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Abstract

We will introduce spectral graph theory by seeing the value of studying the eigenvalues of various
matrices associated with a graph. Then, we will learn about applications to the study of expanders and
Ramanujan graphs, and more generally, to computer science as a whole.
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1 Spectral graph theory introduction

1.1 Graphs and associated matrices

We will define a graph to be a set of vertices, V , and a set of edges, E, where E is a set containing sets
of exactly two distinct vertices. In this thesis, we will be considering undirected graphs, which is why E is
defined in this way rather than as a subset of V × V . A k-regular graph is a graph such that every vertex
(sometimes called node) has exactly k edges touching it (meaning every vertex has degree k). More formally,
and in the context of undirected graphs, this means that ∀v ∈ V ,

|{{v, u}|u ∈ V }| = k

Definition. (adjacency matrix) The adjacency matrix A associated with a graph G of nodes ordered v1, ..., vn
has entries defined as:

Aij =

{
1 if {vi, vj} ∈ E
0 otherwise

We will also consider the diagonal matrix D, such that Dii =deg(vi). Note that for any k-regular graph
G, DG = kI, where I is the appropriately sized identity matrix.

Definition. (Laplacian matrix) The Laplacian matrix of a graph G is defined as LG := DG − AG. This is
equivalent to:

Lij =


deg(vi) if i = j

− 1 if {vi, vj} ∈ E
0 otherwise

Definition. (normalized Laplacian) Finally, the normalized Laplacian, L, is defined as: L := D−1/2LD−1/2,
which is:

Lij =


1 if i = j

−1√
deg(vi)deg(vj)

if {vi, vj} ∈ E

0 otherwise

Note that we usually only use these definitions for graphs without self-loops, multiple edges, or isolated
vertices (L isn’t defined on graphs with a degree zero vertex). These matrices are useful due to how they act
with respect to their Rayleigh quotient, which we will see in the following sections.

1.2 Eigenvalue invariance under vertex permutation

We are going to concern ourselves with the eigenvalues of these matrices that we just defined. However, it
is apparent in the definition of these matrices that each vertex had to be assigned a number. Thus it is fair
to ask whether renaming the vertices will affect the eigenvalues that we will study. Of course, we will find
exactly what is expected – that these values are intrinsic to the graph and not the choice of vertex naming.
Following is a sketch of how we can know this. Suppose that M is some matrix defined in terms of a graph G
and that a permutation σ ∈ Sn is applied to the vertex names. Define M ′ the same way that M was defined
– just applied to the newly named vertices. Then, Mij = M ′σ(i)σ(j). Let Pσ be the permutation matrix for

σ. Then, PTσ MPσ = M ′. This is because the multiplication where M is on the right will swap the columns
accordingly, and the other multiplication will swap the rows. It is easy to check that for permutation matrices,
PT = P−1, meaning that M and M ′ are similar. Then we only need recall the linear algebra fact that similar
matrices have the same characteristic polynomial and thus the same eigenvalues and multiplicities.

1.3 Using the Rayleigh quotient to relate eigenvalues to graph structure

First, we will prove a theorem, and then see how this theorem relates to what is called the Rayleigh quotient
of a matrix.

3



Theorem 1.1. For all h ∈ R|V |, and if f := D−1/2h:

hTLGh
hTh

=

∑
{i,j}∈E

(f(i)− f(j))
2

∑
v∈V

deg(v)f(v)2
=

∑
{i,j}∈E

(
(D−1/2h)(i)− (D−1/2h)(j)

)2
∑
v∈V

deg(v)(D−1/2h)(v)2

The first step to proving the theorem is the following lemma.

Lemma 1.3.1. For all x ∈ R|V |:
xTLGx =

∑
{i,j}∈E

(x(i)− x(j))
2

Note that for brevity, we are representing the edge {vi, vj} as {i, j}, and x(i) is the ith entry in the
vector x.

Proof. Note that (Lx)i, the ith entry in the vector Lx, equals Lrow i · x, which in turn equals

n∑
j=1

L(i, j)x(j) =

n∑
j=1, j 6=i

L(i, j)x(j) + L(i, i)x(i)

= deg(i)x(i) +

n∑
j=1, j 6=i

L(i, j)x(j) = deg(i)x(i)−
n∑

j:{i,j}∈E

x(j)

Thus,

xTLGx =

n∑
i=1

x(i)

deg(i)x(i)−
∑

j:{i,j}∈E

x(j)

 =

n∑
i=1

[
x(i)2deg(i)

]
−

n∑
i=1

∑
j:{i,j}∈E

x(i)x(j)

Since each edge in the second summation is counted twice, we reach:

n∑
i=1

[
x(i)2deg(i)

]
− 2

∑
{i,j}∈E

x(i)x(j)

Since deg(i) =
∑

j:{i,j}∈E
1, we have:

n∑
i=1

x(i)2
∑

j:{i,j}∈E

1

− 2
∑
{i,j}∈E

x(i)x(j)

=

n∑
i=1

∑
j:{i,j}∈E

x(i)2 − 2
∑
{i,j}∈E

x(i)x(j)

Note that in the double summation, we will run through each edge twice, but only consider one node of the
edge. Instead, we can sum over each edge only once but consider both nodes that form that edge.∑

{i,j}∈E

(
x(i)2 + x(j)2

)
− 2

∑
{i,j}∈E

x(i)x(j)

=
∑
{i,j}∈E

(x(i)− x(j))
2
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Proof. (of Theorem 1.1)

The numerator:
Note that hTLh = hTD−1/2LD−1/2h = (D1/2f)TD−1/2LD−1/2(D1/2f) = fTLf =

∑
{i,j}∈E

(f(i)− f(j))
2
,

where the last step follows due to Lemma 1.3.1

The denominator:
We have hTh = fT (D1/2)TD1/2f = fTDf =

∑
v∈V

deg(v)f(v)2

1.3.1 Motivating the use of the Rayleigh quotient

The Rayleigh quotient of a vector h with respect to a matrix M is hTMh
hTh

. This is a useful tool for considering
eigenvalues of M – note that if h is an eigenvector of M with eigenvalue λ, then the Rayleigh quotient equals
hTλh
hTh

= λ. This is why Theorem 1.1 is important – it relates the Rayleigh quotient (and thus the eigenvalues
of L) to a quotient of sums that are closely related to the edges and vertices in the graph. We can immediately
see that any eigenvalues of L are non-negative, since the Rayleigh quotient is equal to a sum of squares over
a sum of positive values. We will show precisely how the Rayleigh quotient can be used to find eigenvalues.
One should first recall that for symmetric n × n matrices, there exists an orthonormal basis of eigenvectors
ψ0, ..., ψn−1, each with eigenvalue λ0, ..., λn−1 (we order the eigenvalues so that λi ≤ λi+1).

Theorem 1.2. For every symmetric matrix M ,

λ0 = min
h∈Rn

hTMh

hTh
and for k ≥ 1, λk = min

h⊥ψ0,...,ψk−1

hTMh

hTh

Proof. We will closely follow the proof given in Dan Spielman’s spectral graph theory lecture notes [28]. First,
note that

ψTj

(
n−1∑
i=0

(ψTi x)ψi

)
=

n−1∑
i=0

(ψTi x)ψTj ψi = (ψTj x)ψTj ψj = ψTj x

This means that
n−1∑
i=0

(ψTi x)ψi = x. The reason for this is that
n−1∑
i=0

(ψTi x)ψi − x is a vector orthogonal to

every vector in the orthonormal basis, implying that it is the zero vector. Now, let’s minimize the Rayleigh
quotient. Note that scaling h by a constant doesn’t change the quotient value, so we can assume hTh = 1.

hTMh

hTh
=

(
n−1∑
i=0

(ψTi h)ψi

)T
M

n−1∑
j=0

(ψTj h)ψj



=

(
n−1∑
i=0

(ψTi h)ψi

)T n−1∑
j=0

(ψTj h)λjψj


=

(
n−1∑
i=0

(ψTi h)ψTi

)n−1∑
j=0

(ψTj h)λjψj


=

n−1∑
i=0

n−1∑
j=0

(ψTi h)(ψTj h)λjψ
T
i ψj


=

(
n−1∑
i=0

(ψTi h)(ψTi h)λiψ
T
i ψi

)
(ψTi ψj = 0 if i 6= j)

=

(
n−1∑
i=0

(ψTi h)2λi

)
(we are using an orthonormal basis)
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≥ λ0
n−1∑
i=0

(ψTi h)2

Note that doing the same calculation, but neglecting the M term, we see that hTh = 1 =
n−1∑
i=0

(ψTi h)2. So, we

have:
hTMh

hTh
≥ λ0

But note that ψ0
TMψ0

ψ0
Tψ0

= λ0, implying that λ0 = minh∈Rn
hTMh
hTh

.

The above argument needs little modification to prove that λk = minh⊥ψ0,...,ψk−1

hTMh
hTh

. We can skip directly
to the fact that

hTMh

hTh
=

(
n−1∑
i=0

(ψTi h)2λi

)
and then apply the orthogonality condition to get

hTMh

hTh
=

(
n−1∑
i=k

(ψTi h)2λi

)
≥ λk

Since the ψi form an othonormal basis, we have that the minimum is attained by ψk.

We want to apply these findings to L. We start with a simple fact – that every normalized Laplacian
matrix has λ0 = 0.

Corollary 1.3.1. λ0 = 0, where λ0 is the smallest eigenvalue of any normalized Laplacian matrix.

Proof. Notice that in the proof of Theorem 1.2, the inequality

(
n−1∑
i=0

(ψTi h)2λi

)
≥ λ0

n−1∑
i=0

(ψTi h)2 holds as an

equality if and only if h is orthogonal to every eigenvector besides ψ0. Applying this fully to the λk case, we
have that

arg min
h⊥ψ0,...,ψk−1

hTLh

hTh

is a scalar multiple of ψk, and thus an eigenvector. So, only eigenvectors minimize the Rayleigh quotient.
We can use this fact, along with Theorem 1.1 to find an explicit eigenvector that applies to all normalized

Laplacian matrices. If we set h in the statement of Theorem 1.1 to be D1/2
1

||D1/21|| , then we have that f is a

constant function, and thus the Rayleigh quotient is 0. But then since D1/2
1

||D1/21|| is minimizing the Rayleigh

quotient (the quotient is obviously non-negative), we know that D1/2
1

||D1/21|| is an eigenvector of L, with eigenvalue

0.

2 What a graph’s spectrum can tell us

Now we will finally use all this to say something combinatorially related to the graph. We start with a quick
linear-algebraic lemma.

Lemma 2.0.2. For square matrices A and B (note that the zero-blocks are not necessarily square),

det

(
A 0
0 B

)
= (detA)(detB)

Proof. Fix the dimensions of B to be n× n. We induct on r, where the dimensions of A are r × r. The base
case is clear, and we suppose that the result holds for r ≤ n−1. Using Laplace’s formula for the determinant,
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we have (let Mij (resp. Aij) be the minor of the entire block matrix (resp. A) formed by excluding the ith
row and jth column):

det

(
A 0
0 B

)
= a11 detM11 + ...+ a1n detM1n

By the inductive hypothesis, we have

= a11 detA11 detB + ...+ a1n detA1n detB = (detA)(detB)

2.1 Connectivity

Now for our first combinatorial result:

Theorem 2.1. max{k | λk = 0} = K0 ⇐⇒ G has precisely K0 disjoint connected components, where λj is
the j + 1st smallest eigenvalue of the normalized Laplacian matrix.

Proof. We will denote C as the precise number of connected components of G, and show that K0 = C.

Showing that K0 ≥ C: Break G into its connected components, G1, ..., GC . Then, the normalized Laplacian

of G is of the form: LG =


LG1 0 0 0

0 LG2 0 0

0 0
. . . 0

0 0 0 LGC

, since there are no edges between the components. This

means that

det (LG − λI) = det


LG1 − λI 0 0 0

0 LG2
− λI 0 0

0 0
. . . 0

0 0 0 LGC
− λI

 =

C∏
i=1

det (LGi − λI)

where the last equality is due to Lemma 2.0.2 being repeated inductively. Thus, considering the characteristic
polynomial, we see that the eigenvalue 0 occurs in LG with multiplicity equal to the sum of the multiplicities
of the eigenvalue 0 in each of the LGi

. Since Corollary 1.3.1 tells us that each of these pieces has eigenvalue
0 with multiplicity at least 1, we have K0 ≥ C.

Showing that K0 ≤ C: It suffices to show that for a connected graph H, λ1 6= 0. This implies that each of
the LGi

(which are connected) has the multiplicity of eigenvalue 0 equal to at most 1. Then, the multiplicity
of the eigenvalue 0 in LG is at most C. Suppose that H is a connected graph and λ1 = 0. Then, we have
the existence of two orthogonal eigenvectors, ψ0, ψ1 each with eigenvalue 0. Using the Rayleigh quotient, we
have that for k = 0, 1:

0 = ψTk LHψk =
∑
{i,j}∈E

(
(D−1/2ψk)(i)− (D−1/2ψk)(j)

)2
This implies that D−1/2ψk is constant on all the vertices in H. Note that connectivity is crucial here, since
D−1/2ψk is not necessarily constant otherwise. If there existed vertices i and j such that D−1/2ψk(i) 6=
D−1/2ψk(j), then there must exist (due to connectivity) an edge that connects vertices where D−1/2ψk
takes distinct values. (Otherwise, it would be possible to disconnect the graph into two parts such that the
vertices i and j were in different parts.) Then, the Rayleigh quotient could not be zero. So, we know that
D−1/2ψ0 = δD−1/2ψ1 for some constant δ. But this is a contradiction, since this implies that ψ0 = δψ1, and
those eigenvectors are orthogonal.
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2.2 Bipartiteness

We will now prove that all eigenvalues of the normalized Laplacian are at most 2. Eventually, we will see that
this upper bound is attained if and only if G is bipartite.

Corollary 2.2.1. λn−1 ≤ 2, where λn−1 is the largest eigenvalue of a normalized Laplacian matrix.

Proof. First, note that for all real numbers x and y,

0 ≤ (x+ y)2 =⇒ −2xy ≤ x2 + y2 =⇒ (x− y)2 ≤ 2(x2 + y2)

We use this to obtain an upper bound on the Rayleigh quotient numerator:∑
{i,j}∈E

(f(i)− f(j))
2 ≤ 2

∑
{i,j}∈E

f(i)2 + f(j)2 = 2
∑
v∈V

degvf(v)2

Then, by Theorem 1.1, we have hTLh
hTh

≤ 2, which implies that any eigenvector can have eigenvalue at most
2.

Now, we can prove the equivalency between bipartiteness and λn−1 = 2.

Theorem 2.2. G is bipartite ⇐⇒ λn−1 = 2

Proof. ⇒ direction: G is bipartite means that we can split the vertices into subsets A,B ⊂ V such that every
edge starts in A and ends in B. Define

f(v) =

{
1 if v ∈ A
− 1 otherwise

As always, we take h = D1/2f . Then, we have

hTLGh

hTh
=

∑
{i,j}∈E

(f(i)− f(j))
2

∑
v∈V

deg(v)f(v)2
=

∑
{i,j}∈E

4∑
v∈V

deg(v)
=

4|E|
2|E|

= 2

This means that the maximum possible value of the Rayleigh quotient is attained by h. In Corollary 1.3.1,
we demonstrated that only eigenvectors minimize the Rayleigh quotient. The argument to show that only
eigenvectors maximize the Rayleigh quotient is virtually identical. Using that fact, we have that h is an
eigenvector with eigenvalue 2. Therefore, λn−1 = 2.
⇐ direction: We assume that λn−1 = 2 and show that G is bipartite. Note that λn−1 = 2 implies that

(by plugging into Theorem 1) for f := D−1/2ψn−1,∑
{i,j}∈E

(f(i)− f(j))
2

= 2
∑
v∈V

deg(v)f(v)2

= 2
∑
{i,j}∈E

f(i)2 + f(j)2

This implies that

0 =
∑
{i,j}∈E

2f(i)2 + 2f(j)2 −
(
f(i)2 + f(j)2 − 2f(i)f(j)

)
=

∑
{i,j}∈E

(f(i) + f(j))
2

Since all the terms are positive, we can say that every individual term is zero, which means that for all edges
{i, j}, f(i) = −f(j). This in turn means that there are no odd cycles in G. If the vertices v1, v2, ..., v2n+1 form
a cycle, then v1 and v2n+1 are adjacent, meaning that f(v1) = −f(v2n+1). But we also have f(v1) = f(v3) =
... = f(v2n+1). This means that f(v) = 0 for all v, which is a contradiction, since f = 0 =⇒ D1/2f = 0 =⇒
ψn−1 = 0. Of course, ψn−1 is not the zero vector because it is an eigenvector.
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Now that we know that G has no odd cycles, it follows that G is bipartite (in fact, these are equivalent
conditions). One can quickly see the reason for this by considering an algorithm where we determine which
vertex set each vertex should be assigned. Without loss of generality, assume that G is connected and start
from an arbitrary vertex. Move along edges, assigning each vertex an alternating vertex set each time. If the
algorithm succeeds then G is bipartite because we just found the vertex sets. If the algorithm fails, then there
exists adjacent vertices that are also connected by a disjoint path of even length. This means that there is a
odd cycle, contradicting our earlier findings. So, G is bipartite.

2.3 A Cheeger Inequality

We want to show that λ1, the second smallest L eigenvalue, is a measure of how well connected a graph is.
This will be accomplished by defining a constant associated with each graph (one that clearly is related to
how well connected a graph is) and then putting bounds on it in terms of λ1.

Definition. (volume) We define the volume of a subset of the vertices X ⊂ V to be:

vol(X) =
∑
x∈X

deg(x)

Definition. (Cheeger constant on a vertex subset) We also define:

hG(X) =
|E(X,X)|

min{vol(X), vol(X)}

Definition. (Cheeger constant) Finally, the Cheeger constant of a graph is defined as:

hG = min
X

hG(X)

Note that the volume of some subset of the vertices basically represents how important or large that
subset is, taking into account differences in degree (since different vertices may have different degree, we do
not simply take vol(X) = |X|). We can consider the Cheeger constant, hG, as representing how difficult it is
to disconnect G. A small value of hG means that there is a way to divide up the vertices into sets X and X
so that there are few edges leading between the sets, relative to the size of the sets.

Example. If G is already disconnected, then hG is zero (take X to be a connected component). If G is
complete (without self-loops), then consider a partition X,X, such that |X| = n, |X| = m, and without loss
of generality, n ≥ m. Then,

hG(X) =
|E(X,X)|

min{vol(X), vol(X)}
=

mn

vol(X)
=

mn∑
x∈X deg(x)

=
mn

(n+m− 1)
∑
x∈X 1

=
n

n+m− 1
=

n

|V | − 1

Since n ≥ m, we know that n ≥ d|V |/2e. Thus,

hG = min
X

hG(X) =
d|V |/2e
|V | − 1

Let’s find bounds in terms of λ1.

Theorem 2.3. 2hG ≥ λ1, the second smallest L eigenvalue.

Proof. Since the Cheeger constant of G equals hG, there exists a partition of the vertices A,B (B = A) such
that hG(A) = hG. Define a function over the vertices:

f(v) =

{
1/vol(A) if v ∈ A
− 1/vol(B) otherwise

Note that ∑
{i,j}∈E

(f(i)− f(j))
2

∑
v∈V

deg(v)f(v)2
=

∑
{i,j}∈E(A,B)

(
1

vol(A) + 1
vol(B)

)2
1

vol2(A)

∑
v∈A deg(v) + 1

vol2(B)

∑
v∈B deg(v)

9



=

(
1

vol(A) + 1
vol(B)

)2 ∑
{i,j}∈E(A,B)

1

1
vol(A) + 1

vol(B)

= |E(A,B)|
(

1

vol(A)
+

1

vol(B)

)
≤ 2|E(A,B)|

min{vol(A), vol(B)}
= 2hG(A) = 2hG

Now, it is important to realize that without loss of generality, we can assume that ψ0 = D1/2
1

||D1/21|| , by considering

the eigenspace decomposition of L. Also, it is very easy to check that D1/2
1

||D1/21|| ⊥ f . Thus, we have:

λ1 = min
h⊥ψ0

hTLh
hTh

≤ fTLf
fT f

= 2hG

We will just state the upper bound, the proof of which is somewhat longer and can be found in [9].

Theorem 2.4. λ1 ≥ h2
G

2

Combining the bounds, we have that
h2
G

2 ≤ λ1 ≤ 2hG.

3 The adjacency matrix and the regularity assumption

3.1 Applications of the adjacency matrix without regularity

The adjacency matrix, although typically used when considering regular graphs, can also tell us interesting
information about non-regular graphs. We denote the adjacency matrix as A with eigenvectors φ0, ..., φn−1
and corresponding eigenvalues µ0 ≥ ... ≥ µn−1. The reason for ordering the eigenvalues this way (before, we
had λ0 as the smallest eigenvalue) will be discussed shortly.

First, we very clearly have:

(Ax)(u) =
∑

{u,v}∈E

x(v)

In particular, we have that (A1)(u) =
∑
{u,v}∈E 1 = degu.

Additionally, all of the arguments made about minimizing the Rayleigh quotient can be transformed into
statements about maximizing the quotient with only trivial changes. Thus, we have:

µ0 = max
h∈Rn

hTAh

hTh
and for k ≥ 1, µk = max

h⊥φ0,...,φk−1

hTAh

hTh

So, putting together these last two statements, we have that:

µ0 = max
h∈Rn

hTAh

hTh
≥ 1

TA1

1T1
=

∑
v∈V degv
n

= degave

We will now put a similar upper bound on µ0, the largest adjacency eigenvalue. Let φ0 be our eigenvector
with eigenvalue µ0, and say that v = arg maxu φ(u). Without loss of generality, we have φ0(v) 6= 0, since we
could take −φ0 if necessary. So, we have:

µ0 =
(µ0φ0)(v)

φ0(v)
=

(Aφ0)(v)

φ0(v)
=

∑
{v,u}∈E φ0(u)

φ0(v)
≤

∑
{v,u}∈E

1 = degv ≤ degmax

Moreover, if µ0 = degmax, then
∑
{v,u}∈E φ0(u)

φ0(v)
=
∑
{v,u}∈E 1 and degv = degmax. But then, φ0 is a constant

vector with value degv for all vertices u that are connected to v. The way that v was chosen then applies
to u for all such vertices u. Repeating this argument (on a connected graph) yields the result that G is
degmax-regular. Combining all of the above into a single theorem found in [28], we have:

Theorem 3.1. degave ≤ µ0 ≤ degmax and, for connected graphs, µ0 = degmax =⇒ G is degmax-regular.
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3.2 Relating the adjacency and normalized Laplacian matrices using regularity

Assuming G is regular allows us to very quickly find bounds on the adjacency eigenvalues. Crucial to this is
the observation that in the d-regular case, we have:

L = I − 1

d
A

Then, assume we have Lψi = λiψi. Then, we have:

λiψi = (I − 1

d
A)ψi = Iψi −

1

d
Aψi = ψi −

1

d
Aψi

This implies that:
1

d
Aψi = (1− λi)ψi =⇒ Aψi = d(1− λi)ψi

So, the eigenvalue λi of L corresponds to an eigenvalue d(1 − λi) of A. (This fact, that large L eigenvalues
correspond to small eigenvalues of A, is why we ordered the µj in the opposite direction.) Now, some facts
follow easily from the bounds we proved on the λi.

• µ0 = d (analog of Corollary 1.3.1) Note that this proves a partial converse to Theorem 3.1. For regular
graphs, µ0 = d = degmax.

• max{k | µk = d} = K0 ⇐⇒ G has precisely K0 disjoint connected components
(analog of Theorem 2.1)

• −d ≤ µn−1 (analog of Corollary 2.2.1)

• G is bipartite ⇐⇒ µn−1 = −d (analog of Theorem 2.2)

Notice that the above facts imply that µ0 ≥ −µn−1. It turns out that this is still true if the regularity
assumption is removed (but we omit proof). Also, in the non-regular case, bipartiteness is equivalent to
whether or not µ0 = −µn−1.

Example. As an example, let’s consider the complete graphs on n vertices. Then, the adjacency matrix
takes the form of Jn− In, where Jn is the n×n all-ones matrix. It is easy to see that the all-ones vector is an
eigenvector with eigenvalue n. Clearly, the rank of Jn is 1 and thus the nullity is n − 1 (by the rank-nullity
theorem). Therefore, Jn has eigenvalue 0 with multiplicity n− 1. Since the identity matrix has eigenvalue 1
with multiplicity n, then the adjacency matrix A, which equals Jn − In, has eigenvalues n − 1 (multiplicity
1) and -1 (multiplicity n− 1). This means that the normalized Laplacian eigenvalues of the complete graph
are 0 (multiplicity 1) and n

n−1 (multiplicity n− 1). Similarly, the non-normalized Laplacian of the complete
graph has eigenvalues 0 (multiplicity 1) and n (multiplicity n− 1).

3.3 Independent sets

We can also use the adjacency eigenvalues to put bounds on the size of an independent set in G. An
independent set of vertices is a set of vertices such that no edges connect any of the vertices in the set. First,
we will give a proof of a slightly different statement, which then implies an adjacency matrix eigenvalue bound
on the size of independent sets in G. We follow the proof of Spielman given in [28]. Note that for this next
lemma, we use the eigenvalues of L, the non-normalized Laplacian matrix, and the result holds for non-regular
graphs.

Lemma 3.3.1. If S is an independent set in G, and the average degree of vertices in S is dave(S), then:

|S| ≤ n
(

1− dave(S)

λn−1

)
Here, λn−1 is the largest eigenvalue of the non-normalized Laplacian.
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Proof. By what is said in section 2.1, we know that

λn−1 = max
x

xTLx

xTx

Let χS be the indicator vector for S, and define x := χS − |S|n 1. By Lemma 1.3.1, we have that

xTLx =
∑
{i,j}∈E

(
χS(i)− |S|

n
− χS(j) +

|S|
n

)2

=
∑
v∈S

deg(v) = dave(S)|S|

The second to last equality follows from the fact that S is an independent set. Thus χS(i) and χS(j) are
never 1 at the same time – and the sum just counts the number of edges that touch the independent set.
Also, we have:

xTx =
∑
v∈V

(
χS(v)− |S|

n

)(
χS(v)− |S|

n

)
=
∑
v∈V

(χS(v))2 +
∑
v∈V

(
−2
|S|
n
χS(v)

)
+
∑
v∈V

(
|S|
n

)2

= |S| − 2
|S||S|
n

+
|S||S|
n2

n = |S|
(

1− 2
|S|
n

+
|S|
n

)
= |S|

(
1− |S|

n

)
Putting this together, we have that

λn−1 ≥
dave(S)|S|
|S|(1− |S|/n)

=⇒ |S| ≤ n
(

1− dave(S)

λn−1

)

Using the regularity assumption allows us to say something about all independent sets of a regular graph,
in general.

Corollary 3.3.1. For a regular graph G, denote α(G) as the size of the largest independent set. Then,
α(G) ≤ n −µn−1

d−µn−1
.

Proof. A very similar argument as done in section 3.2 shows that an eigenvalue λi of L corresponds to an
eigenvalue d − λi of A for d-regular graphs. So, assuming regularity tells us that dave(S) = d and that

λn−1 = d− µn−1. So, we have, for any independent set S, |S| ≤ n
(

1− d
d−µn−1

)
= n

(
−µn−1

d−µn−1

)
Example. Let’s apply this bound to a complete graph. We know from the previous example that µn−1 = −1
and thus the bound yields α(G) ≤ n

d+1 = 1. Of course, in a complete graph, all the independent sets have
size 1.

3.4 The chromatic number

A clique is a set of vertices such that every vertex in the set is connected to every other vertex in the set.
Clearly, it is the opposite of an independent set, and an independent set in G is a clique in G, the dual of G.
(The dual of G is the graph formed by taking G, removing all of its edges, and then placing edges wherever
edges were not in the original graph.) Clearly, the chromatic number of a graph is at least equal to the size
of the largest clique of the graph since every vertex in the clique must have its own color. Thus, we cannot
use the previous corollary to obtain chromatic number bounds, as we only gave an upper bound on the size
of cliques in G (the size of independent sets in G). In fact, the relationship between the size of the largest
clique in G and the chromatic number is about as weak as one could possibly expect. We will see this in the
next section, where we give a graph construction that illustrates this weakness of this relationship.

12



3.4.1 The Mycielski construction

This method for constructing graphs, discussed in [21], allows us to obtain graphs that have a chromatic
number that is as large as desired, all while ensuring that the graph is triangle-free (which means that the
clique number must be less than 3). The construction is defined as follows: take a graph G with vertices
V = {v1, ..., vn}. Then, create a duplicate node uj for each of the vj and connect each of the uj to the nodes in
V that the corresponding vj is connected to. Note that there are no edges between vertices in U = {u1, ..., un}.
Then, add one more vertex, w, which is connected to every vertex uj .

Supposing that one starts with a triangle-free graph with chromatic number c, then we will show that trans-
forming the graph in this way conserves the triangle-free property but adds exactly one to the chromatic
number. Then, iterating this repeatedly yields the fact that the chromatic number can be as large as one
wants, without the clique number growing whatsoever. A formal proof is omitted due to its length and sim-
plicity, but the reasons can be expressed well in English. By assumption there are no triangles among the
vertices in V . If there is a triangle among vertices in V and in U , then this implies a triangle among vertices
only in V , a contradiction (substitute the uj in the triangle with vj). But a triangle cannot involve w, as w
is only connected to vertices in U , none of which are connected to each other.
So we have seen that the new graph is also triangle-free. We will now observe that if the original graph has
chromatic number k, then the new graph has chromatic number k + 1. First, note that by coloring each uj
the same as the corresponding vj , and giving the w vertex a new color, we obtain a legal k+ 1 coloring of the
new graph, implying that the new chromatic number is at most k + 1. To show that the chromatic number
is greater than k, suppose that we have a k-coloring of the new graph. Note that at most k − 1 colors can
occur among the vertices in U , since there exists a vertex (w) that touches every vertex in U . But then, there
exists a color, called c such that c occurs among the V vertices but not among the U vertices. Then, one can
re-color each of the vj that are color c to be the same color as the corresponding uj color, obtaining a k − 1
coloring of the original graph, a contradiction. To check that this is a valid coloring, notice that if vj is color
c and uj is another color c′, then none of vj ’s neighbors are color c′, since uj touches all of those neighbors.
Thus, we can recolor vj to color c′. Repeating this for each colored c vertex yields the contradiction.
Therefore, there exist triangle-free (meaning the largest clique is of size 2 or less) graphs with chromatic
number as large as one pleases.

An example iteration of the Mycielski construction. Red nodes are the original vertices, purple ones are
the duplicated versions, and the green one is the node that is connected to all vertex duplicate (purple) nodes.

1

2

1

2

1’

2’

w

1

2

3

4

5

1’

2’

3’

4’

5’
w
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3.4.2 Chromatic upper bounds

A very simple first bound that we can place on the chromatic number is that the chromatic number of G,
denoted χ(G) or χ, satisfies χ(G) ≤ maxv∈V {deg(v)}+ 1. This is obvious, because the worst case scenario is
that one is trying to color a vertex of maximum degree, and all of the neighbors have already been colored.
In that case, one simply uses the final color (since there is exactly one more color than the maximum degree).
However, it is rare for equality to happen – in 1941 Brooks showed that the chromatic number is less than
maxv∈V {deg(v)} + 1 whenever G is not complete or not an odd cycle [6]. We can improve on this bound
using spectral methods. First, a lemma from [28] that will allow us to prove what is called Wilf’s Theorem.

Lemma 3.4.1. If A and B are symmetric matrices, where B is obtained by removing the last row and column
from A, then the largest eigenvalue of A is at least the largest eigenvalue of B.

Proof. Let α and β denote the largest eigenvalues of A, and B, respectively. Here, we assume that A is a
n× n matrix and B is a n− 1× n− 1 matrix. Then, let y denote a vector in Rn−1 and y0 denote a vector in
Rn, where y0 has the same entries as y, except for an additional zero as the final entry. Then, we have:

yTBy = y0
T
Ay0

This is very easy to confirm, but in a nutshell, Ay0 is equal to By, with the exception that there is a extra

value at the end of the vector. Then, the multiplication by y0
T

removes this final deviation. But now, we are
basically done by considering the Rayleigh quotient. We have:

β = max
y∈Rn−1

yTBy

yT y
= max
y∈Rn−1

y0
T
Ay0

y0T y0
≤ max
x∈Rn

xTAx

xTx
= α

Notice that although this lemma states that we are removing the last row and column, by the discussion
in section 1.2, we can rename the vertices so that the last row an column represents any vertex we choose.
So, if we choose this vertex to be the node of least degree, then when we remove it from A to obtain B, we
know that the new graph given by B has a larger degave value. However, µ0 decreases. This is interesting in
light of Theorem 3.1, which states that µ0 ≥ degave.

Now, we can prove an improved version of the trivial chromatic bound just discussed.

Theorem 3.2. χ(G) ≤ bµ0c+ 1

Note that in the regular case, we have µ0 = d, and this theorem becomes equivalent to the very weak
previous bound.

Proof. Induction on the number of vertices in the graph. If we have a single vertex graph, then the only
eigenvalue is zero, meaning that µ0 = 0. Then, clearly the chromatic number is 1, which is less than or equal
to bµ0c+1. Assume that the theorem holds for all graphs on n−1 vertices. Then, take G as a n vertex graph
and obtain G′ from it by removing the vertex with minimum degree (to be called v). Then, we have:

χ(G′) ≤ bµ′0c+ 1 ≤ bµ0c+ 1

Where the first inequality holds from the induction hypothesis and the second inequality holds from the
previous lemma. Now apply this coloring to the analogous vertices of G, which leaves only v to be colored.
We chose v to have the fewest neighbors, which means that deg(v) ≤ degave(G). But Theorem 3.1 tells us
that degave(G) ≤ µ0, which implies the stronger statement degave(G) ≤ bµ0c simply because degave(G) is
always an integer. So this means that we can successfully color G, since we only need to assign a color to v,
v has at most bµoc neighbors, and we have bµoc+ 1 colors at our disposal.

Example. An example where this bound significantly outperforms the trivial bound is the star graph (one
central node connected to some number of vertices that are only connected to the central vertex). If we take a
star graph with one central node and 6 points (6 nodes connected to the center), then we have that χ(G) = 2
(the central node is blue and all the other nodes are red) , degave = 12

7 ≈ 1.71, degmax = 6, and bµ0c = 2.
The trivial bound gives 7 as an upper bound, the new bound gives 3, and the actual answer is 2.
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A plot of the star graph just described:

R

B

B

B

B

B

B

3.4.3 Chromatic lower bounds

Not surprisingly, we can use spectral graph theory to obtain lower bounds. One short lemma will allow us to
use Corollary 3.3.1.

Lemma 3.4.2. A k-colorable graph has an independent set of size at least
⌈
|V |
k

⌉
.

Proof. Consider the color classes in G. Of course, each color class is an independent set, and the sum of the
sizes of the color classes is |V |. Of course, not all of the color classes can have below average size, so there

must exist a color class of size at least
⌈
|V |
k

⌉
.

We apply this finding to Lemma 3.3.1.

Theorem 3.3. For a regular graph G, χ(G) ≥ 1 + µ0

−µn−1

Proof. Take G to be d-regular, and assume that it has chromatic number χ(G) = k. Then, by Lemma 3.4.2,

we may assume that there exists an independent set S, where |S| ≥
⌈
|V |
k

⌉
. Plugging this into Corollary 3.3.1,

we have (|V | = n): ⌈n
k

⌉
≤ α(G) ≤ n

(
−µn−1
d− µn−1

)
By simple rearranging, we arrive at

k ≥ 1− d

µn−1
= 1 +

µ0

−µn−1
The theorem follows since k = χ(G)

Example. If we apply the result to the complete graph, we obtain χ(G) ≥ 1+ n−1
1 = n. This is the chromatic

number of the n-vertex complete graph.

In fact, Theorem 3.3 holds even for non-regular graphs (see [1,7,14,17,24]). We will partially prove this
with the method of interlacing eigenvalues (we will also see interlacing again later). We start with a definition
of interlacing.

Definition. (sequence interlacing) Let α0, ..., αn−1 and β0, ..., βm−1 be two sequences of real numbers, where
n > m. Then, we say that the two sequences interlace if, for all i ∈ 0, ..,m, we have:

αi ≥ βi ≥ αn−m+i

Next, we state a theorem that we will take for granted. Its proof is located in [7].

Theorem 3.4. Take A to be a n×n symmetric real matrix. Also, take a collection of m non-zero orthogonal
vectors xj ∈ Rn. Define a matrix C, where Cij = 1

||xi||2x
T
i Axj. Notice that C is an m×m matrix. Then, we

have:

• The eigenvalues of C interlace the eigenvalues of A.
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• Let s =
∑
j xj. Then, the number sTAs

sT s
lies between the smallest and largest eigenvalues of C. If s is

an eigenvalue of A with eigenvalue θ, then θ is also an eigenvalue of C, for the eigenvector 1.

Corollary 3.4.1. Define m to be the chromatic number of G, possibly non-regular. Then, if µj are the
eigenvalues of A, the adjacency matrix of G, then, m ≥ 1− µ0

µn−1
.

Proof. Again, let φj denote the eigenvector of A for eigenvalue µj . G is m-colorable, which means that we
can partition the vertices into m color classes, denoted V0, ..., Vm−1. We now define m vectors in Rn, named
x0, ..., xm−1. For all j in 0, ..,m − 1, define the ith entry of xj by (xj)i = (φ0)i(char(Vj))i. Here, we are
denoting the indicator vector that a vertex is in Vj as char(Vj). Also, notice that∑

j

xj


i

=
∑
j

(xj)i =
∑
j

(φ0)i(char(Vj))i = (φ0)i

Note that the last equality holds because the ith vertex is in only one of the sets Vj , and that this statement
means that

∑
j xj = φ0. Similarly, we know that all the xj vectors are pairwise orthogonal. To prove this,

consider the following:

xTj xk =
∑
i

(xj)i(xk)i =
∑
i

(φ0)2i (char(Vj))i(char(Vk))i = 0 + ...+ 0 = 0

Note that some of the xj vectors could be 0. In this case, we remove them and thus may have fewer than m
such vectors. This doesn’t matter, but for explicitness, we will now say that we have m′ xj vectors (clearly,
1 ≤ m′ ≤ m). We can now apply the previous corollary, and with its full strength since s =

∑
j xj is an

eigenvalue of A. Therefore, we know that the eigenvalues of the matrix C, as defined in Theorem 3.4 interlace
the eigenvalues of A. Also, by the second bullet point in the theorem, we know that s, which in this case
equals φ0, is an eigenvalue of C and C1 = µ01. Putting this together, we have

β0 + β1 + ...+ βm′−1 ≥ µ0 + µn−m′+1 + µn−m′+2 + ...+ µn−1

We know that β0 ≤ µ0 due to the interlacing. Also, β0 ≥ µ0 since µ0 is an eigenvalue of both C and A. Thus,
β0 = µ0. Then, we only need to see that β1 + ... + βm′−1 ≥ µn−m′+1 + µn−m′+2 + ... + µn−1, which follows
directly from the interlacing. Recall that the trace of a matrix is the sum of the diagonal entries, and that it
is well know to also be the sum of the eigenvalues. Thus, we have that

tr(C) = β0 + β1 + ...+ βm′−1 ≥ µ0 + µn−m′+1 + µn−m′+2 + ...+ µn−1

We now want to show that tr(C) = 0. To do this, recall from section 3.1 that

(Ax)(u) =
∑

{u,v}∈E

x(v)

To show that the trace of C is 0, we will consider an arbitrary entry of C on the diagonal, 1
||xj ||2x

T
j Axj . We

obviously only need to show that xTj Axj = 0. Using the fact from section 3.1, we see that the ith entry of

Axj is
∑
{i,v}∈E xj(v). Therefore, the sum given by xTj (Axj) is

∑
i

(xj)i
∑
{i,v}∈E

xj(v)

 =
∑
i

(φ0)i(char(Vj))i
∑
{i,v}∈E

(φ0)v(char(Vj))v


Each term in the sum equals 0. Consider the ith term. If vertex i is not in Vj , then the term is already zero
because of the (char(Vj))i term. If this is not the case, then vertex i is in Vj . But then, no v sharing an edge
with vertex i would also be in Vj , since the Vj are color classes. Thus, every one of the (char(Vj))v terms is
0. We are finally getting close. We have that

0 = tr(C) = β0 + β1 + ...+ βm′−1 ≥ µ0 + µn−m′+1 + µn−m′+2 + ...+ µn−1
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Now, notice that 0 = tr(A) (there are no self-loops) and that this equals the sum of the adjacency eigenvalues.
We know from Theorem 3.1 that as long as G has an edge, µ0 > 0. Then, since the sum of the eigenvalues is
0, this guarantees that there exists a negative eigenvalue, and thus that µn−1 is negative. With this in mind,
we say

0 ≥ µ0 + µn−m′+1 + µn−m′+2 + ...+ µn−1 ≥ µ0 + (m′ − 1)µn−1

Rearranging, and knowing that µn−1 ≤ 0 yields:

m′ ≥ 1− µ0

µn−1
=⇒ χ(G) = m ≥ m′ ≥ 1− µ0

µn−1

4 Expander graphs

4.1 Definitions

We will present two commonly used definitions of regular expander graphs, mention a relationship between
then, and then quickly move further using just one of the definitions.

4.1.1 Combinatorial definition

A graph is said to be a (n, d, δ)-expander if for a n vertex, d-regular graph, then for all sets of vertices S, we
have:

|S| ≤ |V |
2

=⇒ |E(S, S)| ≥ δd|S|

(We consider only sets of size less than or half of all vertices because then no graph ever satisfies any δ value
greater than 0; take S = V .) This definition means that all small sets of vertices are connected somewhat
robustly to the rest of the graph, thus higher δ values correspond to better expansion. All connected graphs
are expanders for some δ ≥ 0, and non-connected graphs are not expanders as taking S to be the smallest
connected component requires δ to be zero. Notice that the Cheeger inequality is closely related to this
definition:

hG = δ =⇒ ∀X,hG(X) ≥ δ

=⇒ ∀X, |E(X,X)|
min{vol(X), vol(X)|}

≥ δ

=⇒ ∀X such that |X| ≤ |V |
2
,
|E(X,X)|

vol(X)
≥ δ

=⇒ |E(X,X)|
d|X|

≥ δ =⇒ |E(X,X)| ≥ δd|X|

=⇒ G is an (n, d, δ) expander.

Then, using the Cheeger inequality to relate hG to λ1 (the second smallest L eigenvalue) and the fact that
λi = d(1 − µi), we can relate combinatorial expansion to the spectral quantities of G. Also, all of the
above steps are reversible, allowing for if and only if statements that relate the spectral quantities to the
combinatorial expansion coefficient.

4.1.2 Algebraic definition

Recall that for any d-regular graph G, the eigenvalues of its adjacency matrix will lie in [−d, d]. Such a graph is
said to be a (n, d, ε)-expander if it is connected and all of the non-trivial eigenvalues lie in [−d+ε, d−ε]. Since
d is always an eigenvalue of G (with multiplicity one, since G is assumed to be connected), d is considered a
trivial eigenvalue. Sometimes −d is also considered trivial since every bipartite graph has this eigenvalue. In
what follows, we will assign an expansion coefficient, µ̂(G) to each n-vertex, d-regular graph, and say that G
is a spectral expander if µ̂ < d and an ε-expander if µ̂(G) ≤ d− ε. However, we will define µ̂ in two different
ways, which will affect what graphs are considered to be expanders. The two µ̂ definitions are:
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1. µ̂(G) = max{|µ1|, |µn−1|}

2. µ̂(G) = max|µi|6=d |µi|

The only discrepancy arises in the case of bipartite graphs. The first definition assigns bipartite graphs an
expansion coefficient that is d (due to the −d eigenvalue) and thus says that no bipartite graph is ever an
expander. The second definition allows for bipartite graphs. Note that in the case of definition 1, µ̂ is the
second largest absolute value of any eigenvalue of G, and in definition 2, µ̂ is the second largest absolute value
except for bipartite graphs, in which case it is the third largest. We will specify which definition of µ̂ we are
using when needed.

4.2 Expanders are sparse approximations of a complete graph

Here, we will prove a lemma in [2] and [19] that demonstrates that the better an expander is, the more quickly
a random walk over its vertices mixes. This highlights a similarity between expanders and a complete graph
(where the first step of a random walk is already uniformly distributed). Of course, unlike complete graphs,
expanders are more sparse (which is most meaningful in the context of expander families of fixed degree).

Lemma 4.2.1. Let p be a probability distribution over the vertices. Then, for a d-regular, non-bipartite, and

connected graph G, ||
(
1
dA
)s
p− ω||2 ≤

(
µ̂
d

)s
.

Note that there is no need to specify which definition of µ̂(G) we are using, since they agree in the non-
bipartite case. Also, note that A is the adjacency matrix, s is the number of steps taken in the walk, and
ω is the vector representing the uniform distribution (1/|V |, ..., 1/|V |). Observe that we start the random
walk at a vertex distributed according to p, and then proceed to neighbors uniformly at random. Thus, the
distribution over the vertices after s steps is

(
1
dA
)s
p. So, this lemma demonstrates that the distribution over

the vertices approaches uniform more quickly the better the expansion constant is.

Proof. Recall that for the normalized Laplacian graph, we can assume that ψ0 = D1/2
1

||D1/21|| , an eigenvector

with eigenvalue 0. Also, note that A1 = d1, implying that we can similarly assume that ω is an eigenvector
of A with eigenvalue d (recall that G is a d-regular graph). It is easy to check that

〈
ω,
(
1
dA
)
v
〉

=
〈(

1
dA
)
ω, v

〉
.

(Since A = AT and
∑
i

∑
j Aijvj =

∑
i

∑
j Aijvi.) Earlier, we mentioned that Aω = dω, which means that(

1
dA
)
ω = ω. So, we have

〈
ω,
(
1
dA
)
v
〉

=
〈(

1
dA
)
ω, v

〉
= 〈ω, v〉. So, v ⊥ ω =⇒

(
1
dA
)
v ⊥ ω.

Recall that the orthogonal basis of eigenvectors for A is φ0, ..., φn−1. We can assume that (despite hav-
ing norm not equal to 1) that φ0 = ω. We also take G to be connected and non-bipartite, which means that
there is only one eigenvalue with absolute value d.
Let v be in the space of all vectors perpendicular to ω, as above. Then, v is in the span of eigenvectors with
eigenvalues less than or equal to µ̂, in absolute value, since µ̂ is the second largest eigenvalue in absolute value.
So, we have that ||Av||2 ≤ µ̂||v||2, or equivalently, ||

(
1
dA
)
v||2 ≤ µ̂

d ||v||2. Note that the vector
(
1
dA
)
v is still

orthogonal to ω, which means that we can induct on this argument to say that: ||
(
1
dA
)s
v||2 ≤

(
µ̂
d

)s
||v||2,

for s ∈ Z+.

Now let p be our probability distribution. Then, decompose p into parts in the direction of, and orthog-
onal to ω: p = αω + p′. Since the entries of ω are constant, and p′ is orthogonal to ω, we know that the sum
of the entries of p′ is 0. Also, we know that the sum of the entries of p is 1, and the sum of entries of αω is
α. This means that α must equal 1. We then have p = ω + p′.
We need a couple more facts:(
1
dA
)s
p =

(
1
dA
)s

(ω + p′) =
(
1
dA
)s
ω +

(
1
dA
)s
p′ = ω +

(
1
dA
)s
p′

Also, ω ⊥ p′ and p = ω + p′ =⇒ ||p||22 = ||ω||22 + ||p′||22 =⇒ ||p′||22 ≤ ||p||22 ≤ 1, where the last inequality
follows from the fact that p has entries that are positive and sum to 1. So, we have ||p′||22 ≤ 1 and thus:∣∣∣∣∣∣∣∣(1

d
A

)s
p− ω

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣(1

d
A

)s
p′
∣∣∣∣∣∣∣∣
2

≤
(
µ̂

d

)s
||p′||2 ≤

(
µ̂

d

)s
The last wo inequalities follow from the facts that p′ ⊥ ω and ||p′||22 ≤ 1.
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Note that since µ̂
d < 1 for any connected d-regular graph, we have just proven that the distribution of

final vertex location over a s-step random walk converges to the uniform distribution as s gets large for any
such graph. However, the statement is not true for bipartite graphs (which bounce back and forth forever)
or non-regular graphs (which converge to a different stationary distribution).

We can now prove a bound on the diameter of graphs using Lemma 4.2.1.

Corollary 4.2.1. For a connected, n-vertex, d-regular graph G, we have diam(G) ≤ log(n)
log(d)−log(µ̂)

Proof. Recall that the diameter of a graph G is the length of the longest shortest path between any two
vertices. This means that:

s ≥ diam(G) ⇐⇒ ∀p, the number of zeroes in

(
1

d
A

)s
p is 0

=⇒
This is because no matter where the walk started, the walk has been long enought such that, if just the right
choices were made, any vertex could have been reached (recall that

(
1
dA
)s
p is the probability distribution

over the vertices after a s step walk).

⇐
Suppose not. We can assume that there exist α and β such that the distance between them is diam(G) and
that s < diam(G). But then we can choose p so that p pick α with probability 1. But then, there is no way
for β to be reached, meaning that there is a zero entry in

(
1
dA
)s
p, a contradiction.

Now that we have that result, we can notice that(
µ̂

d

)s
<

1

n
=⇒ ∀p, the number of zeroes in

(
1

d
A

)s
p is 0 =⇒ s ≥ diam(G)

The last implication we just proved. For the first implication, recall that Lemma 4.2.1 tells us that∣∣∣∣∣∣∣∣(1

d
A

)s
p− ω

∣∣∣∣∣∣∣∣
2

<
1

n

Assume for the sake of contradiction that there exists a p such that there exists a zero entry in
(
1
dA
)s
p. Then,

if we want to minimize
∣∣∣∣( 1

dA
)s
p− ω

∣∣∣∣
2

as much as possible, we should assume that
(
1
dA
)s
p consists of a

single zero entry with the remaining entries being 1
n . But then, we have

∣∣∣∣( 1
dA
)s
p− ω

∣∣∣∣
2

= 1
n , a contradiction.

So we now have established that
(
µ̂
d

)s
< 1

n =⇒ s ≥ diam(G). Finally, set θ = µ̂
d and we have:(

µ̂

d

)s
<

1

n
⇐⇒ s > logθ

1

n

Thus, we have proven that

s > logθ
1

n
=⇒ s ≥ diam(G)

which implies that

diam(G) ≤ logθ
1

n
=

log1/n

log θ
=

log n

log d− log µ̂

Example. Note that this means for infinite families of d-regular graphs, all with µ̂(G) bounded away from
d, then diam(G) = O(log n).

Example. For the family of complete graphs on n vertices (all of which have a diameter of 1), this bound

gives diam(G) ≤ log(n)
log(n−1) .

For another bound on the diameter (this time in terms of any of the normalized Laplacian eigenvectors,
and for regular and non-regular graphs), consult [12].
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5 Ramanujan graphs

5.1 Definition of Ramanujan graph.

A graph is said to be a Ramanujan graph if µ̂(G) ≤ 2
√
d− 1.

Recall that µ̂(G) = max{|µ1|, |µn−1|}, unless we want to allow for bipartite Ramanujan graphs, in which case
we have µ̂(G) = max|µi|6=d |µi|. This definition means that Ramanujan graphs are good expanders. We will
see that this is the strictest definition we can have, while still allowing for infinite families of such graphs to
exist.

5.2 Motivation of the definition

Theorem 5.1. For any infinite family of d-regular graphs on n nodes, denoted {Gn}, we have µ̂(Gn) ≥
2
√
d− 1− o(1), where the last term is some number that goes to zero as n gets large.

Proof. We will closely follow the proof of Nilli [25]. Fix two edges in G, e1 = {v1, v2} and e2 = {u1, u2} such
that the distance between these edges is at least 2k + 2. Note that distance between an edge and itself is 0,
the distance between two edges that share exactly one node in common is 1, and so on.
For 1 ≤ i ≤ k, define:

Vi = {v ∈ V |min{distance(v, v1), distance(v, v2)} = i}

Ui = {v ∈ V |min{distance(v, u1), distance(v, u2)} = i}

Let a, b ∈ R. Define a function f over the vertices as:

f(v) =


a(d− 1)−i/2 if v ∈ Vi
b(d− 1)−i/2 if v ∈ Ui
0 otherwise

Important observations are as follows:

• |Vi| ≤ (d− 1)|Vi−1| and |Ui| ≤ (d− 1)|Ui−1|
Since G is d-regular, the size of |Vi| is maximized by sending all edges from a vertex in Vi−1 to Vi.
However, for every node in Vi−1, one edge must remain that connects it to Vi−2, hence d− 1 edges per
node.

•
(
∪ki Vi

)
∩
(
∪ki Ui

)
= ∅

This simply follows from the fact that the sets Vi and Ui are defined with respect to the edges e1 and
e2, which are a distance at least 2k + 2 apart. (And the sets Vi are only defined for i up to k.)

• All edges touching a vertex in Vi must lead to a vertex in Vi−1 or Vi+1.

Note that:∑
v∈V

f(v) = a

(
2 +

|V1|
(d− 1)1/2

+ ...+
|Vk|

(d− 1)k/2

)
+ b

(
2 +

|U1|
(d− 1)1/2

+ ...+
|Uk|

(d− 1)k/2

)
This means that we can clearly pick a and b so that the sum is zero (and we define them as such). Also note
that:

fT f =

k∑
i=0

∑
v∈Vi

(
a

(d− 1)i/2

)2

+

k∑
i=0

∑
u∈Ui

(
b

(d− 1)i/2

)2

= a2
k∑
i=0

|Vi|
(d− 1)i

+ b2
k∑
i=0

|Ui|
(d− 1)i

Later, we will denote a2
∑k
i=0

|Vi|
(d−1)i as fT fV and the analogous term as fT fU .

By Lemma 1.3.1 (notice we are using the non-normalized Laplacian),

fTLf =
∑

{u,v}∈E

(f(u)− f(v))2
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The definition of f allows us to disregard a lot of the edges. Note that any edges that connect two vertices,
neither of which are in one of the Vj or Uj sets will add zero to the sum, just as any edges that connect two
vertices in the same Vj set will. So, we only need to consider edges that travel between sets Vi and Vi+1,
between Ui and Ui+1, and between Vk and Uk to nodes in no such set. Also note that there are no edges from
a vertex in any Vj set to any Uj set.

This means that the sum can effectively be broken into two parts – one where we consider edges touch-
ing vertices in Vj sets and the other where we do the same thing for Uj sets. These parts are completely
analogous, so we just look at the first part of the sum. If we say that fTLF = V ∗+U∗, where V ∗ is this first
part of the sum, then we can say that:

V ∗ ≤
k−1∑
i=0

[
|Vi|(d− 1)

(
a

(d− 1)i/2
− a

(d− 1)(i+1)/2

)2
]

+ |Vk|(d− 1)

(
a

(d− 1)k/2

)2

Notice that the ith term of the sum represents the edges that travel from Vi to Vi+1, and the term outside
the sum represents the edges that travel from a vertex in Vk to a vertex not in any of the Vj , Uj sets.
Rearranging the right side yields:

V ∗ ≤ a2
(
k−1∑
i=0

[
|Vi|(d− 1)

(
1

(d− 1)i/2
− 1

(d− 1)(i+1)/2

)2
]

+ |Vk|
d− 1

(d− 1)k

)

Since (d− 2
√
d− 1) + (2

√
d− 1− 1) = d− 1, we can separate the last term as follows:

V ∗ ≤ a2
(
k−1∑
i=0

[
|Vi|(d− 1)

(
1

(d− 1)i/2
− 1

(d− 1)(i+1)/2

)2
]

+
|Vk|

(d− 1)k
(d− 2

√
d− 1) +

|Vk|
(d− 1)k

(2
√
d− 1− 1)

)
Also, we have:

(d− 1)

(
1

(d− 1)i/2
− 1

(d− 1)(i+1)/2

)2

= (d− 1)

(
1

(d− 1)i/2

(
1− 1

(d− 1)1/2

))2

=
1

(d− 1)i

√
d− 1

√
d− 1

(
1− 1√

d− 1

)(
1− 1√

d− 1

)
=

1

(d− 1)i

(√
d− 1− 1

)(√
d− 1− 1

)
=

1

(d− 1)i
(d− 2

√
d− 1)

This means that we can further simplify our upper bound on V ∗:

V ∗ ≤ a2
(
k−1∑
i=0

[
|Vi|

1

(d− 1)i
(d− 2

√
d− 1)

]
+

|Vk|
(d− 1)k

(d− 2
√
d− 1) +

|Vk|
(d− 1)k

(2
√
d− 1− 1)

)

Now the |Vk|
(d−1)k (d− 2

√
d− 1) term is in the correct form to be pushed into the summation:

V ∗ ≤ a2
(

k∑
i=0

[
|Vi|

1

(d− 1)i
(d− 2

√
d− 1)

]
+

|Vk|
(d− 1)k

(2
√
d− 1− 1)

)

Now, note that since |Vi| ≤ (d− 1)|Vi+1, |Vk|
(d−1)k ≤

|Vj |
(d−1)j for 0 ≤ j ≤ k− 1. Therefore, the |Vk|

(d−1)k term is less

than the average of those terms:

|Vk|
(d− 1)k

≤ 1

k + 1

k∑
i=0

|Vi|
(d− 1)i
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So, now we have:

V ∗ ≤ a2(d− 2
√
d− 1)

k∑
i=0

[
|Vi|

1

(d− 1)i

]
+ a2(2

√
d− 1− 1)

1

k + 1

k∑
i=0

|Vi|
(d− 1)i

=⇒ V ∗ ≤ (d− 2
√
d− 1)fT fV +

2
√
d− 1− 1

k + 1
fT fV

=⇒ V ∗

fT fV
≤ d− 2

√
d− 1 + (2

√
d− 1− 1)

1

k + 1
:= α

So, we have V ∗

fT fV
≤ α and similarly, U∗

fT fU
≤ α. This means that:

fTLf

fT f
=

V ∗ + U∗

fT fV + fT fU
≤ αfT fV + αfT fU

fT fV + fT fU
= α

Finally, let κ be the second smallest eigenvalue of the non-normalized Laplacian. Then, just like the normalized
Laplacian, all eigenvalues are non-negative and 0 is always an eigenvalue given by some eigenvector with
constant entries (called C). Then:

κ = min
h⊥C

hTLh

hTh
≤ fTLf

fT f
≤ α = d− 2

√
d− 1 + (2

√
d− 1− 1)

1

k + 1

The first inequality follows form the fact that f ⊥ C because we picked f so that the sum of its entries
over all the vertices equals zero. Also, note that κ, the second smallest eigenvalue of L, is the second largest
eigenvalue of A (see Corollary 3.3.1 where we mention that an eigenvalue v of the non-normalized Laplacian
is an eigenvalue d− v of the adjacency matrix). Therefore,

κ ≤ d− 2
√
d− 1 + (2

√
d− 1− 1)

1

k + 1
=⇒ µ1 ≥ d− α = 2

√
d− 1− (2

√
d− 1− 1)

1

k + 1

Finally, we have:

2
√
d− 1− (2

√
d− 1− 1)

1

k + 1
≤ µ1 ≤ µ̂(G)

In order to reach the final result, consider a graph with n nodes that is d-regular. Pick an arbitrary vertex S
and observe that, roughly speaking, at most d vertices are connected to S. Then, following this reasoning, at
most d2 vertices are connected to those vertices and so on. This means that at most dk vertices are within
k steps of S, and that diam(G) ≥ logd n. Therefore, any d-regular family of graphs has a growing diameter.
As n gets large, the diameter gets large, and we can set k to be a larger and larger value. Therefore, for any
d-regular graph family, Gn, µ̂(Gn) ≥ 2

√
d− 1−o(1). This means that there doesn’t exist an infinite family of

graphs for unbounded n such that for all graphs G in the family, µ̂(G) ≤ 2
√
d− 1− ε, for any fixed ε > 0.

6 Existence of bipartite Ramanujan graphs

In this section, we give an overview of the arguments in [20], where it is proven that there exist infinite families
of bipartite Ramanujan graphs of all degrees at least 3.

6.1 2-Lifts

Definition. (2-lifts) A 2-lift is a process that acts on a graph, turning it into a graph with twice as many
vertices. The process is as follows. Take a graph, and draw a duplicate graph next to it. Then, every original
edge {u, v} now has two analogs: {u0, v0} and {u1, v1}. Then, select some subset of the edge pairs {u0, v0}
and {u1, v1} and transform the edges to: {u0, v1} and {u1, v0}.
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The process can be visualized below.

Step 1 (original graph) Step 2 (after node duplication)

1

2

3

4

5

1

2

3

4

5

1’

2’

3’

4’

5’

Step 3 (cross some of the edges)

1

2

3

4

5

1’

2’

3’

4’

5’

Let us call the original graph G, and the resulting graph after completing the 2-lift G′. We also say that

G has a n × n adjacency matrix A =


0 1 1 1 0
1 0 0 1 1
1 0 0 0 0
1 1 0 0 0
0 1 0 0 0

. However, rather than considering A′, the 2n × 2n

adjacency matrix of G′, we will notice that we can capture the structure of G′ with a signed version of the
n×n matrix A. Recall that in constructing the 2-lift, some of the original edges in G ended up being crossed
with the analogous edges among the new vertices.

Definition. (signed adjacency matrix) We create the As matrix (the signed adjacency matrix for G′) by first
copying the matrix A. Then, if the edge {u, v} was one of the crossed edges in the 2-lift, we replace the 1 at
(As)uv and (As)vu with a -1.

In this small example, we have As =


0 1 1 −1 0
1 0 0 1 −1
1 0 0 0 0
−1 1 0 0 0
0 −1 0 0 0


(Notice that our following discussion in this section is for regular graphs, although this example is not
regular.)
It is not immediately clear why it is useful to create such a matrix. However, this matrix is important because
its eigenvalues are closely related to the eigenvalues of G′ (which are the A′ eigenvalues).

Theorem 6.1. The eigenvalues of G′ are the union of the eigenvalues of A and the eigenvalues of As (counting
multiplicities).

Proof. We present the proof of Bilu and Linial [4]. As before, let A be the adjacency matrix of G (the graph
before the 2-lift), let A′ be the adjacency matrix of G′, the 2-lift. We also define the zero/one matrices A1

23



and A2:

(A1)ij =

{
1 if Aij = 1 and (As)ij = 1

0 otherwise

(A2)ij =

{
1 if Aij = 1 and (As)ij = −1

0 otherwise

We can say that A1 is the restriction of A, only with edges that were not crossed, and that A2 is the restriction,
leaving only the crossed edges (but still representing them with a 1). Clearly, this means that A = A1 + A2,

and As = A1 −A2. It is also quite clear that A′ =

[
A1 A2

A2 A1

]
We will now define a notation for concatenating vectors. If v1 and v2 are vectors in Rn, then [v1, v2] denotes

the vector in R2n that results from copying v2 onto the end of v1. In light of the fact that A′ =

[
A1 A2

A2 A1

]
it is very easy to confirm that v is an eigenvector of A, with eigenvalue µ implies that [v, v] is an eigenvector
of A′, with the same eigenvalue. Similarly, u is an eigenvector of A, with eigenvalue λ implies that [u,−u]
is an eigenvector of A′, with the same eigenvalue. It is also clear that v1 ⊥ v2 =⇒ [v1, v1] ⊥ [v2, v2] and
u1 ⊥ u2 =⇒ [u1,−u1] ⊥ [u2,−u2]. Therefore, we know that the elements of the set {[v, v]|v an eigenvector
of A} are pairwise orthogonal, and the same can be said of {[u,−u]|u an eigenvector of As}. Also, since
[v, v] · [u,−u] = v · u+ v · −u = v · u− v · u = 0, we can say that the entire set S = {[v, v]|v an eigenvector of
A} ∪ {[u,−u]|u an eigenvector of As} is pairwise orthogonal. Since A and As are symmetric matrices, each
matrix has n eigenvectors and therefore, |S| has 2n (orthogonal) eigenvectors of A′. Therefore, not only are
all the eigenvalues of A and As eigenvalues of A′, but these are all of the eigenvalues of A′.

Already, we can significantly reduce the problem of finding bipartite Ramanujan graphs to finding appro-
priate 2-lifts. Suppose that we want to create an infinite family of d-regular bipartite Ramanujan graphs.
We start with Kd,d, the complete d-regular bipartite graph (with 2d nodes). The adjacency matrix looks

like

[
0 1
1 0

]
, and so the eigenvalues of this graph are d and −d, as we already know, and the remaining

eigenvalues are 0. This makes intuitive sense, as a complete graph is as well connected as possible. Thus, Kd,d

is Ramanujan. Note that every graph with m edges has 2m 2-lifts, since for each edge we choose whether to
cross it or not. Then, we want to prove that every regular bipartite graph has some 2-lift that preserves the
Ramanujan property. However, if the starting graph is Ramanujan, we only need to look at the As eigenval-
ues to determine that the new lifted graph is also Ramanujan (by Theorem 7.1). Then, we can apply 2-lifts
repeatedly to Kd,d to obtain an infinite bipartite Ramanujan family (the 2-lift procedure clearly preserves
d-regularity and bipartiteness). The family we will find consists of graphs where |V | = 2jd, for j ∈ Z+.

By the basic eigenvalue definitions, we know that the largest eigenvalue of As is the largest root of the charac-
teristic polynomial for As. Here, we represent the polynomial as χAs(x) and the largest root as λmax(χAs(x)).
We are not only concerned about the largest root of χAs(x) but also the smallest one. However, the following
theorem shows us that we need only concern ourselves with the largest root (meaning the largest eigenvalue
of As).

Theorem 6.2. The adjacency eigenvalues for bipartite graphs are symmetric around zero.

Proof. The adjacency matrix of a bipartite graph can be given in the form A =

[
0 B
BT 0

]
. In the rest

of the proof, we will assume that the blocks are of the same dimension, although this is not necessary and
the same proof suffices. (However, note that a d-regular bipartite graph must have a vertex partition that
has equally many vertices on each side, meaning that these blocks are the same dimension.) Suppose that a
vector v̂ = [v1, v2] is a λ-eigenvector for A, where the length of v1 equals the length of v2 equals n, if A is a

2n×2n matrix. We have

[
0 B
BT 0

] [
v1
v2

]
= λ

[
v1
v2

]
. But we will see that v̂′ = [v1,−v2] is an eigenvector

for eigenvalue −λ:

[
0 B
BT 0

] [
v1
−v2

]
= λ

[
−v1
v2

]
= −λ

[
v1
−v2

]
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6.2 The matching polynomial

Definition. (graph matching) A graph matching for a graph G is a set of the edges of G so that none of the
selected edges share a vertex with any other edge.

For example, take the following graph:

1

2 3

4 5
Then, there are 7 matchings of G that use only one edge (one

matching per edge), and many other matchings that use different numbers of edges. Note that it is trivial
that a graph with n nodes can only have matchings with at most n/2 edges, as this will use up all of the
edges and further edge inclusion will mean that there are some shared vertices. As an example, we will see a
matching of G with two edges. Since |V |/2 < 3, we know that this is a maximal matching (one of several).

1

2 3

4 5
We now introduce an important graph polynomial.

Definition. (matching polynomial) The matching polynomial for G is defined as

µG(x) :=
∑
i≥0

xn−2i(−1)imi(G)

where mi(G) gives the number of matchings on G with exactly i edges (m0 := 1). Note that mi(G) = 0 ∀i > n
2 .

6.2.1 Relationship to characteristic polynomials of As

We showed in section 6.1 that we need to concern ourselves with the characteristic polynomials of the As
matrices. Here, we will prove a theorem, originally from [13], that relates these polynomials to the matching
polynomial.

Theorem 6.3. Es [χAs(x)] = µG(x)

Proof. Using the definition of the characteristic polynomials of a matrix, and the Leibniz formula for the
determinant, we obtain:

Es [χAs(x)] = Es [det(xI −As)] = Es

 ∑
σ∈sym([n])

(−1)|σ|
n∏
i=1

(xI −As)i, σ(i)


Rather than simply sum over every permutation σ, we can consider the subset of [n] that σ does not act as
the identity on, and consider σ as a permutation over that subset of [n] of size k. It is easy to check that this
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reordering yields equality as every permutation sigma is represented in the following sum and no permutation
is double counted. Note that the identity permutation on [n] is counted when k = 0 as we say that there is
one permutation over the empty set (and this permutation never acts as the identity).

= Es

 n∑
k=0

xn−k
∑
S⊆[n]
|S|=k

∑
π∈sym(S)
π(i) 6=i

(−1)|π|
∏
i∈S

(xI −As)i, π(i)


Notice that the xn−k term after the first sum comes from extending the permutation π from being over a
subset f [n] to being over all of [n], and setting π as the identity on the new elements. The diagonal of xI−As
is equal to x, and the product will have n − k powers of x for a permutation π. Now that the diagonal will
never be reached by a permutation π, we can remove the xI portion of the matrix and push the expected
value further inside. We also take the string s ∈ {±1}|E| and allow ourselves to use a double subscript with
it by saying that sij equals the value of s on the edge that connects vertex i to vertex j. (If the vertices are
not connected, we extend s and set it equal to zero. This means that now, s has length n(n− 1).) Now, we
have the following:

=

n∑
k=0

xn−k
∑
S⊆[n]
|S|=k

∑
π∈sym(S)
π(i)6=i

Es

[
(−1)|π|

∏
i∈S

(−s)i,π(i)

]

Now, let us take a closer look at the (−1)|π|
∏
i∈S(−s)i,π(i) term. By the definition of the extension of s, we

know that this product equals zero for every s unless every vertex pair i, π(i) is connected. This means that
we can consider only permutations π such that, for all i ∈ S, i and π(i) are connected. In this light, we can
think of each such π as a union of disjoint cycles over the vertices in S. If we decompose π into its cycles, we
have:

=

n∑
k=0

xn−k
∑
S⊆[n]
|S|=k

∑
π∈sym(S)
π(i)6=i

Es

(−1)|π|
∏

cyc∈π

∏
i∈cyc

(−s)i,π(i)


Since the cycles are disjoint, we know that we can use independence to say:

=

n∑
k=0

xn−k
∑
S⊆[n]
|S|=k

∑
π∈sym(S)
π(i)6=i

(−1)|π|
∏

cyc∈π
Es

 ∏
i∈cyc

(−s)i,π(i)


Now suppose that π contains a 3-cycle (or any cycle larger than 2), which we will denote (abc). Then,∏
i∈cyc(−s)i,π(i) = ((−s)ab) ((−s)bc) ((−s)ca). But independence again allows us to say that the expected

value of the whole product is the product of the expected values, and we have:

Es

 ∏
i∈cyc

(−s)i,π(i)

 = Es [((−s)ab)]Es [((−s)bc)]Es [((−s)ca)] = 0 ∗ 0 ∗ 0 = 0

This follows because s takes values in {±1} uniformly at random. The 2-cycles in π remain, however, since

Es

 ∏
i∈cyc

(−s)i,π(i)

 = Es [((−s)ab) ((−s)ba)] = Es [1] = 1

(This is because those two random variables are equal and thus not independent. Also, they both equal 1 or
-1.) So, we can now assume that π contains only 2-cycles. We can reduce the formula to:

=

n∑
k=0

xn−k
∑
S⊆[n]
|S|=k

∑
π perfect matching on S

Es

(−1)|π|
∏

cyc∈π

∏
i∈cyc

(−s)i,π(i)


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Since any perfect matching can only occur when k is even, we have:

=

n∑
k=0

xn−k
∑
S⊆[n]
|S|=k
k even

∑
π perfect matching on S

(−1)
k
2

∏
cyc∈π

1

=

n∑
k=0

xn−k
∑
S⊆[n]
|S|=k
k even

∑
π perfect matching on S

(−1)
k
2 =

n∑
k=0

xn−k
∑
S⊆[n]
|S|=k
k even

(−1)
k
2m k

2
(G|S)

Note that G|S denotes the subgraph of G containing only vertices in S. Reindexing yields:

n∑
k=0

xn−2k(−1)k
∑
S⊆[n]
|S|=2k

mk(G|S)

However,
∑

S⊆[n]
|S|=2k

mk(G|S) = mk(G), and we are done:

Es [χAs(x)] =

n∑
k=0

xn−2k(−1)k
∑
S⊆[n]
|S|=2k

mk(G|S) =

n∑
k=0

xn−2k(−1)kmk(G) = µG(x)

6.2.2 Bounding the roots of the matching polynomial

The purpose of this section is to show that for any graph G, the real roots of µG(x) (in fact, all roots are
real) are in the interval
[−2
√
4(G)− 1, 2

√
4(G)− 1], where 4(G) is the largest degree of any vertex in G. We need two lemmas

first, which come from [5]. The main result of Theorem 6.4 was originally proved in [15] and is also located
in [10].

Lemma 6.2.1. Denote the graph G, with the vertex i removed (and all edges touching it) as G\i. Accordingly,
G\i\j := (G\i)\j and is the graph with the vertices i, j removed (and all edges touching them). Then,

µG(x) = xµG\i(x)−
∑
{i,j}∈E

µG\i\j(x)

Proof. Clearly, the number of matchings of size k over G, that do not involve the vertex i is mk(G\i). It
is also clear that the number of matchings over G that involve vertex i is

∑
{i,j}∈Emk−1(G\i\j). Since the

number of matchings of size k over G is the number of matchings that include i plus that number of matchings
that don’t, we have:

mk(G) = mk(G\i) +
∑
{i,j}∈E

mk−1(G\i\j)

Now, we can plug this identity into the full equations. We have:

µG(x) =
∑
k≥0

(−1)kx|V |−2kmk(G) =
∑
k≥0

(−1)kx|V |−2k

mk(G\i) +
∑
{i,j}∈E

mk−1(G\i\j)


=
∑
k≥0

(−1)kx|V |−2kmk(G\i) +
∑
k≥0

(−1)kx|V |−2k
∑
{i,j}∈E

mk−1(G\i\j)

= x
∑
k≥0

(−1)kx|V |−1−2kmk(G\i) +
∑
k≥0

(−1)k+1x|V |−2(k+1)
∑
{i,j}∈E

mk(G\i\j)


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Note that the index in the second summation can be increased by 1 because the only neglected term has value
0 (we can define m−1 to be 0). Continuing, we have:

xµg\i(x)−
∑
k≥0

(−1)kx|V |−2−2k
∑
{i,j}∈E

mk(G\i\j)



= xµg\i(x)−
∑
{i,j}∈E

∑
k≥0

[
(−1)kx|V |−2−2kmk(G\i\j)

]
= xµg\i(x)−

∑
{i,j}∈E

µG\i\j(x)

Now, we need another lemma relating the ratios of matching polynomials.

Lemma 6.2.2. Take δ ≥ 4(G) > 1. If deg(i) < δ, then

x > 2
√
δ − 1 =⇒ µG(x)

µG\i(x)
>
√
δ − 1

Proof. We start with the base case for an inductive argument (inducting over |V |). Say that |V | = 1. Then,
there can be no edges, and we have that µG(x) = x since there is one matching with 0 edges and zero
matchings with 1 edge. Similarly, we have that µG\i(x) = 1. Clearly the lemma holds in this case since

x > 2
√
δ − 1 =⇒ µG(x)

µG\i(x)
= x = 2

√
δ − 1 >

√
δ − 1. So now we suppose that the lemma holds for graphs on

n vertices. By the previous lemma, we have:

µG(x)

µG\i(x)
= x−

∑
{i,j}∈E

µG\i\j(x)

µG\i(x)

Plugging in our assumption about x and invoking the inductive hypothesis yields:

µG(x)

µG\i(x)
> 2
√
δ − 1− 1√

δ − 1

∑
{i,j}∈E

1 = 2
√
δ − 1− deg(i)√

δ − 1

Note that we assumed that deg(i)≤ δ − 1. So we continue:

µG(x)

µG\i(x)
> 2
√
δ − 1− δ − 1√

δ − 1
=
√
δ − 1

Now, we are finally ready to prove a bound on the roots of the matching polynomial.

Theorem 6.4. All the real roots of µG(x) are in the interval [−2
√
4(G)− 1, 2

√
4(G)− 1], where 4(G) is

the largest degree of any vertex in G.

Proof. First, note that the powers of x of the matching polynomial are centered about 0, meaning that
the polynomial is either even or odd. This means that it is sufficient to show that there are no roots for
x > 2

√
4(G)− 1. As a base case for induction over |V |, we know that the graph on one vertex has µG(x) = x,

and the only zero of x is at zero which is in the desired interval.

We know from Lemma 6.2.1 that
µG(x)

µG\i(x)
= x−

∑
{i,j}∈E

µG\i\j(x)

µG\i(x)
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Our assumption on the value of x means that

µG(x)

µG\i(x)
> 2
√
4(G)− 1−

∑
{i,j}∈E

µG\i\j(x)

µG\i(x)

If there are no edges between i and j in G, then we are done. The reason for this is that the sum is empty,

meaning we have µG(x)
µG\i(x)

> 2
√
4(G)− 1. But then by the induction hypothesis, µG\i(x) has no zeroes for the

x > 2
√
4(G)− 1. This means that µG(x) has no zeroes for the x > 2

√
4(G)− 1 as otherwise the quotient

on the left would be 0, which is less than 2
√
4(G)− 1.

So we can suppose that there is an edge between i and j. In the notation of Lemma 6.2.2, set δ := 4(G).
Notice that we now know that

degG\i(j) ≤ 4(G)− 1 < 4(G) = δ

This is where the first inequality follows from the fact that there is an edge between i and j – an edge that
is no longer present in G\i. This string of inequalities allows us to invoke Lemma 6.2.2, where G\i is the
original graph. We already knew

µG(x)

µG\i(x)
> 2
√
4(G)− 1−

∑
{i,j}∈E

µG\i\j(x)

µG\i(x)

and now we can simplify to
µG(x)

µG\i(x)
> 2
√
4(G)− 1−

∑
{i,j}∈E

1√
δ − 1

=⇒ µG(x)

µG\i(x)
> 2
√
4(G)− 1− degG(i)√

4(G)− 1
≥ 2
√
4(G)− 1− 4(G)√

4(G)− 1

However, one can show easily that 2
√
4(G)− 1− 4(G)√

4(G)−1
≥ 0 (for 4(G) ≥ 2) using basic calculus or some

other method. So, we now know that µG(x)
µG\i(x)

> 0 whenever x > 2
√
4(G)− 1. But now we can make the

same inductive argument again. The denominator of the left hand side is not zero, so we know that the
numerator is also never zero. Therefore, no real zeroes of any matching polynomial fall outside of the interval
[−2
√
4(G)− 1, 2

√
4(G)− 1].

6.3 The difficulty with averaging polynomials

At this point in the existence proof of bipartite Ramanujan graphs, it might seem like we are done. After all,
we know that Es [χAs(x)] = µG(x) and thus

λmax (Es [χAs(x)]) = λmax(µG(x)) ≤ 2
√
d− 1

With a finite set of numbers, we can say that not all elements of the set are above average (or all below).
Thus, we might be led to presume that we can extend this reasoning to polynomials and then already know
that there exists some s ∈ {1,−1}|E| such that λmax(χAs(x)) ≤ 2

√
d− 1. After all, how could the maximum

root of all the polynomials χAs(x) be above the maximum root of the average? We will see that in general,
this can certainly happen. This means that we need some further analysis. Here is the example given in the
original paper [20]. Take two polynomials f0(x) = (x+ 5)(x− 9)(x− 10) and f1(x) = (x+ 6)(x− 1)(x− 8).
Then, the largest roots of these polynomials are 10 and 8. We will see that both of these roots are larger than
the largest root of the average polynomial, 1

2 (f0(x)+f1(x)). The average polynomial is x3− 17
2 x

2− 51
2 x+249,

which has its largest root before 7.4. We will now see that the crucial fact that allows us to continue the
proof is that the polynomials χAs(x) are an interlacing family, which means that this problem cannot arise.
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6.4 Interlacing

Definition. (polynomial interlacing) We say that a real rooted degree n − 1 polynomial g with roots
α1, ..., αn−1 interlaces a real-rooted degree n polynomial f with roots β1, ..., βn if

β1 ≤ α1 ≤ ... ≤ αn−1 ≤ βn

Definition. (common interlacing) If there exists a polynomial g that interlaces each of the polynomials
f1, ..., fk, then we say that the f1, ..., fk have a common interlacing.

We will now prove some lemmas that will eventually allow us to show that the averaging polynomials
problem can be resolved by considering interlacing. First, we will state a lemma that relates the existence
of a common interlacer to real-rootedness of certain polynomials. We will present this lemma without proof,
but the proofs are located in [8,11]. The arguments are fairly long, but straightforward and involving only
basic polynomial arguments.

Lemma 6.4.1. If f1, ..., fk are univariate polynomials of the same degree and with positive leading coefficient,
then f1, ..., fk have a common interlacing ⇐⇒ all convex combinations of the f1, ..., fk are real rooted. (This
means that

∑
i ηifi is real rooted for all settings of the ηi where all η1 ≥ 0 and the ηi sum to 1).

Now, we will show that a common interlacing resolves the problem of averaging polynomials in a specific
case.

Lemma 6.4.2. If f1, ..., fk are of the same degree, are real rooted, have a positive coefficient on the highest
degree term, and have a common interlacing, then if we define

f∅ =

k∑
i=1

fi

we can say that there exists an i so that fi has a largest root that is at most the largest root of f∅.

Proof. We know that each of the fi tends to infinity (has positive leading coefficient) and has exactly one
root at or after αn−1. (The αj are the roots of the common interlacer.) Therefore, ∀i, fi(αn−1) ≤ 0. Thus,
the sum of the fi, which is f∅, is less than or equal to zero at αn−1. Since f∅ also tends to infinity, we know
that it has a root at or after αn−1, which we will denote as γ. Since f∅(γ) = 0, we know that either all the fi
have a zero at γ (meaning that we are done) or there exists some i′ so that fi′(γ) > 0. But we already know
that fi′ was non-positive at αn−1 and thus has a root between αn−1 and γ. We also know that this must be
the largest root of fi′ . So, the largest root of fi′ is less than or equal to the largest root of f∅

Now, we will define a new term, one that is closely related to the common interlacing, and use the above
lemma to see that it also allows us to say what we want about the largest root of an average of polynomials.

Definition. (interlacing family) We start with some finite sets S1, ..., Sm and define a degree n, real-rooted
(with positive leading coefficient) polynomial for every choice of element from each set. This means that we
now have functions fs1,...,sm where s1 ∈ S1, ..., sm ∈ Sm. For every partial assignment of the set elements, we
define a function as follows:

fs1,...,sk =
∑

sk+1∈Sk+1,...,sm∈Sm

fs1,...,sk,sk+1,sm

Also, in analogy with the previous lemma, we define

f∅ =
∑

s1∈S1,...,sm∈Sm

fs1,...,sm

We say that the polynomials {fs1,...,sm |s1 ∈ S1, ..., sm ∈ Sm} form an interlacing family if for all k = 0, ...,m−1
and for all correlating partial assignments s1, ...sk, we have that the polynomials {fs1,...,sk,t|t ∈ Sk+1} have a
common interlacing.

Theorem 6.5. If we have an interlacing family of polynomials, then there exists some choice of elements
s1, ..., sm from the S1, ..., Sm such that the largest root of fs1,...,sm is at most the largest real root of f∅.
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Proof. We will induct on k, the size of the partial assignment. If k = 0, then we have, straight from the
definition of interlacing family, that the polynomials {ft|t ∈ S1} have a common interlacing. Notice that the
polynomials in this set are of the same degree (since all the fs1,...,sm are) and have positive leading coefficient
(for the same reason). Now we can apply Lemma 6.4.1 to show that the polynomials here are real rooted
(since all convex combinations are real-rooted, we can look at the combinations that set some ηi to 1 to show
that each individual polynomial is real-rooted). Now, we satisfy the requirements of Lemma 6.4.2, and can
say that there exists a t so that the largest root of ft is at most the largest root of the sum, which equals∑
s1∈S1

∑
s2∈S2,...,sm∈Sm

fs1,...,sm = f∅. To induct, we can suppose that for some partial assignment s∗1, ..., s
∗
k,

the largest root of fs∗1 ,...,s∗k is at most the largest root of f∅. Then, since {fs∗1 ,...,s∗k,t|t ∈ Sk+1} has a common
interlacer, we know by Lemmas 6.4.1 and 6.4.2 that there is a t∗ ∈ Sk+1 such that the largest root of fs∗1 ,...,s∗k,t∗

is at most the largest root of
∑
t fs∗1 ,...,s∗k,t∗ = fs∗1 ,...,s∗k , a polynomial with largest root at most the largest root

of f∅, by the inductive hypothesis. Continuing this argument until k = m− 1, we achieve the result.

We now just need to show that the polynomials {χAs
(x)}s∈{0,1}m are an interlacing family.

Theorem 6.6. The polynomials {χAs
(x)}s∈{0,1}m are an interlacing family.

Proof. Since we are considering signings again, we can take our sets S1, ..., Sm to be {1,−1}. We set fs1,...,sm
to equal χAs

where the signing s = s1, ..., sm. Let us consider, for any λ ∈ [0, 1], any k such that 0 ≤ k ≤ m−1,
and any partial setting of length k, the polynomial

λfs1,...,sk,1 + (1− λ)fs1,...,sk,−1

Let’s assume for a moment that all polynomials of this form are real-rooted. We have

fs1,...,sm = χAs
(x) = det(xI −As) =

∑
σ∈sym([n])

(−1)|σ|
n∏
i=1

(xI −As)i, σ(i)

Considering the identity permutation, we know that all these polynomials have largest term xn. Thus, the
partial assignment functions, which are just sums of the fs1,...,sm have positive leading coefficient and are all
of the same degree. So, (under our real-rootedness assumption), they satisfy the conditions of Lemma 6.4.1.
Then, Lemma 6.4.1 tells us that fs1,...,sk,1 and fs1,...,sk,−1 have a common interlacer. This means that the
{fs1,...,sm |s1 ∈ S1, ..., sm ∈ Sm}, which are the {χAs

(x)}s∈{0,1}m are an interlacing family.

To deal with the real-rootedness assumption we just made, we refer the reader to the original paper [20]
where this was proven. The proof is rather long and uses the concept of real stability, which is a generaliza-
tion of the notion of real-rootedness to the complex plane.

We are now ready to prove the main existence proof for Ramanujan graphs.

Theorem 6.7. There exist infinite families of bipartite Ramanujan graphs of all degrees at least 3.

Proof. Select an arbitrary degree d at least 3. Then, we can start with Kd,d, the complete bipartite graph of
degree d. This graph is Ramanujan. Therefore, when considering a two-lift of the graph, the new graph is
Ramanujan if the eigenvalues of the signed adjacency matrix, As are in the appropriate interval, by Theorem
6.1. But we proved that the χAs

are an interlacing family, meaning that there is some signing s∗ such that
the largest root of χA∗s is at most the largest root of the sum

∑
s∈{0,1}m χAs

. Clearly, the largest root of that

sum is the same as the largest root of Es [χAs(x)], which equals µG(x), by Theorem 6.3. Theorem 6.4 tells
us that the largest root of µG(x) is at most 2

√
d− 1. Therefore, the largest root of χA∗s is at most 2

√
d− 1.

But taking a 2-lift of a bipartite graph yields another bipartite graph, meaning that by Theorem 6.4, the
smallest eigenvalue is at least −2

√
d− 1. Therefore, we know that the new graph, after taking the 2-lift, is

still Ramanujan. Continuing this process means that we get an infinite family of Ramanujan graphs of degree
d.
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7 Pseudorandomness and applications to theoretical CS

7.1 Expander mixing lemma

This well-known theorem shows that the better an expander is (the smaller µ̂(G) is, the more it appears
to be random. We will first state and prove the theorem and then see why the theorem sheds light on the
pseudorandomness of the graph.

Theorem 7.1. (expander mixing lemma) Let S and T be subsets of the vertices of a d-regular graph G. Then,∣∣∣∣|E(S, T )| − d

n
|S||T |

∣∣∣∣ ≤ µ̂(G)
√
|S||T |

Proof. We follow the arguments made in [16]. Note that in this context, we define µ̂(G) as max{|µ1|, |µn−1|}.
This means that connected bipartite graphs have µ̂ = d.
Define 1S and 1T to be the indicator vectors for S and T . Also, define αj and βj so that the following

hold: 1S =
∑n−1
i=0 αivi and 1T =

∑n−1
i=0 βivi (the vi are the orthonormal basis of A). It is easy to check that

1SA1T =
∑
v∈S

∑n−1
i=0 Avj(1T )j = |E(S, T )|.

Clearly then, we have |E(S, T )| =
(∑n−1

i=0 αivi

)
A
(∑n−1

i=0 βivi

)
, which equals the following, by distributing

A and using the fact that the vj are orthogonal:
∑n−1
i=0 µiαiβi. Next, note that since α0 is the length of the

projection of 1S onto v0, we have α0 =< 1S , v0 >= |S|√
n

. Similarly, β0 = |T |√
n

. (Note that v0 is the constant

vector with norm 1, or (1/
√
n, ..., 1/

√
n).) Therefore, we have:

|E(S, T )| = µ0α0β0 +

n−1∑
i=1

µiαiβi =
d|S||T |
n

+

n−1∑
i=1

µiαiβi

That implies: ∣∣∣∣|E(S, T )| − d|S||T |
n

∣∣∣∣ =

∣∣∣∣∣
n−1∑
i=1

µiαiβi

∣∣∣∣∣ ≤
n−1∑
i=1

|µiαiβi|

Since µ̂(G) is defined to be the second largest eigenvalue, in absolute value, we have:∣∣∣∣|E(S, T )| − d|S||T |
n

∣∣∣∣ ≤ µ̂(G)

n−1∑
i=1

|αiβi|

Application of Cauchy-Schwartz (and realizing that adding in the first element in the α and β vectors only
increases the norm) yields:∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ µ̂(G)||α||2||β||2 = µ̂(G)||1S ||2||1T ||2 = µ̂(G)
√
|S||T |

where the second to last equality follows from the n-dimensional Pythagorean theorem, which applies to the
eigenvector decomposition of 1S and 1T since the vj are orthogonal.

We note that a kind of converse of this theorem holds, the exact statement of which and proof we omit.
Simply put, knowing that

∣∣|E(S, T )| − d
n |S||T |

∣∣ ≤ γ√|S||T | allows us to put bounds on µ̂(G) in terms of γ.

7.2 Expansion as pseudorandomness

Clearly, better expanders give a better bound on the difference between the number of edges between any two

subsets of the vertices and the quantity d|S||T |
n . This quantity is significant because it represents the expected

number of edges between S and T in a random graph. This is because the number of edges leaving a vertex
set of size |S| in a d-regular graph is d|S|, and if the edges lead to a vertex chosen uniformly at random,

then each edge would lead to a node in T with probability |T |n . Hence, the expected number of edges leading

between S and T is d|S| |T |n (note that this protocol for creating a random graph could lead to multiple edges
between the same nodes). Therefore, very good expanders will ensure that the number of edges between any
two vertex subsets is close to this quantity.
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7.3 Extractors via expander random walks

Before getting into the definition of extractors and how we can create them via random walks on expanders,
we need some background information.

7.3.1 Min-entropy of random variables, statistical distance, and extractors

Definition. (min-entropy) We define the min-entropy of a random variable X as

sup{k | ∀x ∈ range(X),Pr[X = x] ≤ 2−k}

Notice that if X has no randomness (meaning there exists an x such that Pr[X = x]=1), then the min-
entropy is equal to 0. Also, if X has finite range with n values and is uniform, then the min-entropy is n.

Definition. (statistical difference) We define the statistical distance between two random variables with finite
and identical range as: 1

2 |X − Y |1, which equals 1
2

∑
ω∈range(X) |Pr[X = ω]− Pr(Y = ω]|.

Definition. (extractor) A (k, ε)-extractor is a function Ext:{0, 1}n × {0, 1}d → {0, 1}m if for any random
variable X with range {0, 1}n and min-entropy at least k, then the statistical difference between the uniform
distribution over {0, 1}m (denoted Um) and Ext(X,Ud) is less than ε.

7.3.2 The random walk

We now want to show how to use a random walk over an expander graph to obtain an extractor. We follow
the description given in [2]. Fix ε > 0 and d and for all n, k ∈ Z+ with k ≤ n, let X be an arbitrary random
variable over n bits with min-entropy at least k. Also, let G be a d-regular expander graph (from an infinite
family of d-regular graphs) with 2n vertices, where µ̂(G) < d

2 . Let s be a sample from X and have z be a
uniformly random string of length t = (n/2 − k/2 + log 1/ε + 1) log d = O(n − k + log 1/ε). Note that, by
associating each of the vertices in G with a bit string label of length n, we can pick the vertex in G that is
represented by the sample s and take a walk from there. This walk is defined by z in the following way: at
each step we have to choose an edge from among d choices, a task that requires log d bits. We do this process
n/2− k/2 + log 1/ε+ 1 times, using up all of the bits in z. Then, we output the label (a bit string of length
n) of the final vertex visited in the walk.

Theorem 7.2. The process described above yields a (k, ε)-extractor.

Proof. Recall from Lemma 4.2.1 that:∣∣∣∣∣
∣∣∣∣∣
(

1

d
A

)t
p− ω

∣∣∣∣∣
∣∣∣∣∣
2

≤
(
µ̂

d

)t
||p′||2 =

(
µ̂

d

)t
||p− ω||2

Now, since p represents the probability distribution of a random variable with min-entropy 2−k, we know that
||p||22 ≤ 2−k. This fact is basically the result of noticing that the L2 norm of a vector where the entries sum to
1 is maximized by putting all of the weight on as few entries as possible (think of how the L1 norm is always
less than or equal to the L2 norm). So, we can assume that all the weight is on the first 2k terms and that all

entries have weight 2−k (due to the min-entropy constraint): ||p||22 ≤
∑2k

i=1 (2−k)
2

= 2−k =⇒ ||p||2 = 2−k/2.
Clearly, ||ω||2 = 2−n/2. This means that we have:

||p− ω||2 ≤ ||p||2 + ||ω||2 ≤ 2−k/2 + 2−n/2

Since k ≤ n, we have that 2−k/2 + 2−n/2 ≤ 2−k/2(1 + 1) = 2−
k
2+1 So, we have∣∣∣∣∣

∣∣∣∣∣
(

1

d
A

)t
p− ω

∣∣∣∣∣
∣∣∣∣∣
2

≤
(
µ̂

d

)t
||p− ω||2 ≤

(
1

2

)t
2−k/2+1 = 2−(n/2+log 1/ε) = ε2−n/2
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The distribution of the output of the extractor is given by
(
1
dA
)t
p. This means that the L2 norm of the

difference betweeh the extractor output and the uniform distribution is less than ε2−n/2 = ε√
2n

. It is well-

known that if a vector v is in Rj , then |v|1 ≤
√
j||v||2. Since

(
1
dA
)t
p − ω ∈ R2n , it immediately follows

that ∣∣∣∣∣
(

1

d
A

)t
p− ω

∣∣∣∣∣
1

≤ ε

This means that the statistical difference between
(
1
dA
)t
p and ω is less than ε, which means that the function

described is the desired extractor.

Very many other extractor constructions exist, as one can see in [26,29,31,32,33]. Also notice that extrac-
tors can be considered from the perspective as a bipartite graph. An extractor Ext:{0, 1}n×{0, 1}d → {0, 1}m
takes two arguments and gives a single output, so we can associate left vertices with all 2n potential first
arguments and right vertices as all 2m potential outputs, and connect vertices x and y if there exists a second
argument, a ∈ {0, 1}d such that Ext:(x, a) = y. There are interesting connections between how well the
extractor works and the expansion properties of the graph (see [29]). Finally, there exist functions, essentially
weakened extractors, which are called dispersers. Just as extractors can be thought of as bipartite expanders,
dispersers give rise to Ramsey graphs (graphs with no large clique or independent set). Confer [3] for more
about this.

Extractors are closely related to pseudorandom generators, which in turn have consequences in complex-
ity theory. For example, Nisan’s pseudorandom generator for space-bounded computation relies on extractor
functions, and was used to prove relationships between complexity classes. In this case, Nisan’s pseudoran-
dom generator, described in [2], shows that BPL ⊆SPACE(log2 n) (BPL is two-sided error, poly-time, and
log-space). It was later shown that BPL ⊆ SPACE(log1.5 n), leading to the conjecture that BPL =L. (Since
L ⊆ P and RL, co-RL ⊆ BPL, where RL is one-sided error, this statement would mean that access to
randomness does not fundamentally aid computations that can be completed in logspace.)

7.4 Other applications to complexity

7.4.1 Using expanders to collapse complexity classes

In the previous section, we mentioned the conjecture that BPL = L. Here, we will briefly mention the
2004 result of Omer Reingold that shows that SL = L. The proof followed immediately by showing that
the UPATH problem was in L. Since L ⊆ SL and UPATH is SL-complete, that suffices to show equality
between those classes. We won’t define the class SL, but just mention how expanders played a role in
this result. The UPATH problem asks that given an undirected graph and two vertices, whether they are
connected by some path. Clearly, one can just take a random walk starting at one vertex and see whether
they reach the other vertex. However, the length of the path required could become a problem. This issue
was handled by Reingold by breaking a graph into pieces that are expander graphs. Then, recall that we saw
in Corollary 4.2.1 that expanders have a logarithmic diameter. This means that a logarithmic length random
walk suffices to check connectivity, and this is crucial to showing that the calculation can be done in logspace
(i.e. in L).

7.4.2 Randomness reduction in algorithms

Expander graphs can be used to reduce the amount of randomness needed by randomized algorithms. For
example, take an algorithm in RP. Such an algorithm returns 0 when it should with probability 1 and returns
1 when it should at least half of the time (say with probability 1− p). Thus, the false positive rate is 0 and
the false negative rate is p. Clearly, if we run the algorithm once, and the output is 0, then the probability
that the algorithm made a mistake (the correct answer is 1) is p. Of course, we can run the algorithm k times
(this would still be running in poly time) to reduce the failure chance to pk. But it seems like if the algorithm
requires m random bits to run, then this operation would require mk bits. Expander graphs allow us to
circumvent this difficulty. We associate every length m bit string with each vertex. Instead, one can choose a
starting vertex uniformly at random (requiring log |V | bits) and then take a k step random walk in the graph.
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We use the bit string at each vertex as the source of randomness to run the algorithm. To motivate this, first
note that expanders are sparse but resemble the complete graph. The sparsity means that taking a random
walk over the vertices requires few bits (if the graph is degree d, then each step requires a selection among
d choices, which requires log d random bits). The fact that expanders are like the complete graph (they mix
quickly) means that, although the vertices visited on the path are not completely random as they are in a
complete graph, they are close enough to random. Again, see [2,16,33] for a more formal explanation of this
idea, and the proof that this scheme actually works in that the error is small enough to be ignored, and we
can still obtain exponentially small error with a number of random bits that is only linear in the number of
runs.

8 Survey of constructions of families of graphs

A family of graphs is usually considered to be some sequence of graphs (with increasingly many vertices) that
have a desired property. We will concern ourselves with how to create families of graphs that are expanders
(or Ramanujan), where each family has fixed degree.

8.1 Expanders

Any connected and non-bipartite d-regular graph is a spectral expander in that its second largest adjacency
matrix eigenvalue (in absolute value) is less than d. Therefore, any sequence of such graphs makes a trivial
expander family. Therefore, we want to construct families such that the eigenvalues are all bounded away
from d (meaning less than some fixed number that is less than d).

8.1.1 Margulis-Gabber-Galil expanders

First, we denote the group Z/nZ as Zn. Then, for each n, we have a graph Gn with a vertex set of size n2 that
we associate with Zn×Zn. Thus, each vertex is represented as a pair (a, b), where a and b are in {0, ..., n−1}.
The vertex (a, b) is then connected to: (a+1, b), (a−1, b), (a, b+1), (a, b−1), S(a, b), S−1(a, b), T (a, b), and T−1(a, b),
where we define S(a, b) as (a, a+b) and T (a, b) as (a+b, b). Addition in this group is coordinate-wise addition
modulo n. Then, by the arguments presented in [30], the graph family {Gn}n∈Z+ is a non-trivial infinite
family of expanders. (Note that these graphs are sparse in that they all have degree at most 8.)

8.1.2 Combinatoric constructions

We simply note here that another, and non-algebraic, technique that is used to construct expander families is
to use various graph operations, some of which are the matrix product, tensor product, replacement product,
and zig-zag product. Precise definitions of these operations, and proofs regarding how they can be used to
transform small expanders into larger ones are given in [2].

8.2 The LPSM Ramanujan graphs

8.2.1 Cayley graphs

Definition. (Cayley graph) A Cayley graph is defined in terms of a group G and a subset S, where S is a
generating set (meaning that < S >= G). The vertices of the Cayley graph are associated with the group
elements, and for all g ∈ G, we have the following edges:

{{g, gs}|s ∈ S}

In the following construction, we will take G = PGL(2, q), where that group is the group of 2×2 nonsingular
matrices with entries in Fq = Z/qZ.
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8.2.2 The Lubotzsky-Phillips-Sarnak construction

The construction created in [18] (and described in [23]) has us choosing primes p and q, where p 6= q and both
p and q are congruent to 1 mod 4. Pick u ∈ Z such that u ≡ −1(mod q). By a Jacobi formula, there are
exactly p+ 1 integer solutions to the equation a2 + b2 + c2 + d2 = p where a is odd and greater than zero and

the other integers are even. Associate every such solution with a matrix defined as

[
a+ ub c+ ud
−c+ ud a− ub

]
Now,

take S to be the p+ 1 matrices of this form. This, along with the group G allows us to define a Cayley graph,
and it was shown that all such graphs Cay(G,S) are Ramanujan. Note that these graphs are p + 1-regular
since |S| = p + 1, and the number of vertices is q = |Fq|. Fixing p and letting q get large yields infinite
families of Ramanujan graphs. Margulis [22] generalized this result by giving constructions of Ramanujan
graphs for degrees that are prime powers plus one, not just primes plus one. Other Cayley graph expanders
are constructed in [19,27,33].
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