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1. Definitions

Definition 1.1. A circular planar graph
G is a collection of boundary vertices
∂V , interior vertices intV and undirected
edges E such that |∂V |, |intV | and |E|
are finite and G has a circular embed-
ding—that is, an embedding where ev-
ery vertex in ∂V is mapped to a point
on the boundary circle, every vertex in
intV is mapped to a point in the open
disk, and no pair of edges cross.

Definition 1.2. A medial graph for a
circular planar graph is a finite collection
of smooth curves called geodesics, such
that each geodesic has both its endpoints
on the boundary circle.

Each medial graph admits exactly two
2-colorings—coloring each cell either black
or white so that no cell in the medial
graph shares an edge with another cell
of the same color—each of which gives
rise to a unique circular planar graph.
The graph for a fixed 2-coloring is de-
termined as follows: place a boundary
vertex in each black cell adjacent to the
boundary and an interior vertex in each
black cell not adjacent to the boundary.
Join vertices v1, v2 with an edge if and
only if their respective medial cells share
a corner.

Definition 1.3. An infinite half−planar
network G is a collection of boundary
vertices ∂V , interior vertices intV and
undirected edges E that can be embed-
ded in the upper half-plane such that the
boundary vertices lie on the real axis,
the interior vertices are in the open half-
plane, and no pair of edges cross. We

Figure 1.1—Example of a circular pla-
nar graph

Figure 1.2—The medial graph for the
given circular planar graph

Figure 1.3—The dual graph—the cir-
cular planar graph corresponding to the
reverse 2-coloring of the same medial graph.
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further require that every vertex v be an
endpoint of only finitely many edges.

Definition 1.4. A circular pair is a par-
tition of the real line into two compo-
nents P and Q such that some conformal
mapping of the half-plane into the unit
disk maps P and Q to arcs partitioning
the boundary circle.

Figure 1.4—A circular pair formed by
a partition of the real line into two rays

Figure 1.5—Under a conformal map-
ping to the unit disk, the point at infinity
becomes an interior point in one of two
arcs that partition the boundary circle.

Figure 1.6—One component of the cir-
cular pair is a finite line segment, and the
other is the union of two rays.

Figure 1.7—Under a conformal map-
ping to the unit disk, the point at infinity
becomes an interior point in one of two
arcs that partition the boundary circle.
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Definition 1.5. A connection through
an infinite half-planar network G is a
pair of finite sets of boundary vertices,
S1 and S2, such that |S1| = |S2| and
S1 and S2 lie in complementary ”arcs”
with respect to some circular pair, to-
gether with a collection of vertex-disjoint
paths where each path joins a vertex in
S1 to a vertex in S2 and contains no
other boundary vertices.

Definition 1.6. A graphG is well-connected
if given any finite sets of boundary ver-
tices S1, S2 where |S1| = |S2| and S1, S2

lie in complementary arcs of some circu-
lar pair, there exists a connection from
S1 to S2.

Definition 1.7. To delete an edge e =
ev1,v2 from a networkGmeans to remove
it from the edge set E while leaving the
rest of the edges in the graph unchanged.

Definition 1.8. To contract an edge e =
ev1,v2 means to replace v1 and v2 with a
single vertex ṽ such that ṽ is adjacent
to a vertex p in the transformed graph if
and only if p was a vertex distinct from
v1, v2 that was adjacent to at least one
of v1, v2 in the original graph. We im-
pose the constraint that edge contrac-
tions must preserve boundary vertices.
That is, edges joining two boundary ver-
tices may not be contracted. When con-
tracting an edge joining a boundary ver-
tex to an interior vertex, we identify the
new vertex with the boundary vertex it
replaces.

Definition 1.9. To remove an edge from
a network G means to either delete it or
contract it.

Definition 1.10. We say that an edge
removal (deletion or contraction) breaks
a connection through G if there are sets
S1, S2 of boundary vertices that are con-
nected through G prior to the edge re-
moval but not afterward.

3-connections with respect to each type
of circular pair. (Edges in the graph
omitted.)

Figure 1.8

Figure 1.9

Figure 1.10—Original graph

Figure 1.11—Graph after edge deleteion

Figure 1.12—Graph after edge con-
traction
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Definition 1.11. An edge e is called
essential if every legal method of remov-
ing it breaks a connection through G.
That is, a boundary-boundary edge is es-
sential if deleting it breaks a connection.
If e is not a boundary-boundary edge,
it is essential if there exist connections
c1, c2 such that c1 is broken if e is deleted
and c2 is broken if e is contracted.

If an edge e is not essential (that is,
there is a legal way to remove it that pre-
serves all connections through G), then
it is called inessential.

Definition 1.12. A medial graph for
an infinite half-planar network is a pos-
sibly infinite collection of smooth arcs
(geodesics) in the upper half plane such
that under a conformal mapping of the
upper half-plane to the disk, each geo-
desic intersects the boundary circle twice.
We further require that for any compact
region in the upper half-plane, only finitely
many geodesics pass through it.

Definition 1.13. A finite (or reentrant)
geodesic is a geodesic that intersects the
real axis twice.

Definition 1.14. A geodesic ray is an
infinite geodesic that intersects the bound-
ary exactly once.

Definition 1.15. A geodesic line is an
infinite geodesic that does not intersect
the boundary.

Remark 1.16. When we refer to a loop
in a medial graph, we refer to a closed
loop formed by a geodesic that intersects
itself.

Definition 1.17. When a pair of geodesics
intersect each other twice, we say they
form a lens.

Definition 1.18. A pseudocritical net-
work is an infinite network whose medial
graph has no loops and no lenses.

Remark 1.19. Observe that two inter-
secting geodesic rays can be uncrossed to
give either two non-intersecting geodesic
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rays or a finite geodesic and a geodesic
line.

Definition 1.20. We say that a set of
geodesics is parallel if no pair of geodesics
in the set cross.

Definition 1.21. To comb a finite set
of geodesic rays means to remove every
intersection between pairs of rays in the
set in the way that preserves geodesic
rays.

Remark 1.22. Observe that combing a
finite set of rays in a pseudocritical graph
takes finitely many steps, because each
uncrossing decreases the total number of
crossings between pairs of geodesics in
the set by one, and the initial number
of crossings in a set of size k does not
exceed

(k
2

)
.

Definition 1.23. The geodesics in some
finite set are called adjacent if the set
consists of all the geodesics that have a
least one endpoint in some fixed, finite,
connected cut.

Lemma 1.24. Let S be a finite real in-
terval such that if g is any geodesic ray
with an endpoint in S, g does not bound
any lens.

Then there is a finite sequence of un-
crossings between pairs of rays with end-
points in S such that (1) the number of
rays with an endpoint in S is the same at
each step, (2) no step creates any lenses,
and (3) after the process terminates, no
pair of rays with an endpoint in S cross.

Proof. We first impose a partial order-
ing on the set C of crossings between
pairs of geodesic rays with endpoints in
S. For each ray g with an endpoint in
S, fix a parametrization πg : [0, 1) →
H such that g is the image of πg. We
say that a crossing c1 between a pair of
rays with endpoints in S is above an-
other such crossing c2 if there is a path
from c1 to c2 using only segments of rays
originating in S, where each segment is
traversed in order with respect to its

Uncrossing a finite collection of geo-
desic rays in a pseudocritical graph:

Choose a ”highest crossing”: that is,
identify two rays g1 and g2 such that
g1 and g2 intersect at a point c, and
if f1 : [0, 1) → g1, f2 : [0, 1) → g2 are
parametrizations f−1

1 (c′) ≤ f−1
1 (c) and
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parametrization.
Since there are finitely many rays with

endpoints in S and by hypothesis, no
pair cross each other twice, there are finitely
many crossings in C. Hence, there must
be some crossing c∗ such that no crossing
in C is above c∗. We claim that uncross-
ing c∗ in the way that produces two rays
does not introduce any lenses.

Suppose that c∗ is formed by the ray
geodesics g1 and g2, and that uncross-
ing it replaces g1 and g2 with new ray
geodesics g′1 and g′2. Since no other cross-
ings are affected by the uncrossing, if any
lens is produced, either g′1 or g′2 must
bound it on one side. Assume that a lens
is produced. Let g3 denote the other ge-
odesic bounding the lens. Since uncross-
ing g1 and g2 switches the portions above
the crossing, g3 must have crossed g1 and
g2 on opposite sides of the crossing with
respect to their parametrizations.

Without loss of generality, g3 crossed
g1 below the crossing and g2 above the
crossing. By assumption, there were no
crossings in C above c∗, so the crossing
between g2 and g3 cannot have been in
C. Hence, g3 is not a geodesic ray with
an endpoint in S.

Consider the region R bounded by g1
and g2 below c∗. Since g3 does not have
an endpoint in S, it enters and exits R an
equal number of times. Hence, it crosses
g1∪g2 below c∗ an even number of times.
By assumption, g3 crosses g1 below the
crossing, so it crosses g1 ∪ g2 below c∗ at
least twice. But it also crosses g2 above
the crossing, so it crosses g1∪g2 at least 3
times. Hence, either g1 or g2 must cross
g3 multiple times, and hence form a lens
with g3. This is a contradiction, since no
ray with an endpoint in S bounds a lens.

Hence, uncrossing a highest crossing
does not introduce any lenses bounded
by a geodesic with an endpoint in S.

Repeating this until there are no more
crossings in C shows that after combing
the geodesic rays with endpoints in S, we

f−1
2 (c̃) ≤ f−1

2 (c) for any points c′ where
g1 crosses another geodesic from the col-
lection and c̃ where g2 crosses another
geodesic from the collection.

Remove the crossing as follows: re-
move the vertex c from the medial graph.
This splits g1 into a finite half-geodesic
and an infinite half-geodesic, and simi-
larly for g2. Attach the infinite portion
of g1 to the finite portion of g2, and vice
versa, separating the resulting geodesic
rays.

Choose a new highest crossing.
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still have the property that no geodesic g
with an endpoint in S bounds any lens.

!

After resolving the crossing.

Note that it is possible for a collection
of rays to have two ”highest crossings”
(shown in red and blue). In such a case,
choose an arbitrary highest crossing to
resolve.

Crossing resolved.
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Definition 1.25. A half−planar lattice
graph is an infinite network whose me-
dial graph can be drawn as a lattice:
that is, the medial graph consists of in-
finitely many ray geodesics and infinitely
many line geodesics, such that no pair of
rays cross, no pair of lines cross, and each
line crosses each ray exactly once.

Definition 1.26. A lattice block is a fi-
nite, circular planar graph that is equiva-
lent to the graph formed as follows. Take
2k consecutive rays and the lowest k lines
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intersecting them. Take the subgraph
bounded by the real axis, the left- and
rightmost selected rays, and the kth hor-
izontal line, and remove all edges exiting
the region.

Remark 1.27. Consider the lattice graph
with medial graph consisting of infinitely
many vertical rays intersected by infin-
itely many horizontal lines. Consider any
set of k adjacent boundary vertices (where
k is finite). Let S be the finite subgraph
bounded between the vertical geodesic
left of the leftmost boundary vertex, the
vertical geodesic right of the rightmost
boundary vertex, and the kth horizontal
geodesic from the boundary and preserv-
ing boundary and interior nodes. Clearly,
S is well-connected.

Proof. Suppose that the boundary ver-
tices in the lattice block are labeled from
left to right as v1, v2, ..., vk. Suppose
that we wish to connect the vertices va
and va+d, where a, d > 0 and a+ d ≤ k.
Travel up and to the right d times, then
down and to the right d times. !
Remark 1.28. Since removing edges does
not introduce any new connections, if
a network G can be transformed to a
network G̃ via a series of edge-removals,
then every connection in G̃ is also present
in G.

Lemma 1.29. Let G be a pseudocriti-
cal half-planar graph and let S ⊆ G be a
connected real interval with k boundary
vertices. Suppose that the 2k geodesic
endpoints about these vertices belong to
distinct, parallel geodesic rays. If there
are at least k disjoint, broken-line geo-
desic paths across these rays such that
each path intersects each ray at a single
point, then S is well-connected.

Proof. We will show that the broken-line
paths can be uncrossed to give at least
k straight geodesic paths across the par-
allel, adjacent rays. Because this gives a

Let I be a finite real interval. Suppose
there are n geodesic endpoints in I, be-
longing to n geodesic rays such that no
pair cross each other and none of these
rays bounds a lens. Let l denote the
leftmost of these rays, and let r denote
the rightmost. If there are n disjoint,
broken-line geodesic paths across the re-
gion between l and r, ...
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lattice block, which we know to be well-
connected, it will imply that the bound-
ary nodes in the original strip was well-
connected. Since we restrict our defini-
tion of infinite networks to those graphs
such that only finitely many geodesics
intersect any compact subset of the me-
dial graph, the paths can be uncrossed in
finitely many steps. Furthermore, this
will not introduce any crossings of the
rays with endpoints in the interval, since
by assumption the broken-line paths do
not use any segments of the parallel rays.

Let R be the compact region bounded
by the leftmost and rightmost geodesics
in the cut, the real axis, and the kth

broken-line path counted from the bot-
tom.

Let p be the lowest path in the set.
By the Jordan curve theorem, since R
is a simply connected planar region, p
separates R into two disjoint regions.

Follow the path across the upper bor-
der of the lowest layer of cells in R and
remove any crossings along it in the way
that preserves the path. This process
produces a horizontal path that inter-
sects each geodesic ray from the cut at
its lowest crossing. Clearly, the lowest
layer of geodesic cells in R is below p
and paths 2 through k are above p. Since
the k − 1 disjoint paths above p are not
affected by the process, we can repeat
this inductively, treating the last path
uncrossed taking the role of R.

After k iterations, we are left with k
disjoint, horizontal paths across the re-
gion such that for each 1 ≤ i ≤ k, the ith

path intersects each geodesic ray from
the cut at its ith crossing.

These paths form a lattice block with
the parallel rays from the cut. !

2. Theorems and results

Theorem 2.1. Every pseudocritical graph
with compact medial cells and no reen-
trant geodesics is well-connected.



14 GRACIE INGERMANSON

Proof. Given any two finite sets of bound-
ary vertices contained in disjoint arcs,
there is a finite, connected interval of R
containing their union. It therefore suf-
fices to show that the set of boundary
vertices along any finite, connected strip
is well-connected. Choose any such set.
The geodesic endpoints in the cut be-
long to a finite set of adjacent geodesic
rays. Combing these rays makes them
a set of adjacent, parallel rays through
a sequence of edge removals (which can-
not create new connections). By com-
pactness of medial cells, there must have
been infinitely many disjoint, broken-line
geodesic paths p such that for each ge-
odesic ray g originating in the cut, p
crossed g above the last crossing of g
with some geodesic ray from the cut. Since
no intersections of cut-rays and other geodesics
are removed in the combing, and the combed
graph is lensless, it must have infinitely
many disjoint, broken-line paths across
the parallel rays. Hence, the strip has
at least k disjoint, broken-line geodesic
paths across its parallel rays, and so it is
connected. !
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Corollary 2.2. Every edge crossing two ray geodesics in a pseudocritical graph
with compact medial cells and no reentrant geodesics is inessential.

Proof. Choose any edge crossing two boundary rays, and comb the (inclusive) set
of rays between them. The resulting graph lacks the edge in question and is pseu-
docritical with compact medial cells and no reentrant geodesics. Hence, it is well-
connected, and so no connection was broken. !

Definition 2.3. A half-geodesic is one of the connected components obtained by
removing a vertex from the medial graph.

Theorem 2.4. Every edge in a pseudocritical graph with compact medial cells and
no reentrant geodesics is inessential.
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Proof. It suffices to show that any edge crossing at least one line geodesic is inessen-
tial. We claim that after removing the edge, given any finite set of adjacent bound-
ary vertices, there is a sequence of geodesic uncrossings resulting in a graph in
which that set is clearly well-connected.

Choose any pair of crossing geodesics in which at least one is a line geodesic and
any finite cut with k adjacent boundary vertices and their corresponding geodesic
rays. Let U be the union of the set of geodesic rays in the cut and the chosen
crossed geodesics. Introduce a fictitious reentrant geodesic g such that the region
below g contains all crossings between pairs of geodesics in U . This cell contains
finitely many crossings. Introduce another fictitious reentrant geodesic g̃ such that
the region below g̃ contains if u and ũ are geodesics in U and v is a geodesic that
intersects u in the region bounded by g, then either ũ and v intersect under g̃ or
they do not intersect.

Observe that by compactness of medial cells, there are infinitely many disjoint,
broken-line geodesic paths that cross every half-geodesic from U that exits the
region bounded by g̃.

Remove every crossing between pairs of geodesics in U in a way that preserves
infiniteness. (This can be completed in no more than

(k+2
2

)
steps.) This process

may produce infinitely many lenses, but observe that every lens bounded on one
side by one of the geodesic rays from the cut occurs in the region below g̃. This
is because uncrossing a pair of geodesics introduces a lens only if there was some
geodesic which crossed both on opposite sides of the crossing.

Since the lenses are compact, each can be emptied in finitely many steps, then
removed by uncrossing both poles of every such lens in the proper way (such that
if g1, g2 are geodesics forming a lens, the portion of g1 below the first crossing in
the lens is connected to the portion of g1 above the second crossing). At this point,
we can make the same argument about uncrossing paths to show equivalence to a
lattice block. !
Remark 2.5. Suppose g is a finite geodesic. Then g partitions H into a bounded
region B(g) and an unbounded region U(g).

Definition 2.6. A network G is called locally bounded if ∀v ∈ G, ∃ a finite geodesic
g such that v ∈ B(g).

Lemma 2.7. A pseudocritical network with compact medial cells is locally bounded
if and only if its dual graph is locally bounded.

Proof. It suffices to prove one direction, since duality is a symmetric property.
Suppose that G is a pseudocritical, locally bounded network with compact medial
cells, and choose any dual cell d. Assume that d is not bounded by any finite
geodesic. Since the primal cells bordering d are bounded by finite geodesics, d must
be surrounded by some collection C of finite geodesics g such that d ⊆ U(g) for
each g (and possibly by some finite segment of R). Let g1 be the geodesic in C with
the leftmost endpoint. Consider the first geodesic g2 in C that intersects g1 under
some parametrization such that the left endpoint of g1 is its initial point. Let l1, r1
be the left and right endpoints of g1, respectively, and let l2, r2 be the left and right
endpoints of g2. Now r2 must be to the right of r1, since otherwise both l2 and
r2 would be between l1 and r1. Hence the parity of the number of crossings of g1
and g2 is even. Since we know they cross, they must form a lens, a contradiction.
Similarly, if l2 is to the right of r2, g1 and g2 form a lens. Hence, the endpoints
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must have the order l1, l2, r1, r2. d is compact, bordered only by geodesics in C,
and the intersection with g2 is the first crossing between g1 and another geodesic
in C, so d must be bordered by some segment of g1 occurring after the crossing.
But this implies that d ∈ B(g2), contradicting the unboundedness of d.

Hence, in a pseudocritical network with compact medial cells, if every primal
cell is bounded by a finite geodesic, then every dual cell is bounded. !
Lemma 2.8. Let G be a pseudocritical, connected network with compact medial
cells. The following are equivalent: (i) G is locally bounded; (ii) there exists some
vertex v ∈ G such that v ∈ B(g) for infinitely many finite geodesics g; (iii) every
vertex v ∈ G is in B(g) for infinitely many finite geodesics g.

Proof. Clearly, (iii) implies (i) and (ii).
(i) =⇒ (ii): Suppose that G is locally bounded. Choose any vertex v ∈ G, and

suppose that v is bounded by exactly k finite geodesics for some k < ∞. Let S be
the smallest connected subset of R containing all the endpoints of these k bounding
geodesics. We claim that there exists some finite geodesic h such that one endpoint
of h is to the left of S and the the other endpoint is to the right of S. Since G is
pseudocritical, this implies that h bounds every finite geodesic with both endpoints
in S.

Let F be the compact region bounded by the union of all finite geodesics with at
least one endpoint in S. By compactness of medial cells, there must be a nonempty
layer L of cells such that ∀c ∈ L, c ∩ F ,= ∅ and c ∩ F ⊆ ∂F . Since G is locally
bounded, each such c must be bounded by some finite geodesic gc.

Order the cells in L starting from the cell bordering R and containing the leftmost
geodesic endpoint in F . Observe the following: the first cell in the ordering can only
be bounded by a geodesic with an endpoint to the left of S, and the last cell can
only be bounded by a geodesic with an endpoint to the right of S. It is impossible
to have two consecutive cells such that one is bounded by a geodesic with both
endpoints to the left of S and the other by a geodesic with both endpoints to the
right of S, since this would imply a lens. Hence, at least one cell in L must be
bounded by a geodesic with one endpoint to the left of S and one to the right of S,
proving our claim.

(ii) =⇒ (iii): Suppose that some vertex v ∈ G is bounded by infinitely many
finite geodesics. Choose any vertex ṽ ∈ G. Then there exists some compact region
C containing both v and ṽ. Since only finitely many of the geodesics bounding v
can pass through C and v is bounded by infinitely many geodesics, there must be
infinitely many geodesics bounding C. Hence, ṽ ∈ C is bounded by infinitely many
finite geodesics. !
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Theorem 2.9. Let G be a pseudocritical network with compact medial cells. Every
edge crossing two infinite geodesics is inessential.

Proof. Let c be a crossing of two infinite geodesics. There are 3 cases.
Case 1
For every finite geodesic g, c is not bounded by g. Let G̃ = ∩gfiniteU(g), let R̃

be the broken-line path bounding G̃ from below. (This path consists of all segments
s of R or of finite geodesics such that s is not bounded by any finite geodesic.)

Observe that any connection through G can be written as the direct sum of a
finite collection of connections through G̃ and connections through the region below
R̃. Since removing an edge above R̃ cannot break any connections below it, combing
out c can break a connection through G only if it breaks a connection through G̃.

Now G̃ is a pseudocritical, connected graph with compact medial cells and no
reentrant geodesics. Hence, c can be combed out in such a way that G̃ remains
well-connected. So no connection is broken, and hence the edge through c was
inessential.
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Case 2
c is bounded by a finite collection C of finite geodesics. Construct a set X as

follows: (i) c ∈ X, and (ii) given any geodesic g involved in some crossing x ∈ X,
if g crosses another infinite geodesic at some crossing y such that y is above x and
bounded by a finite geodesic in C, then y ∈ X.

This set is clearly finite, because the region bounded by the geodesics in C is
compact. Furthermore, no crossing in X is bounded by any finite geodesic not in
C, since clearly if an infinite geodesic g has crossings x and y, with y above x, then
every finite geodesic bounding y must also bound x.

Hence, by performing a finite sequence of Y −∆ transformations, each of which
moves a crossing x ∈ X from the bounded to the unbounded portion of some finite
geodesic g ∈ C, we obtain a graph ′G electrically equivalent to G in which c is not
bounded by any finite geodesic. Combing out all crossings in X from ′G leaves us
with a third graph electrically equivalent to ′G by the argument in Case 1.

But this graph is identical to the one obtained by combing out all crossings in X
from G. It follows that c can be removed from G without breaking any connections.
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Case 3
c is bounded by infinitely many finite geodesics. Choose any connection χ

through G, and fix a set of paths. Then there is a compact region D bounded
by the union of a finite collection C of finite geodesics, such that D contains all
paths used in χ and every cell neighboring a path used in χ.

If c is not contained in D, then it can be removed without breaking χ.
Suppose c is contained in D.

Remark 2.10. Observe that a Y is bounded by some finite geodesic g if and only if
its equivalent ∆ is bounded by g.

Use a finite sequence of Y −∆ transformations to move all infinite-infinite cross-
ings out of D. Since D fully contained all Y s and ∆s involved in the connection,
this yields a graph electrically equivalent to G in which all paths used in χ occur
in D. However, in this transformed graph, there are no infinite-infinite crossings
in D. Hence, χ must also exist in D under the transformation that combs out all
infinite-infinite crossings in D, including c. Since χ was an arbitrary connection,
this shows that no connection is broken by combing out c. Hence, the edge through
c must be inessential. !
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Note: A Y is bounded by a finite ge-
odesic g (shown in red) if and only its
equivalent ∆ is bounded by g.

Effects of moving the same crossing in
the dual graph (a∆−Y transformation).
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