

i

∑

j∈ApX

δp
j .

By (21), S defines a map from ΓX to Γ′
SX . We claim that T is a two-sided

inverse for S.
Let δ ∈ Γ′

SX be given; we wish to show that STδ = δ. For p ∈ Xo and distinct
i, j ∈ ApX, observe that

STδ(ep
ij) =

Tδ(ep
i )Tδ(ep

j )
∑

k∈ApX Tδ(ep
k)

by (18), (20)

=
(δp

i

∑

k∈ApX δp
k)(δp

j

∑

l∈ApX δp
l )

∑

k∈ApX(δp
k

∑

l∈ApX δp
l )

by (35)

= δp
i δp

j after obvious cancellation

= δ(ep
ij) by (33).

As δ and STδ agree on edges which are in both X and SX by (19) and (34), it
follows that STδ = δ.

Next, let γ ∈ ΓX ; we must show that TSγ = γ. For p ∈ Xo and i ∈ ApX, we
have

TSγ(ep
i ) =

∑

j∈ApX

(Sγ)p
i (Sγ)p

j by (35)

=
∑

j∈ApX

Sγ(ep
ij ) by (33)

=
∑

j∈ApX

γ(ep
i )γ(ep

j )
∑

k∈ApX γ(ep
k)

by (18), (20)

= γ(ep
i ) after obvious cancellation.

As γ and TSγ agree on edges which are in both X and SX by (19) and (34), the
claim follows. �

Corollary 3.3. If X ∈ G and L is a given matrix, then S defines a bijection from
conductivities on X with response matrix L to conductivities on SX which satisfy
the quadrilateral rule and have Kirchhoff matrix L.

Proof. Combine Lemma 3.1 and Lemma 3.2. �
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3.4. The Wedge Product. We will construct the graphs Xn from simpler graphs
via an operation we call the wedge product. Suppose P0, . . . , Pn are elements of G.

We have the following linear order on
∐n

0 V (Pi):

• if a ∈ ∂Pi and b ∈ ∂Pj, then (a, i) < (b, j) iff i < j or i = j and a < b in Pi;
• if a ∈ P o

i and b ∈ P o
j , then (a, i) < (b, j) iff i < j or i = j and a < b in Pi;

• each element of
∐n

0 ∂Pi precedes each element of
∐n

0 P o
i .

Suppose that ∼ is an equivalence relation on
∐n

0 V (Pi) satisfying

(36) if a ∈
n

∐

0

P o
i and b ∈

n
∐

0

V (Pi), then a ∼ b iff a = b

and

(37) if a and b are distinct boundary nodes in some Pj, then (a, j) 6∼ (b, j).

Let π :
∐n

0 V (Pi) →
∐n

0 V (Pi)/ ∼ be the projection. We define a graph, called the
wedge product of P0, . . . , Pn with respect to ∼, and denoted

∧n
0 Pi (with no explicit

notational reference to ∼), as follows:

• the boundary of
∧n

0 Pi is the set π(
∐n

0 ∂Pi);
• the interior of

∧n
0 Pi is the set π(

∐n
0 P o

i );
• the edge set of

∧n
0 Pi is the set

∐n
0 E(Pi), where if an edge e ∈ E(Pj) joins

nodes a and b in Pj then (e, j) joins nodes [(a, j)] and [(b, j)] in
∧n

0 Pi;
• [(a, i)] < [(b, j)] in

∧n

0 Pi iff inf π−1([(a, i)]) < inf π−1([(b, j)]) in
∐n

0 V (Pi).

We then have the following result.

Lemma 3.4. If P0, . . . , Pn ∈ G and ∼ satisfies (36) and (37), then the wedge
product of P0, . . .Pn with respect to ∼ is well-defined as a graph, is an element
of G, and satisfies (

∧n

0 Pi)
∗

=
∧n

0 P ∗
i , where the wedge product of the P ∗

i is with

respect to ∼ |‘n
0

∂Pi
.

Proving Lemma 3.4 is simply an exercise in unraveling the various definitions.
Note that for each j, we have obvious maps E(Pj) → E(

∧n
0 Pi) and V (Pj) →

V (
∧n

0 Pi), sending e ∈ E(Pj) to (e, j) and a ∈ V (Pj) to [(a, j)], respectively. By
the definition of the edge set and vertex set of

∧n
0 Pi (as well as (36)), both of these

maps are injections. We denote their pair by Pj ↪→
∧n

0 Pi, and call it the inclusion
of Pj into

∧n
0 Pi. By identifying Pj with the image of this inclusion, we can realize

Pj as a subobject3 of
∧n

0 Pi. As the images of the inclusions Pj ↪→
∧n

0 Pi cover
∧n

0 Pi as j ranges from 0 to n, with each edge of
∧n

0 Pi in the image of precisely one
of these inclusions, it follows that in order to draw

∧n
0 Pi we need simply draw the

image of each inclusion Pj ↪→
∧n

0 Pi, according to our usual convention regarding
drawing the same node more than once.

4. The Graphs Xn

4.1. Construction. We now apply the wedge product to construct the Xn (n ≥ 3).
The graphs in Figures 5 and 6 which, somewhat without reason, we call A and B,
respectively, together with the standard (n + 1)-star Sn+1 in Figure 7 will play the

3We will not call the image of the map Pj ↪→
Vn

0 Pi a subgraph of
Vn

0 Pi, as the nodes in

the image of this map will not in general be identified with some initial segment of the positive
integers in

Vn
0 Pi. We could of course induce such an identification using the one on Pj , but since

we wish to think of the image as living inside
Vn

0 Pi, this is somewhat unnatural.
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role of building blocks in this process. Note the edge in B labeled eB
4,7, which is by

definition the unique edge in B between nodes 4 and 7.
Observe that A, B, and Sn+1 all lie in G. As one might expect, their star-K

transformations will be relevant: for A and B, these are shown in Figures 8 and
9, respectively; the star-K transformation of Sn+1 is simply the complete graph on
the n+1 boundary vertices of Sn+1 , which we make no attempt to draw for general
n.

Fix n ≥ 3. Let P n
0 = Sn+1. For 1 ≤ i ≤ dn

2 e, let P n
i = A, and for dn

2 e < i ≤ n,

let P n
i = B. Generate an equivalence relation ∼ on

∐n
0 V (P n

i ) by declaring

• for each 1 ≤ i ≤ n, the nodes (0, i) and (0, 0) are to be identified,
• for each 1 ≤ i ≤ n, the nodes (1, i) and (i, 0) are to be identified,
• all nodes (2, i) for 1 ≤ i ≤ dn

2 e or (6, j) for dn
2 e < j ≤ n are to be identified,

• all nodes (3, i) for 1 ≤ i ≤ dn
2
e or (7, j) for dn

2
e < j ≤ n are to be identified.

It is a simple task to verify that ∼ satisfies the hypotheses required for the defini-
tion of the wedge product, and so we may define Xn to be the wedge product of
P n

0 , . . . , P n
n with respect to ∼.

4.2. Notation. The idea of attaching copies of A and B to Sn+1 is fairly simple,
and the structure of the graphs Xn tends to reflect this. For example, X3 is shown
in Figure 14, and using Lemma 3.4 (or proceeding directly from the definition), we
can immediately compute its star-K transformation, as shown in Figure 15. (The
edge labels ei

j are defined below.) In general, by the last paragraph in the Section

3, one could draw Xn by drawing Sn+1 (with its boundary nodes labeled 0 through
n, and its interior node labeled d0) together with an instance of Figure 10 for each
1 ≤ i ≤ dn

2 e and an instance of Figure 11 for each dn
2 e < i ≤ n, where

(38) ci =

{

n + 1 + 2i 1 ≤ i ≤ dn
2 e + 1

n − 1 − dn
2 e+ 4i dn

2 e + 1 < i ≤ n

and

(39) di =











5n + 3 − 2dn
2
e i = 0

5n + 2 − 2dn
2
e+ 2i 1 ≤ i ≤ dn

2
e + 1

5n − 3dn
2 e + 3i dn

2 e + 1 < i ≤ n

.

Applying Lemma 3.4, we can draw X∗
n by drawing S∗

n+1 (i.e., by drawing the
complete graph on n + 1 boundary nodes labeled 0 through n) together with an
instance of Figure 12 for each 1 ≤ i ≤ dn

2 e and an instance of Figure 13 for each
dn

2 e < i ≤ n.

By Lemma 3.4, we have X∗
n =

∧n
0 (P n

i )∗ as graphs. For 0 ≤ j ≤ n, let ιj denote
the inclusion (P n

j )∗ ↪→
∧n

0 (P n
i )∗. We label certain edges in X∗

n as follows (where

each expression of the form ei
j = x = y is to be interpreted as defining ei

j to be

equal to x (which will be an edge in
∧n

0 (P n
i )∗), which is also equal to y (which will

be an edge in (
∧n

0 P n
i )

∗
)):

• for 1 ≤ j ≤ n,

(40) e0
j = ι0(e

n+1
0,j ) = edi

0,i
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• for 1 ≤ i ≤ dn
2 e,

(41)

ei
0 = ιi(e

6
0,1) = edi

0,i

ei
1 = ιi(e

6
4,5) = edi

ci,ci+1

ei
2 = ιi(e

7
4,5) = e

di+1

ci,ci+1

ei
3 = ιi(e

7
2,3) = e

di+1

n+1,n+2

• for dn
2 e < i ≤ n,

(42)

ei
0 = ιi(e

8
0,1) = edi

0,i

ei
1 = ιi(e

8
2,3) = edi

ci,ci+1

ei
2 = ιi(e

9
2,3) = e

di+1

ci,ci+1

ei
3 = ιi(e

9
4,6) = e

di+1

n+1,n+2

ei
4 = ιi(e

10
4,6) = e

di+2

n+1,ci+2

ei
5 = ιi(e

10
4,7) = e

di+2

n+2,ci+2

ei
6 = ιi(e

B
4,7) = (eB

4,7, i)

ei
7 = ιi(e

10
6,7) = e

di+2

n+1,n+2

Intuitively, for 1 ≤ i ≤ n, the subscript on ei
j increases as one moves farther away

from the image of S∗
n+1 in X∗

n along the image of (P n
i )∗. See for example Figure

15. How these labels appear on the images of the (P n
i )∗ in X∗

n for general n is
indicated in Figures 12 and 13.

One can check (from the definition of the Xn) that the edges we have just labeled
ei
j are precisely those edges in X∗

n which are parallel to some other edge in X∗
n. As

such, the following convention labels precisely those edges in X∗
n which we have not

just labeled ei
j : if i and j are nodes in X∗

n with a unique edge between them, this
edge will be denoted by ei,j . In summary, then, the edge set of X∗

n is partitioned
as {ei

j} ∪ {ei,j}, where {ei
j} consists precisely of those edges which are parallel to

some other edge, and {ei,j} consists precisely of those edges which are not parallel
to any other edge.

4.3. The Quadrilateral Rule on X∗
n. It will be helpful below to have an explicit

description of what it means for a Kirchhoff matrix for X∗
n or a conductivity on X∗

n

to satisfy the quadrilateral rule, in terms of the notation adopted in the previous
subsection. For Kirchhoff matrices, we simply go back to the definition of quadri-
lateral rule (and tacitly use the symmetry of Kirchhoff matrices) to conclude that
a Kirchhoff matrix K for X∗

n satisfies the quadrilateral rule iff the following hold:

• for all distinct 1 ≤ i, j, k, l ≤ n, we have

(43) Ki,jKk,l = Ki,kKj,l;

• for all 1 ≤ i ≤ dn
2 e, we have

(44) K0,ci
Ki,ci+1 = K0,ci+1Ki,ci

and

(45) Kn+1,ci
Kn+2,ci+1 = Kn+2,ci

Kn+1,ci+1;

• for all dn
2
e < i ≤ n, we have

(46) K0,ci
Ki,ci+1 = K0,ci+1Ki,ci
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and

(47) Kci,ci+2Kn+1,ci+1 = Kn+1,ci
Kci+1,ci+2.

Similarly, we obtain from the definition that a conductivity γ∗ on X∗
n satisfies the

quadrilateral rule iff the following hold:

• for all distinct 1 ≤ i, j, k, l ≤ n, we have

(48) γ∗(ei,j)γ
∗(ek,l) = γ∗(ei,k)γ∗(ej,l);

• for all distinct 1 ≤ j, k, l ≤ n, we have

(49) γ∗(e0
j )γ

∗(ek,l) = γ∗(e0
k)γ∗(ej,l);

• for all 1 ≤ i ≤ dn
2 e, we have

(50) γ∗(ei
0)γ

∗(ei
1) = γ∗(e0,ci

)γ∗(ei,ci+1) = γ∗(e0,ci+1)γ
∗(ei,ci

)

and

(51) γ∗(ei
2)γ

∗(ei
3) = γ∗(en+1,ci

)γ∗(en+2,ci+1) = γ∗(en+2,ci
)γ∗(en+1,ci+1);

• for all dn
2
e < i ≤ n, we have

(52) γ∗(ei
0)γ

∗(ei
1) = γ∗(e0,ci

)γ∗(ei,ci+1) = γ∗(e0,ci+1)γ
∗(ei,ci

),

(53) γ∗(ei
2)γ

∗(ei
3) = γ∗(eci,ci+2)γ

∗(en+1,ci+1) = γ∗(en+1,ci
)γ∗(eci+1,ci+2),

and

(54) γ∗(ei
4)γ

∗(en+2,ci+3) = γ∗(ei
5)γ

∗(en+1,ci+3) = γ∗(ei
7)γ

∗(eci+2,ci+3).

5. A Correspondence for Conductivities Satisfying the

Quadrilateral Rule on X∗
n

Our goal in this section is to establish an important correspondence for conduc-
tivities satisfying the quadrilateral rule on X∗

n. Along the way we introduce some
notation which will also be of use in later sections. Let n be fixed but arbitrary for
the remainder of this section.

5.1. The Functions ϕ. We make the following (soon-to-be-motivated) definitions,
where K is a Kirchhoff matrix for X∗

n satisfying the quadrilateral rule and x is a



DISCRETE UNSOLVABILITY FOR THE INVERSE PROBLEM FOR ELECTRICAL NETWORKS13

real parameter:

ϕ(K; x; 0; 1) = x(55)

4ϕ(K; x; 0; j) =
ϕ(K; x; 0; 1)Kj,k

K1,k

1 < j, k ≤ n, k 6= j(56)

ϕ(K; x; i; 0) = K0,i − ϕ(K; x; 0; i) 1 ≤ i ≤ n(57)

ϕ(K; x; i; 1) =
K0,ci

Ki,ci+1

ϕ(K; x; i; 0)
1 ≤ i ≤ n(58)

ϕ(K; x; i; 2) = Kci,ci+1 − ϕ(K; x; i; 1) 1 ≤ i ≤ n(59)

ϕ(K; x; i; 3) =
Kn+1,ci

Kn+2,ci+1

ϕ(K; x; i; 2)
1 ≤ i ≤ d

n

2
e(60)

ϕ(K; x; i; 3) =
Kci,ci+2Kn+2,ci+1

ϕ(K; x; i; 2)
d
n

2
e < i ≤ n(61)

ϕ(K; x; i; 4) = Kn+1,ci+2 − ϕ(K; x; i; 3) d
n

2
e < i ≤ n(62)

ϕ(K; x; i; 5) =
ϕ(K; x; i; 4)Kn+2,ci+3

Kn+1,ci+3
d
n

2
e < i ≤ n(63)

ϕ(K; x; i; 6) = Kn+2ci+2 − ϕ(K; x; i; 5) d
n

2
e < i ≤ n(64)

ϕ(K; x; i; 7) =
ϕ(K; x; i; 4)Kn+2,ci+3

Kci+2,ci+3
d
n

2
e < i ≤ n(65)

We have the following trivial but fundamental result.

Lemma 5.1. Given K, i, and j, the equations (55)-(65) define ϕ(K; x; i; j) as
a linear fractional transformation of x (with real coefficients), and the sign of
∂xϕ(K; x; i; j) (where it exists) is independent of K.

Proof. As the reader may readily check,

(66) the entries in K occurring on the right hand sides of (55)-(65) are positive.

Observe that the lemma holds trivially for ϕ(K; x; 0; 1) = x. By (66) and (56),
it then holds for all ϕ(K; x; 0; j). By (57), it then holds for all ϕ(K; x; i; 0). By
(66) and (58), it then holds for all ϕ(K; x; i; 1). In a similarly trivial manner, one
proves the lemma. �

For concise reference, we note explicitly that
(67)

ϕ(K; x; 0; j), ϕ(K; x; i; 1), ϕ(K; x; i; 3), and ϕ(K; x; i; 6) have positive x partial,

and
(68)
ϕ(K; x; i; 0), ϕ(K; x; i; 2), ϕ(K; x; i; 4), ϕ(K; x; i; 5), and ϕ(K; x; i; 7) have negative x partial.

We will need some information about which entries in K a given ϕ(K; x; i; j)
actually depends on. To this end, we make the following observations:

• for i = 0, the functions ϕ(K; x; i; j) depend only on Ka,b where 1 ≤ a, b ≤ n,

4This is meant to define ϕ(K; x; 0; j) by making an arbitrary choice of k such that 1 < k ≤ n and

k 6= j. By the definition of G, some such k exists, and as the reader may check, the quadrilateral

rule (43) for K implies that any two choices of k give the same result.
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• for 1 ≤ i ≤ dn
2 e, the functions ϕ(K; x; i; j) depend only on Ka,b where

either 1 ≤ a, b ≤ n or at least one of a and b lies in {ci, ci + 1},
• for dn

2 e < i ≤ n, the functions ϕ(K; x; i; j) depend only on Ka,b where
either 1 ≤ a, b ≤ n or at least one of a and b lies in {ci, ci +1, ci +2, ci +3}.

These facts of course follow immediately from the definitions (55)-(65). Since Kirch-
hoff matrices are symmetric and have row sum zero, we obtain the following corol-
lary.

Lemma 5.2. Suppose K and K′ are Kirchhoff matrices for X∗
n which satisfy the

quadrilateral rule.

(1) If, for some fixed 1 ≤ i ≤ dn
2 e, K and K′ agree at all indices (a, b) above the

diagonal except possibly those where both a and b lie in {n+1, n+2, ci, ci+1},
then for k 6= i we have ϕ(K; x; k; j) = ϕ(K′; x; k; j).

(2) If, for some fixed dn
2
e < i ≤ n, K and K′ agree at all indices (a, b) above the

diagonal except possibly those where both a and b lie in {n+1, n+2, ci, ci +
1, ci + 2, ci + 3}, then for k 6= i we have ϕ(K; x; k; j) = ϕ(K′; x; k; j).

This will be of considerable use in Section 6.
Before moving on, we make a few more definitions and observations. We set

ji = 3 if 1 ≤ i ≤ dn
2 e and ji = 7 if dn

2 e < i ≤ n (i.e., ji is the largest value of j for
which ϕ(K; x; i; j) is defined). We also set

(69) Σ(K; x) =

n
∑

i=1

ϕ(K; x; i; ji),

and

(70) χ(K) = {x : ϕ(K; x; i; j) > 0 for all i and j}.

As the ϕ are linear fractional transformations of x by Lemma 5.1, we have that

(71) χ(K) is open.

Note also that for given i and j, the function ϕ(K; x; i; j) is defined iff ei
j is defined

(cf. subsection 4.2).

5.2. Correspondence. In this subsection, we establish the following result, and
note an important corollary.

Theorem 5.3. Fix a Kirchhoff matrix K for X∗
n which satisfies the quadrilateral

rule.

(1) If γ∗ is a conductivity on X∗
n satisfying the quadrilateral rule with Kγ∗ =

K, then γ∗(e0
1) ∈ χ(K) and Σ(K; γ∗(e0

1)) = Kn+1,n+2. Additionally, γ∗

satisfies γ∗(ei
j) = ϕ(K; γ∗(e0

1); i; j) and γ∗(ei,j) = Ki,j for all i, j, so γ∗ is

uniquely determined by its value on e0
1.

(2) Conversely, if a ∈ χ(K) is given and Σ(K; a) = Kn+1,n+2, then there is
a unique conductivity γ∗ on X∗

n which satisfies the quadrilateral rule, has
Kγ∗ = K, and satisfies γ∗(e0

1) = a.

Proof. We first show (1). Given γ∗ satisfying the hypotheses in (1), we claim that

(72) γ∗(ei
j) = ϕ(K; γ∗(e0

1); i; j) for all i and j.

To begin with, for i = 0, j = 1, our claim in (72) is just the definition (55):

(73) γ∗(e0
1) = ϕ(K; γ∗(e0

1); 0; 1).
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For i = 0 and 1 < j ≤ n, note that by the quadrilateral rule (49) for γ∗ we have

(74) γ∗(e0
j )γ∗(e1,k) = γ∗(e0

1)γ
∗(ej,k),

where k is distinct from 0, 1, j but is otherwise arbitrary, so that by (73), we have

(75) γ∗(e0
j ) =

ϕ(K; γ∗(e0
1); 0; 1)γ∗(ej,k)

γ∗(e1,k)
.

Since Kγ∗ = K and ej,k is the unique edge in X∗
n joining nodes j and k, we have

γ∗(ej,k) = Kj,k. Similarly, γ∗(e1,k) = K1,k. Thus, (75) may be rewritten as

(76) γ∗(e0
j ) =

ϕ(K; γ∗(e0
1); 0; 1)Kj,k

K1,k

.

By (56), this says exactly that

(77) γ∗(e0
j ) = ϕ(K; γ∗(e0

1); 0; j).

Next, since Kγ∗ = K, we have γ∗(e0
i ) + γ∗(ei

0) = K0,i for each 1 ≤ i ≤ n, as ei
0

and ei
0 are precisely the edges in X∗

n between nodes 0 and i. In other words,

γ∗(ei
0) = K0,i − γ∗(e0

i )(78)

= K0,i − ϕ(K; γ∗(e0
1); 0; i) by (77)(79)

= ϕ(K; γ∗(e0
1); i; 0) by (57),(80)

which is (72) for j = 0 and 1 ≤ i ≤ n.
By the quadrilateral rule (50) for γ∗, for each 1 ≤ i ≤ n we have

(81) γ∗(ei
0)γ

∗(ei
1) = γ∗(e0,ci

)γ∗(ei,ci+1).

Since Kγ∗ = K and e0,ci
is the unique edge in X∗

n between nodes 0 and ci, we have
γ∗(e0,ci

) = K0,ci
. Similarly, γ∗(ei,ci+1) = Ki,ci+1. Therefore, (81) implies

(82) γ∗(ei
1) =

K0,ci
Ki,ci+1

γ∗(ei
0)

,

so by (80) and (58), we have

(83) γ∗(ei
1) =

K0,ci
Ki,ci+1

ϕ(K; γ∗(e0
1); i; 0)

= ϕ(K; γ∗(e0
1); i; 1),

which is (72) for j = 1 and 1 ≤ i ≤ n.
In an entirely similar manner, relying on the facts that Kγ∗ = K and γ∗ satisfies

the quadrilateral rule, one can easily show that indeed γ∗(ei
j) = ϕ(K; γ∗(e0

1); i; j)
for all i and j. In particular, one has

(84) γ∗(ei
ji

) = ϕ(K; γ∗(e0
1); i; ji)

for each i. Since Kγ∗ = K, one also has

(85)

n
∑

i=1

γ∗(ei
ji

) = Kn+1,n+2,

as the edges between nodes n +1 and n +2 in X∗
n are precisely the ei

ji
. Combining

(69), (84), and (85), we have

(86) Σ(K; γ∗(e0
1)) = Kn+1,n+2.

By (72) and the definition of conductivity, ϕ(K; γ∗(e0
1); i; j) is positive for each i

and j, i.e., γ∗(e0
1) ∈ χ(K). That γ∗(ei,j) = Ki,j follows immediately from the
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hypothesis Kγ∗ = K and the definition of the ei,j. This completes the proof of
item (1).

We now prove (2). Suppose a ∈ χ(K) is such that ϕ(K; a; i; j) > 0 for all i, j and
Σ(K; a) = Kn+1,n+2. We wish to show that there is a unique conductivity γ∗ on X∗

n

which satisfies the quadrilateral rule, has Kγ∗ = K, and has γ∗(ei
j) = ϕ(K; a; i; j)

for all i and j. By (1), the only possibility is the conductivity γ∗ given by

(87) γ∗(ei,j) = Ki,j

and

(88) γ∗(ei
j) = ϕ(K; a; i; j),

so we need only check that this γ∗ satisfies the quadrilateral rule and has Kirchhoff
matrix K.

We first show that Kγ∗ = K. Since both Kγ∗ and K are Kirchhoff matrices for
X∗

n, any entry which is zero in one matrix is also zero in the other. Also, being
Kirchhoff matrices, both Kγ∗ and K have row sum zero, and are symmetric. Thus,
in order to show that Kγ∗ = K, it suffices to assume that i < j are nodes in X∗

n

with at least one edge between them and then show that (Kγ∗)i,j = Ki,j.
Supposing such i and j are given, if it happens that there is a unique edge

between i and j, then this edge is precisely ei,j, by definition. By (87) and the
definition of Kγ∗ , we immediately obtain (Kγ∗)i,j = Ki,j. If instead there are at
least two edges between i and j, then by the definition of X∗

n we are in (precisely)
one of the following cases:

(1) i = 0 and 1 ≤ j ≤ n
(2) i = ck and j = ck + 1 for some 1 ≤ k ≤ n
(3) i = n + 1 and j = ck + 2 for some dn

2 e < k ≤ n
(4) i = n + 2 and j = ck + 2 for some dn

2 e < k ≤ n
(5) i = n + 1 and j = n + 2

We proceed to handle each case (though everything follows easily from (88), the
definition of the ϕ, and, for case (5), the hypothesis that Σ(K; a) = Kn+1,n+2).

Suppose that we are in case (1). The edges between nodes i and j in X∗
n are

precisely e0
j and ej

0. The values of γ∗ on these edges are given by (88):

(89) γ∗(e0
j ) = ϕ(K; a; 0; j)

and

(90) γ∗(ej
0) = ϕ(K; a; j; 0).

By the definition (57) and the definition of Kγ∗ , we then have

(91) (Kγ∗)i,j = γ∗(e0
j )+γ∗(ej

0) = ϕ(K; a; 0; j)+K0,j−ϕ(K; a; 0; j) = K0,j = Ki,j,

as desired.
Suppose now we are in case (2). The edges between nodes i and j in X∗

n are
precisely ek

1 and ek
2 . The values of γ∗ on these edges are given by (88):

(92) γ∗(ek
1) = ϕ(K; a; k; 1)

and

(93) γ∗(ek
2) = ϕ(K; a; k; 2).
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By the definition (59) and the definition of Kγ∗ , we then have
(94)

(Kγ∗)i,j = γ∗(ek
1)+γ∗(ek

2) = ϕ(K; a; k; 1)+Kck,ck+1−ϕ(K; a; k; 1) = Kck ,ck+1 = Ki,j,

which is what we were trying to show.
The reasoning in case (3) is the same as that in each of the above cases, ex-

cept that the relevant edges are now ek
3 and ek

4 , the relevant values of ϕ are now
ϕ(K; a; k; 3) and ϕ(K; a; k; 4), and the relevant definition of ϕ is now (62).

The reasoning in case (4) is the same as that in each of the above cases, ex-
cept that the relevant edges are now ek

5 and ek
6 , the relevant values of ϕ are now

ϕ(K; a; k; 5) and ϕ(K; a; k; 6), and the relevant definition of ϕ is now (64).
The reasoning in case (5) is as follows. The edges between nodes i and j in X∗

n

are precisely the ek
jk

. For each k, the value of γ∗ on ek
jk

is given by (88):

(95) γ∗(ek
jk

) = ϕ(K; a; k; jk).

By the definition of Kγ∗ , the definition of Σ(K; a), and the hypothesis that Σ(K; a) =
Kn+1,n+2, we then have

(96) (Kγ∗)i,j =

n
∑

k=1

γ∗(ek
jk

) =

n
∑

k=1

ϕ(K; a; k; jk) = Σ(K; a) = Kn+1,n+2 = Ki,j.

Having handled all cases, we conclude that Kγ∗ = K.
It remains to show that γ∗ satisfies the quadrilateral rule. All this involves is

checking that the quadrilateral rule conditions (43)-(47) for K together with the
definition of γ∗ in terms of K and the functions ϕ imply the quadrilateral rule
conditions (48)-(54) for γ∗.

First of all, (87) and (43) immediately imply (48).
Next, let distinct 1 ≤ j, k, l ≤ n be given. By (87), (88), and (56) we have

(97) γ∗(e0
j )γ

∗(ek,l) =
ϕ(K; a; 0; 1)Kj,lKk,l

K1,l

and

(98) γ∗(e0
k)γ∗(ej,l) =

ϕ(K; a; 0; 1)Kk,lKj,l

K1,l

,

which immediately yields (49).
Next, we check (50). Given 1 ≤ i ≤ dn

2
e, we have

γ∗(ei
0)γ

∗(ei
1) = ϕ(K; a; i; 0)ϕ(K; a; i; 1) by (88)(99)

= ϕ(K; a; i; 0)
K0,ci

Ki,ci+1

ϕ(K; a; i; 0)
by (58)(100)

= K0,ci
Ki,ci+1.(101)

Now by (87) and (44) we have

(102) γ∗(e0,ci
)γ∗(ei,ci+1) = K0,ci

Ki,ci+1 = K0,ci+1Ki,ci
= γ∗(e0,ci+1)γ

∗(ei,ci
)

which together with (101) gives (50).
The verification of (51) goes just like that of (50) and may be carried out by the

reader. The same is true of (52) and (53).
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It remains to check (54). Let dn
2 e < i ≤ n be given. We have

γ∗(ei
5)γ

∗(en+1,ci+3) = ϕ(K; a; i; 5)Kn+1,ci+3 by (87),(88)(103)

=
ϕ(K; a; i; 4)Kn+2,ci+3

Kn+1,ci+3
Kn+1,ci+3 by (63)(104)

= ϕ(K; a; i; 4)Kn+2,ci+3(105)

= γ∗(ei
4)γ

∗(en+2,ci+3) by (87), (88).(106)

Similarly,

γ∗(ei
7)γ

∗(eci+2,ci+3) = ϕ(K; a; i; 7)Kci+2,ci+3 by (87), (88)(107)

=
ϕ(K; a; i; 4)Kn+2,ci+3

Kci+2,ci+3
Kci+2,ci+3 by (65)(108)

= ϕ(K; a; i; 4)Kn+2,ci+3(109)

= γ∗(ei
4)γ

∗(en+2,ci+3) by (87),(88),(110)

which together with (106), gives (54), and completes the argument that γ∗ satisfies
the quadrilateral rule. We have thus established (2), and completed the proof of
the theorem. �

The following corollary suggests how we will verify that Xn is n-to-1.

Corollary 5.4. If K is a Kirchhoff matrix for X∗
n which satisfies the quadrilateral

rule, then the number of conductivities on Xn with response matrix K is equal to
the number of points a ∈ χ(K) with Σ(K; a) = Kn+1,n+2.

Proof. Combine Theorem 5.3 and Corollary 3.3. �

6. Main Lemmas

Corollary 5.4 indicates that it will be helpful to have good simultaneous control
over χ(K) and Σ(K; x). To control Σ(K; x), it is obviously enough to control each
ϕ(K; x; i; ji) individually. This we do, while maintaining control of χ(K), by way
of the following results.

Lemma 6.1. Given Xn, a Kirchhoff matrix K for X∗
n which satisfies the quadri-

lateral rule, [a, b] ⊆ χ(K), ε > 0, 1 ≤ i ≤ dn
2 e, and a < y0 < x0 < b, there exists a

Kirchhoff matrix K′ for X∗
n which satisfies the quadrilateral rule, such that

(1) ϕ(K′; x; k; j) = ϕ(K; x; k; j) if k 6= i or if k = i and j = 0, 1,
(2) χ(K′) ⊇ [a, x0),
(3) supx∈[a,y0] |∂xϕ(K′; x; i; ji)| ≤ ε,

(4) ϕ(K′; x; i; ji) is singular at x = x0.

Lemma 6.2. Given Xn, a Kirchhoff matrix K for X∗
n which satisfies the quadri-

lateral rule, [a, b] ⊆ χ(K), C, ε > 0, dn
2
e < i ≤ n, and a < z0 < x0 < b, there exist

a Kirchhoff matrix K′ for X∗
n which satisfies the quadrilateral rule and a point

y0 ∈ (z0, x0) such that

(1) ϕ(K′; x; k; j) = ϕ(K; x; k; j) if k 6= i or if k = i and j = 0, 1,
(2) χ(K′) ⊇ [a, y0),
(3) supx∈[a,z0] |∂xϕ(K′; x; i; ji)| ≤ ε,

(4) ϕ(K′; z0; i; ji) − ϕ(K′; y0; i; ji) ≥ C
(5) ϕ(K′; x; i; ji) is singular at x = x0.
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The ideas behind the two proofs are similar; as the proof of Lemma 6.1 is a bit
simpler, we handle it first.

Proof of Lemma 6.1. Throughout this proof, it may help to keep Figure 12 in mind.
Let notation be as in the statement of the lemma.

Define K′ to be the unique Kirchhoff matrix for X∗
n which agrees with K above

the diagonal except that

(111) K′
ci,ci+1 = ϕ(K; x0; i; 1)

and
(112)

K′
n+1,ci

= K′
n+2,ci+1 = K′

n+2,ci
= K′

n+2,ci+1 =

√

ε(ϕ(K; x0; i; 1)− ϕ(K; y0; i; 1))2

∂xϕ(K; y0; i; 1)
.

Note first that if such K′ exists, it is clearly unique, as a Kirchhoff matrix is
symmetric and has row sum zero (and thus is determined by its superdiagonal). To
see that K′ is well-defined, we need only show that the right hand sides of (111)
and (112) are positive (as X∗

n does indeed have edges between each pair of nodes
i, j such that K′

i,j is being defined in either (111) or (112)). For (111), this is
immediate, as x0 ∈ χ(K). For (112), this follows by (67), as y0 ∈ χ(K).

Note that K′ satisfies the quadrilateral rule: (43)-(44) and (46)-(47) trivially
hold for K′ as they hold for K and K′ agrees with K at all pairs of indices figuring
in these equations; (45) holds for K′ by (112).

We claim that

(113) ϕ(K′; x; k; j) = ϕ(K; x; k; j) if k 6= i or if k = i and j = 0, 1.

For k 6= i, this is an immediate consequence of Lemma 5.2. For k = i and j = 0, 1,
this follows from the definition of K′ and the definitions of ϕ in (57) and (58).
Thus, we have item (1) in the statement of Lemma 6.1.

As [a, x0) ⊆ χ(K), it follows immediately from (113) that

(114) ϕ(K; x; k; j) is positive on [a, x0) if k 6= i or if k = i and j = 0, 1.

Thus, to establish item (2), it suffices to show that ϕ(K′; x; i; 2) and ϕ(K′; x; i; 3)
are positive on [a, x0). Note that we have

(115) ϕ(K′; x; i; 2) = K′
ci,ci+1 − ϕ(K′; x; i; 1) = ϕ(K; x0; i; 1)− ϕ(K; x; i; 1)

where we have used (59), (111), and (113). Since [a, x0] ⊆ χ(K) and ϕ(K; x; i; 1)
has positive x derivative by (67), it follows from (115) that

(116) ϕ(K′; x; i; 2) is zero at x = x0 and is positive on [a, x0).

By (60), we have

(117) ϕ(K′; x; i; 3) =
K′

n+1,ci
K′

n+2,ci+1

ϕ(K′; x; i; 2)
.

In other words, ϕ(K′; x; i; 3) is a positive constant divided by ϕ(K′; x; i; 2). It then
follows immediately from (116) that

(118) ϕ(K′; x; i; 3) is positive on [a, x0) and is singular at x0.

This completes the argument for item (2), and also establishes item (4).
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It remains to show item (3). We have

ϕ(K′; x; i; 3) =
K′

n+1,ci
K′

n+2,ci+1

ϕ(K′; x; i; 2)
by (59)

=
K′

n+1,ci
K′

n+2,ci+1

K′
ci,ci+1 − ϕ(K′; x; i; 1)

by (115)

=
K′

n+1,ci
K′

n+2,ci+1

K′
ci,ci+1 − ϕ(K;x; i; 1)

by (113)

=
ε

∂xϕ(K; y0; i; 1)
·
(ϕ(K; x0; i; 1) − ϕ(K; y0; i; 1))2

ϕ(K; x0; i; 1) − ϕ(K; x; i; 1)
by (111), (112).

As y0 ∈ χ(K) and x0 6= y0, the previous equation and the Chain rule yield

(119) ∂xϕ(K′; y0; i; 3) = ε ·
∂xϕ(K; y0; i; 1)

∂xϕ(K; y0; i; 1)
·
(ϕ(K; x0; i; 1) − ϕ(K; y0; i; 1))2

(ϕ(K; x0; i; 1) − ϕ(K; y0; i; 1))2
= ε.

Since ϕ(K′; x; i; 3) is singular at x0 by (118), its x partial is just a constant mul-
tiple of (x − x0)

−2. Thus, since a < y0 < x0 and we have just shown that
|∂xϕ(K′; y0; i; 3)| ≤ ε, it follows that supx∈[a,y0 ] |∂xϕ(K′; y0; i; 3)| ≤ ε, which is

item (3). �

Proof of Lemma 6.2. Figure 13 is relevant here. In this proof, it will be convenient
to get from K to K′ via several intermediate Kirchhoff matrices (each of which will
satisfy the quadrilateral rule), so we adopt the notation K1 = K. In general, Ki+1

will be obtained from Ki by modification of a few entries.
First, we define K2 to be the unique Kirchhoff matrix for X∗

n which agrees with
K1 above the diagonal except that

(120) K2
ci,ci+1 = ϕ(K1; x0; i; 1).

Since x0 ∈ χ(K1), the right hand side of (120) is positive, and since X∗
n has edges

between nodes ci and ci + 1, the Kirchhoff matrix K2 is indeed well-defined. Since
K1 satisfies the quadrilateral rule and K2 agrees with K1 on all relevant pairs of
vertices (cf. (43)-(47)), K2 also satisfies the quadrilateral rule.

We claim that

(121) ϕ(K2; x; k; j) = ϕ(K1; x; k; j) if k 6= i or if k = i and j < 2.

For k 6= i, this is Lemma 5.2, and for k = i and j < 2 this follows from inspection
of the definition of K2 and of ϕ in (57) and (58).

We have

ϕ(K2; x; i; 2) = K2
ci,ci+1 − ϕ(K2; x; i; 1) by (59)(122)

= ϕ(K1; x0; i; 1)− ϕ(K2; x; i; 1) by (120)(123)

= ϕ(K1; x0; i; 1)− ϕ(K1; x; i; 1) by (121).(124)

In particular, ϕ(K2; x0; i; 2) = 0, by (124). By (61), it follows that ϕ(K2; x; i; 3) is
singular at x0. By (62), then,

(125) ϕ(K2; x; i; 4) is singular at x0.

Note that since [a, x0] ⊆ χ(K1), the function ϕ(K1; x; i; 1) is increasing on [a, x0]
by (67). Thus, by (124), the function ϕ(K2; x; i; 2) is positive on [a, x0). By (61),
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it follows that ϕ(K2; x; i; 3) is also positive on [a, x0). Thus, by (121) and the fact
that [a, x0) ⊆ χ(K1), we have that

(126) ϕ(K2; x; k; j) is positive on [a, x0) if k 6= i or if k = i and j < 4.

Next, we let K3 be the unique Kirchhoff matrix for X∗
n which agrees with K2

above the diagonal except that

(127) K3
ci+2,ci+3 = ε−1|∂xϕ(K2; z0; i; 4)|K2

n+2,ci+2.

One checks as usual that K3 is well-defined. It also satisfies the quadrilateral rule,
as K2 does. Note that

(128) K3
n+2,ci+3 = K2

n+2,ci+3,

which will be used below.
We claim that

(129) ϕ(K3; x; k; j) = ϕ(K2; x; k; j) if k 6= i or if k = i and j 6= 7.

For k 6= i, this is Lemma 5.2. For k = i and j < 7 this follows from inspection of
the definition of K3 and the relevant definitions of the ϕ. In particular, by (126),
we have that

(130) ϕ(K3; x; k; j) is positive on [a, x0) if k 6= i or if k = i and j < 4.

Note that

ϕ(K3 ; x; i; 7) =
K3

n+2,ci+3

K3
ci+2,ci+3

ϕ(K3; x; i; 4) by (65)(131)

=
K2

n+2,ci+3

K3
ci+2,ci+3

ϕ(K3; x; i; 4) by (128)(132)

=
K2

n+2,ci+3

K3
ci+2,ci+3

ϕ(K2; x; i; 4) by (129)(133)

= ε
ϕ(K2; x; i; 4)

|∂xϕ(K2 ; z0; i; 4)|
by (127).(134)

By (125) and (134), we have that

(135) ϕ(K3; x; i; 7) is singular at x0.

In particular, ϕ(K3; x; i; 7) is differentiable (with respect to x) at z0, and by (134)
we have

(136) ∂xϕ(K3; z0; i; 7) = ε
∂xϕ(K2; z0; i; 4)

|∂xϕ(K2; z0; i; 4)|
= −ε,

as ϕ(K2 ; x; i; 4) has negative x derivative, by (68). Since ϕ(K3; x; i; 7) is singular
at x0 by (135), we know that ∂xϕ(K3; x; i; 7) is a constant multiple of (x − x0)

−2,
so since a < z0 < x0 by hypothesis and |∂xϕ(K3; z0; i; 7)| ≤ ε by (136) it follows
immediately that

(137) sup
x∈[a,z0]

|∂xϕ(K3; x; i; 7)| ≤ ε.

By (135) and (68), there is a point y0 ∈ (z0, x0) such that

(138) ϕ(K3; z0; i; 7) − ϕ(K3; y0; i; 7) ≥ C.
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Now, we define K4 to be the unique Kirchhoff matrix for X∗
n which agrees with

K3 above the diagonal except that

(139) K4
n+1,ci+2 = ϕ(K3; y0; i; 3)

and

(140) K4
n+2,ci+2 = 1 +

K3
n+2,ci+3

K3
n+1,ci+3

(ϕ(K3; y0; i; 3) − ϕ(K3; a; i; 3)).

(The additive 1 on the right hand side of (140) could be replaced by any positive
number.) Since [a, y0] ⊆ [a, x0) by the definition of y0, it follows from (130) that

(141) ϕ(K3; x; i; 3) positive on [a, y0].

Thus, the right hand side of (139) is positive. By (141) and (67),

(142) ϕ(K3; x; i; 3) is increasing on [a, y0].

Thus, the right hand side of (140) is positive. It follows that K4 is well-defined as
a Kirchhoff matrix for X∗

n. As K3 satisfies the quadrilateral rule, so too does K4,
as they agree at all relevant indices. Note that

(143) K4
n+2,ci+3 = K3

n+2,ci+3 and K4
n+1,ci+3 = K3

n+1,ci+3,

which will be used below.
We claim that

(144) ϕ(K4; x; k; j) = ϕ(K3; x; k; j) if k 6= i or if k = i and j < 4.

As usual, this follows from Lemma 5.2 for k 6= i and from inspection of the relevant
definitions for k = i and j < 4. By (121), (129), and (144), we have that

(145) ϕ(K4; x; k; j) = ϕ(K1; x; k; j) if k 6= i or if k = i and j < 2.

We claim that

(146) [a, y0) ⊆ χ(K4).

By (62), (139), and (144), we have

(147) ϕ(K4; x; i; 4) = K4
n+1,ci+2 − ϕ(K4; x; i; 3) = ϕ(K3; y0; i; 3)− ϕ(K3; x; i; 3).

From (142), then, it follows that

(148) ϕ(K4; x; i; 4) is positive on [a, y0).

By (63) and (65), then,

(149) both ϕ(K4; x; i; 5) and ϕ(K4; x; i; 7) are positive on [a, y0).

As for ϕ(K4; x; i; 6), we have by (64) and (140) that

(150) ϕ(K4; x; i; 6) = 1+
K3

n+2,ci+3

K3
n+1,ci+3

(ϕ(K3; y0; i; 3)−ϕ(K3; a; i; 3))−ϕ(K4; x; i; 5).

By (62) and (63), we have

(151) ϕ(K4; x; i; 5) =
K4

n+2,ci+3

K4
n+1,ci+3

(K4
n+1,ci+2 − ϕ(K4; x; i; 3)).

Therefore, by (139), (144), and (143), we have

(152) ϕ(K4; x; i; 5) =
K3

n+2,ci+3

K3
n+1,ci+3

(ϕ(K3 ; y0; i; 3)− ϕ(K3; x; i; 3)),
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so by (150) we have

(153) ϕ(K4; x; i; 6) = 1 +
K3

n+2,ci+3

K3
n+1,ci+3

(ϕ(K3; x; i; 3)− ϕ(K3; a; i; 3)),

so that

(154) ϕ(K4; x; i; 6) is positive on [a, y0),

by (142). Thus, by (130), (144), (148), (149), and (154), we have (146).
Next, we observe that

ϕ(K4; x; i; 7) =
K4

n+2,ci+3

K4
ci+2,ci+3

(K4
n+1,ci+2 − ϕ(K4 ; x; i; 3)) by (62), (65)

=
K3

n+2,ci+3

K3
ci+2,ci+3

(K4
n+1,ci+2 − ϕ(K3 ; x; i; 3)) by (144), (143)

=
K3

n+2,ci+3

K3
ci+2,ci+3

(K4
n+1,ci+2 − ϕ(K3 ; x; i; 3)+ K3

ci+2,n+1 − K3
ci+2,n+1) trivially

=
K3

n+2,ci+3

K3
ci+2,ci+3

(K3
n+1,ci+2 − ϕ(K3 ; x; i; 3))+

K3
n+2,ci+3

K3
ci+2,ci+3

(K4
n+1,ci+2 − K3

n+1,ci+2) trivially

= ϕ(K3; x; i; 7)+
K3

n+2,ci+3

K3
ci+2,ci+3

(K4
n+1,ci+2 − K3

n+1,ci+2) by (62), (65).

In other words, ϕ(K4; x; i; 7) differs from ϕ(K3; x; i; 7) by an additive constant. It
then follows immediately from (135) that ϕ(K4; x; i; 7) is singular at x = x0, from
(138) that ϕ(K4; z0; i; 7)−ϕ(K4; y0; i; 7) ≥ C, and from (137) that supx∈[a,z0 ] |∂xϕ(K4; x; i; 7)| ≤

ε. Thus, by (145) and (146), we may take K′ = K4, and thereby complete the
proof. �

7. The Main Result

We are now in a position to prove that Xn is n-to-1. To simplify notation, we
make the following definition: given a Kirchhoff matrix K for X∗

n which satisfies
the quadrilateral rule, and an integer 1 ≤ k ≤ n, set

(155) σ(K; x; k) =
∑

1≤i≤dk
2
e

ϕ(K; x; i; ji) +
∑

dn
2
e+1≤i≤d n

2
e+b k

2
c

ϕ(K; x; i; ji),

where x is a real parameter. For 1 ≤ k ≤ n, define

(156) lk =

{

k+1
2

k odd

dn
2 e + k

2 k even
,

so that for 1 ≤ k ≤ n,

(157) σ(K; x; k) =
∑

1≤i≤k

ϕ(K; x; li; jli),

and in particular, for 1 ≤ k < n,

(158) σ(K; x; k + 1) = σ(K; x; k) + ϕ(K; x; lk+1, jlk+1
).

The following easy lemma regarding the σ(K; x; k) will simplify matters below.
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Lemma 7.1. Suppose that for some K and k, the function σ(K; x; k) is not con-
stant, and that it assumes some value ck at k distinct points xk

1 , . . . , x
k
k. Then

σ(K; x; k) assumes the value ck at precisely these k points, and ∂xσ(K; xk
i ; k) is

nonzero for each i.

Proof. Since σ(K; x; k) is by definition a sum of k (real) linear fractional transfor-
mations and is by hypothesis not constant, there exist (real) polynomials p and q,
neither of which is zero, with deg q ≤ k, deg p ≤ k, and (p, q) = 1, such that

(159) σ(K; x; k) =
p(x)

q(x)
.

Since σ(K; x; k) is not a constant, the equation

(160)
p(x)

q(x)
= ck

is not satisfied for all x. Hence, the equation

(161) p(x) − ckq(x) = 0

is not satisfied for all x. Hence the function

(162) p(x) − ckq(x)

is a nonzero polynomial (of degree at most k). It therefore has at most k zeroes,
counting multiplicity. Note that by (159), the function in (162) has a zero at xk

i

for all 1 ≤ i ≤ k. It follows that these are precisely the zeroes of this function, and
hence the xk

i are precisely the points where σ(K; x; k) assumes the value ck. Also,
the function in (162) has a simple zero at each of these xk

i . If, for some 1 ≤ i ≤ k,
we had ∂xσ(K; xk

i ; k) = 0, then by (159) and the Chain Rule we would have

(163)
p′(xk

i )q(xk
i ) − p(xk

i )q′(xk
i )

q(xk
i )2

= 0,

i.e., after multiplying both sides by q(xk
i ) and applying (159) and the definition of

xk
i ,

(164) p′(xk
i ) − ckq′(xk

i ) = 0,

which says that the function in (162) has a zero of order at least two at xk
i , which

is a contradiction. We conclude that ∂xσ(K; xk
i ; k) 6= 0 for each 1 ≤ i ≤ k. �

That Xn is n-to-1 is an easy consequence of the following result.

Lemma 7.2. For each 1 ≤ k ≤ n, there exist a Kirchhoff matrix Kk for X∗
n which

satisfies the quadrilateral rule and a positive number ck such that

(1) σ(Kk; x; k) assumes the value ck at precisely k distinct points xk
1 < · · · < xk

k

in χ(Kk),
(2) the xk

i all lie in the same connected component of χ(Kk),
(3) ∂xσ(Kk; xk

1 ; k) > 0.

Proof. We proceed by induction. For k = 1, let K1 be any response matrix for Xn.
By Corollary 3.3 and Theorem 5.3, χ(K1) is nonempty. (Here, we are also using
(11).) Choose any x1

1 ∈ χ(K1), and set c1 = σ(K1; x1
1; 1). Note that σ(K1; x; 1) =

ϕ(K1; x; 1; j1), by definition. Thus, item (1) in the statement of the theorem follows
as ϕ(K1; x; 1; j1) is a linear fractional transformation of x, item (2) is trivially
satisfied, and item (3) follows by (67).
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Suppose inductively that for some 1 ≤ k < n we have produced Kk, ck, and
xk

1 , . . . , x
k
k as in the statement of the theorem. By Lemma 7.1, item (3) in the

statement of the theorem, and elementary calculus, we have sgn ∂xσ(Kk; xk
i ; k) =

(−1)i+1. We may therefore choose intervals xk
i ∈ [ak

i , bk
i ] ⊆ χ(Kk) and a positive

number η such that

(1) [ak
i , bk

i ] ∩ [ak
j , bk

j ] = ∅ if i 6= j,

(2) σ(Kk; bk
i ; k) − σ(Kk; xk

i ; k) = (−1)i+1η,
(3) σ(Kk; xk

i ; k) − σ(Kk; ak
i ; k) = (−1)i+1η.

As χ(Kk) is open and the xk
i all lie in the same component of χ(Kk), there exists

an interval [u, v] ⊆ χ(Kk) which properly contains each [ak
i , bk

i ].
To finish the inductive argument, we consider two cases: k even and k odd.
Suppose that k is even. Apply Lemma 6.1 to Kk with a = u, b = v, ε =
η

2(v−u), i = lk+1, y0 = bk
k and x0 =

bk
k+v

2 , and denote by Kk+1 the resulting Kirchhoff

matrix for X∗
n (which satisfies the quadrilateral rule). By item (1) in the statement

of Lemma 6.1 and (157), we have σ(Kk+1; x; k) = σ(Kk; x; k), and hence by (158),
we have

(165) σ(Kk+1; x; k + 1) = σ(Kk; x; k) + ϕ(Kk+1; x; lk+1; jlk+1
).

Define

(166) ck+1 = ck + ϕ(Kk+1; a; lk+1; jlk+1
).

We claim that σ(Kk+1; x; k + 1) assumes the value ck+1 at precisely k + 1 distinct
points in χ(Kk+1), all of which lie in [a, x0), which is a subinterval of χ(Kk+1) by
item (2) in Lemma 6.2. Note that for x, y ∈ [a, x0), we have

(167) |ϕ(Kk+1; x; lk+1; jlk+1
) − ϕ(Kk+1; y; lk+1; jlk+1

)| ≤
η

2

by item (3) in the statement of Lemma 6.1, and our choice of ε. Thus, by (165),
(167), (166), and the definition of the ak

i and bk
i , for i odd we have

(168) σ(Kk+1; bk
i ; k + 1) − ck+1 ≥

η

2

and

(169) ck+1 − σ(Kk+1; ak
i ; k + 1) ≥

η

2
,

while if i is even we have

(170) σ(Kk+1; bk
i ; k + 1) − ck+1 ≤ −

η

2

and

(171) ck+1 − σ(Kk+1; ak
i ; k + 1) ≤ −

η

2
.

In other words, by the Intermediate Value Theorem, for 1 ≤ i ≤ k there exists
a point xk+1

i ∈ (ak
i , bk

i ) such that σ(Kk+1; xk+1
i ; k + 1) = ck+1. Note that (170)

shows that σ(Kk+1; bk
k; k + 1) < ck+1. On the other hand, by item (4) in Lemma

6.1 and (67), we have ϕ(Kk+1; x; lk+1; jlk+1
) → +∞ as x → x−

0 . Since σ(Kk; x; k)

is continuous on [a, b] ) [a, x0], it follows that σ(Kk+1; x; k+1) → +∞ as x → x−
0 .

Hence, by the Intermediate Value Theorem again, there is a point xk+1
k+1 ∈ (bk

k, x0)

with σ(Kk+1; xk+1
k+1; k + 1) = ck+1.
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We have thus produced k+1 distinct points in the subinterval [a, x0) of χ(Kk+1)
at which σ(Kk+1; x; k + 1) assumes the value ck+1. Observe that σ(Kk+1; x; k + 1)
is not a constant, as, e.g., σ(Kk+1; x; k + 1) is finite on χ(Kk+1) but tends to +∞

as x → x−
0 . Thus, by Lemma 7.1, our choice of Kk+1, ck+1, and xk+1

i satisfy (1)
and (2) in the statement of the lemma. Item (3) is also satisfied, for (168) shows
that σ(Kk+1; ak

1 ; k + 1) < ck+1 while (169) shows that σ(Kk+1 ; bk
1; k + 1) > ck+1,

and since ∂xσ(Kk+1; xk+1
1 ; k + 1) cannot be zero by Lemma 7.1, it follows that it

must be positive. This completes the inductive argument if k is even.
The case k odd is similar (except that it uses Lemma 6.2) and for the time being

is left to the reader. �

Corollary 7.3. Xn is n-to-1.

Proof. Take k = n in Lemma 7.2, so that Σ(Kn; x) assumes some positive value
cn at precisely n points in χ(Kn). Let K be the unique Kirchhoff matrix for X∗

n

which agrees with Kn above the diagonal except that

(172) Kn+1,n+2 = cn.

It is trivial to check that K satisfies the quadrilateral rule as Kn does, and by
Lemma 5.2 we have ϕ(K; x; i; j) = ϕ(Kn ; x; i; j) for all i and j. In particular,
Σ(K; x) = Σ(Kn; x) and χ(K) = χ(Kn), so by Corollary 5.4, we are done. �

A few remarks are in order. First, the proof of Lemma 7.2 (together with that of
Corollary 7.3) contains the algorithm advertised in the abstract for n ≥ 3. Second,
as χ(K) is in fact connected for any Kirchhoff matrix K for X∗

n which satisfies the
quadrilateral rule (although we have not shown this), item (2) in the statement of
Lemma 7.2 is superfluous.

8. An Annoying Extra Case: n = 2
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Figure 2. Another drawing of the graph Θ.

Figure 3. The parallel and series connections, respectively.
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Figure 4. The graph Θ∗.
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Figure 5. The graph A.
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Figure 7. The graph Sn+1.
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Figure 9. The graph B∗.
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Figure 10. For 1 ≤ i ≤ dn
2 e, the image of the inclusion P n

i ↪→
∧n

0 P n
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Figure 11. For dn
2 e < i ≤ n, the image of the inclusion P n

i ↪→
∧n

0 P n
j .
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Figure 12. For 1 ≤ i ≤ dn
2
e, the image of (P n

i )∗ ↪→
∧n

j=0(P
n
j )∗.
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Figure 13. For dn
2 e < i ≤ n, the image of (P n

i )∗ ↪→
∧n

j=0(P
n
j )∗.
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Figure 14. The graph X3.
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Figure 15. The graph X∗
3 , with vertices and certain edges labeled.


