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1 Introduction

With the rise of machine learning algorithms, one of the big focuses is on unsupervised learning, where
we aim to learn some inherent patterns of unlabeled data. The goal of these clustering algorithms is simple,
partition a set of n observations into k ≤ n sets that minimize some measure of variance, the most common
being within cluster variance. That is, minimize the distance between each point and the nearest cluster
center. This minimization problem is an NP-hard problem, so a 2-step iterative approach is taken to find a
local minimum.

First, we random choose k points to be our cluster centers, they can be data points or not. Then, for
each iteration t, we will update the k cluster centers in the following two steps.

1. Cluster Assignment: Find the cluster center that each observation is closest to and assign it to the
corresponding cluster.

2. Cluster Update: Update the cluster center to be the mean of all points in that cluster. If the cluster
is empty, no update is made.

Terminate the algorithm when there is no update to the cluster centers.

In many cases, squared Euclidean distance is used as the distance measure because the algorithm is
guaranteed to converge to a minimum in a finite number of iterations. Euclidean distance is also a natural
measure of distance between points. This is the classic K-Means algorithm, one of the simplest clustering
algorithms. However, the Euclidean distance measurement may not be accurate of the true data generating
process and yield results that do not make sense or are not meaningful. There is a natural question that
arises: are there other distances measures that we can use in the above algorithm that will still guarantee
convergence? The answer is yes. There are a collection of functions known as Bregman divergences and they
are the only such functions.

In this paper, we will introduce a class of distortion functions known as Bregman divergences and analyze
parametric clustering algorithms based off of these Bregman divergences. There are two types of clustering,
named hard clustering and soft clustering. Hard clustering assigns each data point to exactly one cluster.
In soft clustering, each data point is assigned a probability of belonging to a cluster, and therefore points
can belong to multiple clusters. The hard clustering algorithm presented is a direct generalization of the
K-Means algorithm that will be shown to converge. In addition, we establish a relationship between regular
exponential families and Bregman divergences to develop an efficient EM scheme for learning mixtures of
exponential family distributions that leads to a simple soft clustering algorithm. The primary source for this
exposition is the paper Clustering with Bregman Divergences by Banerjee, Dhillon, Ghosh, and Merugu [2].
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2 Preliminaries

In this section, we present some results on convex analysis as preparation. We then define the Bregman
divergence and present some of its useful properties.

2.1 Convexity

We begin with a brief discussion of convexity of sets and functions.

Definition 2.1. A subset S of Rd is said to be convex if (1− λ)x+ λy ∈ S for all x, y ∈ S, λ ∈ [0, 1]. That
is, the closed line segment between x and y lies in S. A convex combination of x1, ..., xn ∈ S is

∑n
j=1 λjxj

for λj ≥ 0,
∑n
j=1 λj = 1.

Theorem 2.1. A set S ⊂ Rd is convex if and only if S contains all the convex combinations of elements in
S.

Proof. We prove by induction on n, the number of elements in the convex combination. By definition, a
set is convex if and only if it contains all the convex combinations with n = 2. Take n > 2. Suppose that
S is closed under taking all convex combinations of fewer than n vectors. Let x =

∑n
j=1 λjxj be a convex

combination. There must exist λj 6= 1 and we relabel to call it λ1. Let y =
∑n
j=2 λ

′
jxj , where λ′j =

λj
1−λ1

.

Then
∑n
j=2 λ

′
j = 1 and y is a convex combination of n−1 elements. Hence y ∈ S by the inductive hypothesis.

Since x = λ1x1 + (1− λ1)y, we have x ∈ S.

Definition 2.2. The intersection of all the convex sets containing C ⊂ Rd is called the convex hull of S.
We denote this by co(S). It can be shown that co(S) is the set of all convex combinations of elements in S.

Definition 2.3. The relative interior of a convex set is

ri(S) = {x ∈ S| ∀ y ∈ S, ∃ λ > 1 : λx+ (1− λ)y ∈ S}

Definition 2.4. Let f : S → R, where S ⊂ Rd is a convex set. f is a convex function on S if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

for all x, y ∈ S, λ ∈ [0, 1]. If the above inequality is strict for λ ∈ (0, 1), f is called strictly convex.

Proposition 2.2. A function f : Rd → R is (strictly) convex if and only if the function g : R → R given
by g(t) = f(x + ty) is (strictly) convex as a function of t for all x ∈ dom(f), y ∈ Rd where dom(f) is the
domain of f . The domain of g is {t : x+ ty ∈ dom(f)}.

Proof. If f is convex, and t1, t2 ∈ dom(g), c ∈ [0, 1], we have

g((1− c)t1 + ct2) = f
(
x+ ((1− c)t1 + ct2)y

)
= f

(
(1− c)(x+ t1y) + c(x+ t2y)

)
≤ (1− c)f(x+ t1y) + cf(x+ t2y)

= (1− c)g(t1) + cg(t2)

To prove the other direction, let x, y ∈ dom(f) and define g(t) = f(x + t(y − x)). We assume that all such
functions are convex. For λ ∈ [0, 1], we have

g(λ) ≤ (1− λ)g(0) + λg(1)

f(x+ λ(y − x)) ≤ (1− λ)f(x) + λf(y)

Hence f is convex.

Notice that if we replace all ≤ with <, we obtain the result for strict convexity.
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Theorem 2.3. Suppose f : Rd → R is twice differentiable over an open domain. The following are equivalent.

(a) f is convex.

(b) f(y)− f(x) ≥ ∇f(x)T (y − x) for all x, y ∈ dom(f).

(c) ∇2f(x) is positive semi-definite for all x ∈ dom(f).

Proof. We will prove (a) ⇔ (b) and (b) ⇔ (c). If f is convex, then for all x, y ∈ dom(f), λ ∈ [0, 1],

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

f(x+ λ(y − x)) ≤ f(x) + λ(f(y)− f(x))

f(y)− f(x) ≥ f(x+ λ(y − x))− f(x)

λ

Taking λ↘ 0, we have f(y)− f(x) ≥ ∇f(x)T (y − x).

Suppose f(y) − f(x) ≥ ∇f(x)T (y − x) for all x, y ∈ dom(f). Take any x, y ∈ dom(f), λ ∈ [0, 1] and set
z = (1− λ)x+ λy. Then

f(x) ≥ f(z) +∇f(z)T (x− z)
f(y) ≥ f(z) +∇f(z)T (y − z)

(1− λ)f(x) + λf(y) ≥ f(z) +∇f(x)T ((1− λ)x+ λy − z)
= f(z)

= f((1− λ)x+ λy)

Hence f is convex. This concludes (a) ⇔ (b).

We first prove (b) ⇔ (c) in the case n = 1. Suppose (b) holds for x, y ∈ dom(f), x < y. Then

f(y) ≥ f(x) + f ′(x)(y − x)

f(x) ≥ f(y) + f ′(y)(x− y)

⇒ f ′(x)(y − x) ≤ f(y)− f(x) ≤ f ′(y)(y − x)

f ′(y)− f ′(x)

y − x
≥ 0

Taking y → x, we have f ′′(x) ≥ 0. Thus (c) holds.

To show the other direction, suppose f ′′(x) ≥ 0 for all x ∈ dom(f). Let x, y ∈ dom(f), and WLOG x < y.
By Taylor’s Theorem, for some c ∈ [x, y]

f(y) = f(x) + f ′(x)(y − x) +
f ′′(c)

2
(y − x)2

⇒ f(y) ≥ f(x) + f ′(x)(y − x)

For general d > 1, recall Proposition 2.2: f : Rd → R is convex if and only if g(t) = f(x0 + tx) for all
x0 ∈ dom(f), x ∈ Rd. By above, this happens if and only if g′′(t) = xT∇2f(x0 + tx)x ≥ 0. Hence f is convex
if and only if ∇2f(x) is positive semi-definite.

The above result does not hold verbatim for strictly convex functions, as we will see in the following theorems.

Theorem 2.4. Suppose f : Rd → R is twice differentiable over an open domain. Then f is strictly convex
if and only if f(y)− f(x) > ∇f(x)T (y − x) for all x, y ∈ dom(f).
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Proof. Suppose f(y) − f(x) > ∇f(x)T (y − x) for all x, y ∈ dom(f). By an analogous proof in the convex
case above, f is strictly convex.

Suppose f is strictly convex. Then f is convex, and we must have f(y)−f(x) ≥ ∇f(x)T (y−x) for all x, y ∈
dom(f). Suppose that for the sake of contradiction, there exists x 6= y such that f(y) = f(x)+∇f(x)T (y−x).
Let g(t) = f(x+ t(y − x))− f(x)− t∇f(x)T (y − x). For all t1, t2 ∈ [0, 1], c ∈ [0, 1], by strict convexity of f ,
we have

g((1− c)t1 + ct2) = f(x+ ((1− c)t1 + ct2)(y − x))− f(x)− ((1− c)t1 + ct2)∇f(x)T (y − x)

= f
(

(1− c)(x+ t1(y − x)) + c(x+ t2(y − x))
)
− f(x)− ((1− c)t1 + ct2)∇f(x)T (y − x)

< (1− c)f(x+ t1(y − x)) + cf(x+ t2(y − x))− f(x)− ((1− c)t1 + ct2)∇f(x)T (y − x)

= (1− c)g(t1) + cg(t2)

Hence g is strictly convex. Notice that, g(0) = g(1) = 0 and so

g(t) = g((1− t) · 0 + t · 1) < (1− t)g(0) + tg(1) = 0

However, we also have g′(t) = ∇f(x+ t(y−x))T (y−x)−∇f(x)T (y−x) so g′(0) = 0. By the strict convexity
of g, we have g(t) ≥ g(0) + g′(0)t = g(0) for all t ∈ [0, 1]. Thus we have reached a contradiction, and we
cannot have f(y) = f(x) + ∇f(x)T (y − x) for some x 6= y. Thus f(y) − f(x) > ∇f(x)T (y − x) for all
x, y ∈ dom(f).

Proposition 2.5. Suppose f : Rd → R is twice differentiable over an open domain. If ∇2f(x) is positive
definite for all x ∈ dom(f), then f is strictly convex.

Proof. Suppose ∇2f(x) is positive definite for all x ∈ dom(f). Let x, y ∈ dom(f), and WLOG x < y. By
Taylor’s Theorem, for some c ∈ [x, y],

f(y) = f(x) + f ′(x)(y − x) + (y − x)T
∇2f(c)

2
(y − x)

⇒ f(y) > f(x) + f ′(x)(y − x)

Therefore f is strictly convex.

Remark. Unlike the case of convex functions, the converse of Proposition 2.5 does not hold. Consider
f(x) = x4 on R. Then f ′′(x) = 12x2 is not positive definite on R, but f(x) is strictly convex: for x 6= y ∈ R,

f(y)− f(x)− f ′(x)(y − x) = y4 − x4 − 4x3(y − x)

= y4 − x4 − 4x3y + 4x4

= 3x4 − 4x3y + y4

= (x− y)2(2x2 + (x+ y)2)

> 0

Example 2.1. Examples of convex functions are ex,− log x on R, xa, a ≥ 1 or a ≤ 0 on x > 0, and x log x
on x > 0. Examples of multivariable convex functions include affine functions, f(x) = aTx+ b on R for any
a ∈ Rd, b ∈ R, norms, and real-valued linear transformations.

We present two useful corollaries.

Corollary 2.6. Suppose f : Rd → R is convex and differentiable. Then x0 is a global minimizer of f if and
only if ∇f(x0) = 0.
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Proof. Since ∇f(x0) = 0 is a necessary condition for x0 to be a global minimum, it suffices to show that if
∇f(x0) = 0, then x0 is a global minimizer. By Theorem 2.3, for any y ∈ Rd,

f(y) ≥ f(x0) +∇f(x0)T (y − x0) = f(x0)

Hence x0 is a global minimizer.

If f is strictly convex, then ∇f(x0) = 0 implies x0 is the unique global minimizer of f(x), since f(y) >
f(x0) +∇f(x0)T (y − x0) = f(x0).

Corollary 2.7. Let f : R→ R be twice differentiable. Then f is convex if and only if f ′ is increasing.

Proof. This follows directly from the second order conditions that f ′′(x) ≥ 0. The assumption on f can
be simplified to once differentiable, but the proof is not algebraically involved and will not be presented
here.

We conclude with a result due to Sierpinski.

Theorem 2.8. Let f : S → R be continuous, where S ⊂ Rd is a convex set. If for all x, y ∈ S,

f

(
x+ y

2

)
≤ f(x) + f(y)

2
(∗)

then f is convex. We call a function f satisfying (∗) a midpoint convex function.

Proof. Since the condition for convexity holds for λ = 1/2, it holds for all dyadic numbers λ ∈ (0, 1) by
induction. The dyadic numbers are dense in [0, 1], so by continuity, f is convex.

There are many more interesting properties of convex functions that we will not discuss. For more on
convex sets and functions, see Chapter 1 of Rockafellar’s Convex Analysis [11].

2.2 Bregman Divergences

We are now ready to define the Bregman divergence, the basis of this exposition. This was first introduced
by Bregman in 1967 to solve problems in linear and convex programming [5].

Definition 2.5. Let φ : S → R be a strictly convex function defined on a convex set S ⊂ Rd such that φ is
differentiable on ri(S) 6= ∅. The Bregman divergence dφ : S × ri(S)→ [0,∞) is defined as

dφ(x, y) = φ(x)− φ(y)− 〈x− y,∇φ(y)〉

Example 2.2. Squared Euclidean distance.

Let φ(x) = ‖x‖2 on Rd. It can be verified that φ is strictly convex using the Cauchy-Schwarz inequality.
The corresponding Bregman divergence is

dφ(x, y) = ‖x‖2 − ‖y‖2 − 〈x− y,∇φ(y)〉
= ‖x‖2 − ‖y‖2 − 〈x− y, 2y〉
= ‖x‖2 − ‖y‖2 − 2〈x, y〉+ 2‖y‖2

= ‖x− y‖2

This is the squared Euclidean distance.
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Example 2.3. Kullback-Leibler Divergence.

The Kullback–Leibler divergence (also called relative entropy) is a measure of how one probability distribution
is different from a second, reference probability distribution. We define the KL divergence between two

random variables P,Q to be EP

(
log p(x)

q(x)

)
, where p(x), q(x) are the probability density functions (pdfs) of

P,Q respectively, where P,Q can be discrete or continuous. This is commonly used in information theory.
Let p = (p1, ..., pd) be a discrete probability distribution:

∑d
j=1 pj = 1. Define the negative entropy by

φ(p) =
∑d
j=1 pj log pj . This function is strictly convex since x log x is strictly convex using the 2nd order

conditions. The corresponding Bregman divergence is

dφ(p,q) =

d∑
j=1

pj log pj −
d∑
j=1

qj log qj − 〈p− q,∇φ(q)〉

=

d∑
j=1

pj log pj −
d∑
j=1

qj log qj −
d∑
j=1

(pj − qj)(log qj + 1)

=

d∑
j=1

pj log

(
pj
qj

)
−

d∑
j=1

(pj − qj)

=

d∑
j=1

pj log

(
pj
qj

)
= KL(p‖q)

Example 2.4. Mahalanobis distance.

The Mahalanobis distance is used to calculate the distance from a point to a distribution, or to calculate a
dissimilarity measure between two random vectors of the same distribution with covariance matrix A, which
is assumed to be positive definite. Let φ(x) = xTAx, x ∈ Rd and A be positive definite. Then φ is strictly
convex since the Hessian of φ is A. The corresponding Bregman divergence is the Mahalanobis distance.

dφ(x, y) = xTAx− yTAy − 〈(x− y), 2Ay〉
= xTAx− yTAy − 2xTAy + 2yTAy

= (x− y)TA(x− y)

Bregman divergences have many useful properties, and we will prove several in the following proposition.

Proposition 2.9. Let dφ be a Bregman divergence corresponding to φ : S → R.

(a) Non-negativity: dφ(x, y) ≥ 0 and equality holds if and only if x = y.

(b) Convexity: dφ is convex in the first argument.

(c) Linearity: Bregman divergence as a map φ 7→ dφ is linear.

(d) Linear Separation: The locus of all points x ∈ S that are equidistant from two points µ1, µ2 ∈ ri(S)
is a subset of a hyperplane where distance is calculated by a Bregman divergence.

(e) Equivalence Classes: If φ(x) = φ0(x) + 〈b, x〉+ c where b ∈ Rd, c ∈ R, then dφ(x, y) = dφ0
(x, y) for

all x ∈ S, y ∈ ri(S).

Proof. (a) Since φ is strictly convex, for x 6= y, we have

φ(x)− φ(y) > 〈x− y,∇φ(y)〉

which means dφ(x, y) ≥ 0 for x 6= y. Therefore dφ is nonnegative and dφ(x, y) = 0 if and only if x = y.
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(b) Fix y ∈ ri(S) and let x1 6= x2 ∈ S. Then

dφ(x1, y)− dφ(x2, y) = φ(x1)− φ(x2)− 〈x1 − y,∇φ(y)〉+ 〈x2 − y,∇φ(y)〉
= φ(x1)− φ(x2)− 〈x1 − x2,∇φ(y)〉

∇dφ(x2, y) = ∇φ(x2)−∇φ(y)

dφ(x1, y)− dφ(x2, y)− 〈x1 − x2,∇dφ(x2, y)〉 = φ(x1)− φ(x2)− 〈x1 − x2,∇φ(y)〉
− 〈x1 − x2,∇φ(x2)−∇φ(y)〉

= φ(x1)− φ(x2)− 〈x1 − x2,∇φ(x2)〉
≥ 0

The last equation holds by the strict convexity of φ. Thus dφ is convex in the first argument.

(c) By the linearity of the inner product and gradient operators, we see for c ≥ 0 and strictly convex
functions φ1, φ2,

dφ1+φ2
(x, y) = dφ1

(x, y) + dφ2
(x, y)

dcφ1
(x, y) = cdφ1

(x, y)

(d) Fix µ1, µ2 ∈ ri(S). Then all points x ∈ S satisfying dφ(x, µ1) = dφ(x, µ2) satisfies

dφ(x, µ1) = dφ(x, µ2)

φ(x)− φ(µ1)− 〈x− µ1,∇φ(µ1)〉 = φ(x)− φ(µ2)− 〈x− µ2,∇φ(µ2)〉
〈x,∇φ(µ2)−∇φ(µ1)〉 = φ(µ1)− 〈µ1,∇φ(µ1)〉 − φ(µ2) + 〈µ2,∇φ(µ2)〉

Since the right-hand side is a constant, the set of x ∈ S is a subset of a hyperplane.

(e) We have

dφ(x, y) = φ(x)− φ(y)− 〈x− y,∇φ(y)〉
= φ0(x) + 〈x, b〉+ c− φ0(y)− 〈y, b〉 − c− 〈x− y,∇φ0(y) + b〉
= φ0(x)− φ0(y)− 〈x− y,∇φ0(y)〉+ 〈x, b〉 − 〈y − b〉 − 〈x− y, b〉
= dφ0(x, y)

Hence we can partition the space of strictly convex, differentiable functions on a convex set S into
equivalence classes of the form [φ0] = {φ : dφ(x, y) = dφ0(x, y), x ∈ S, y ∈ ri(S)}.

Example 2.5. Bregman divergences are not necessarily convex in the second arguments. Consider the
function φ : (0,∞) → R, φ(x) = x3. Then φ(x) is strictly convex because φ′′(x) = 6x > 0 on (0,∞). The
Bregman divergence is dφ(x, y) = x3 − y3 − 3(x − y)y2. If we fix x ∈ (0,∞), and consider dφ only as a
function of y, then d′′φ(x, y) = 12y − 6x. We do not have d′′φ(x, y) ≥ 0 for all y, so dφ is not convex in the
second argument.
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3 Bregman Hard Clustering

We introduce a concept known as the Bregman information of a random variable. Then, we show the
Bregman hard clustering problem is equivalent to an optimization problem of minimizing the loss in Bregman
information and present the generalized version of the K-Means algorithm.

3.1 Bregman Information

Let X be a random variable that takes values on a finite set X = {xi}ni=1 ⊂ S ⊂ Rd for some convex set
S following a discrete probability measure ν. Let dφ be a Bregman divergence corresponding to the strictly
convex function φ on S.

Definition 3.1. The Bregman information of the random variable X for the Bregman divergence dφ is

Iφ(X) = min
s∈ri(S)

Eν(dφ(X, s)) = min
s∈ri(S)

n∑
i=1

νidφ(xi, s)

The optimal vector s that achieves the minimal value of Iφ(X) is called the Bregman representative, or
the representative of X.

Quite surprisingly, the Bregman representative is uniquely determined and does not depend on dφ.

Theorem 3.1. Let X be a random variable that takes values on a finite set X = {xi}ni=1 ⊂ S ⊂ Rd for some
convex S following a discrete probability measure ν such that µ = Eν(X) ∈ ri(S). Let dφ : S×ri(S)→ [0,∞)
be a Bregman divergence. The problem mins∈ri(S)Eν(dφ(x, s)) has a unique minimizer given by s = µ =
Eν(X).

Proof. First, the assumption that Eν(X) ∈ ri(S) is not restrictive because we have Eν(X) /∈ ri(S) if and
only if the convex hull of X is a subset of the boundary of S. This is not possible, so we have Eν(X) ∈ ri(S).
Denote the objective function by Jφ(s) =

∑n
i=1 νidφ(xi, s). Since µ ∈ ri(S), the objective function is well-

defined at µ. For all s ∈ ri(S), we have

Jφ(s)− Jφ(µ) =

n∑
i=1

νidφ(xi, s)−
n∑
i=1

νidφ(xi, µ)

=

n∑
i=1

νi

(
φ(µ)− φ(s)− 〈xi − s,∇φ(s)〉+ 〈xi − µ,∇φ(µ)〉

)

= φ(µ)− φ(s)−

〈
n∑
i=1

νixi − s,∇φ(s)

〉
+

〈
n∑
i=1

νixi − µ,∇φ(µ)

〉
= φ(µ)− φ(s)− 〈µ− s,∇φ(s)〉+ 〈0,∇φ(µ)〉
= dφ(µ, s)

≥ 0

We have equality if and only if µ = s by Proposition 2.5(i). Hence µ is the unique minimizer of Jφ.

The converse of Theorem 3.1 is also true, as stated in the next theorem. This is a very powerful result
because Bregman divergences are now the only types of functions that satisfy the property in Theorem 3.1.
We will use this in order to generalize K-Means algorithm.

Theorem 3.2. Let F : Rd × Rd → R+ be such that F (x, x) = 0 for all x. Assume all second-order partial

derivatives ∂2F
∂xi∂j

, 1 ≤ i, j ≤ d are continuous. For all sets S ⊂ Rd and all probability measures µ over S,

9



if the random variable X takes values in S following µ such that y = Eν(X) is the unique minimizer of
Eν(F (X, y)) over all y ∈ Rd, that is if

arg min
y∈Rd

Eν(F (X, y)) = Eν(X) (∗)

then F (x, y) is a Bregman divergence, i.e., F (X, y) = dφ(x, y) for some strictly convex, differentiable function
φ : Rd → R.

Proof. We will give the proof for the one-dimensional case F : R × R → R+, where it suffices to suppose
Fx, Fy are continuous. The multidimensional case requires more machinery and can be found in [3].

We first show that F (x, y) = dφ(x, y) for a convex function φ and then prove φ must be strictly convex. We
will give a constructive argument for a particular choice of S, ν. Let S = {a, b} ⊂ R, p ∈ [0, 1], q = 1 − p.
Define ν({a)}) = p, ν({b}) = q. This is a probability measure over S. Then Eν(X) = pa+ qb and by (∗), we
have

pF (a, y) + qF (b, y) = E(F (X, y))

≥ E(F (X,E(X))

= pF (a, pa+ qb) + qF (b, pa+ qb)

Let g(y) = pF (a, y)+qF (b, y). Then we have equality in the above statements if and only if y = y0 = pa+qb.
Therefore, setting p = y0−b

a−b , we have

0 = g′(y0)

= pFy(a, y0) + qFy(b, y0)

=
y0 − b
a− b

Fy(a, y0) +
a− y0

a− b
Fy(b, y0)

Fy(a, y0)

y0 − a
=
Fy(b, y0)

y0 − b

Since a, b, p were chosen arbitrarily,
Fy(x,y)
y−x is independent of x and we can write Fy(x, y) = (y− x)H(y) for

some continuous function H(y).

Define φ(y) =
∫ y

0

∫ t
0
H(s)ds. Then φ is twice differentiable and satisfies

φ(0) = 0, φ′(y) =

∫ y

0

H(s)ds⇒ φ′(0) = 0, φ′′(y) = H(y)

Using integration by parts, we have

F (x, y)− F (x, x) =

∫ y

x

(t− x)H(t)dt

=
(

(t− x)

∫ t

0

H(s)ds
)∣∣∣t=y
t=x
−
∫ y

x

∫ t

0

H(s)dsdt

= (y − x)

∫ y

0

H(s)ds− (φ(y)− φ(x))

= φ(x)− φ(y)− φ′(y)(x− y)

Since F (x, x) = 0, we see F (x, y) = dφ(x, y) for some φ, and since F (x, y) ≥ 0, φ is convex.

Suppose φ is not strictly convex. Then there exists a < b ∈ R such that φ(b) = φ(a) + φ′(a)(b− a), that is

φ′(a) = φ(b)−φ(a)
b−a . In addition, we know φ(a) ≥ φ(b) + φ′(b)(a − b), so φ′(b) ≤ φ(a)−φ(b)

a−b = φ′(a). However,
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by Corollary 2.7, we know φ′ must be increasing, so φ′(a) = φ′(b) = φ′(y) for all y ∈ [a, b]. Now take any
y ∈ [a, b]. Since dφ(x, y) ≥ 0, we know E(dφ(X, y)) ≥ 0. If we find two y ∈ [a, b] such that E(dφ(x, y)) = 0,
then we are contradicting the assumption of uniqueness, and hence φ must be strictly convex. We have

E(dφ(X, y)) = E(φ(X))− φ(y)− φ′(y)E(X) + φ′(y)y

=
φ(a) + φ(b)

2
− φ(y)− φ′(y)

(
a+ b

2
− y
)

=
φ(a) + φ(b)

2
− φ(y)−

(
φ(b)− φ(a)

b− a

)(
a+ b

2
− y
)

=
(φ(a) + φ(b))(b− a)− 2φ(y)(b− a)− (φ(b)− φ(a))(a+ b) + 2y(φ(b)− φ(a))

2(b− a)

=
(φ(a)− φ(y))b+ (φ(y)− φ(b))a+ (φ(b)− φ(a))y

b− a

Then we see E(dφ(X, a)) = E(dφ(X, b)) = 0. Hence the uniqueness assumption is not satisfied, and φ must
be strictly convex. Therefore, F (x, y) must be a Bregman divergence.

Remark. We assumed that F (x, x) = 0 for all x ∈ Rd. This assumption is not restrictive because if F (x, y)
is a function satisfying arg miny∈Rd E(F (X, y)) = Eν(X), then G(x, y) = F (x, y)−F (x, x) also satisfies this
property and G(x, x) = 0.

We now give the formal definition of the Bregman information.

Definition 3.2. Let X be a random variable that takes values on a finite set X = {xi}ni=1 ⊂ S ⊂ Rd
for some convex S following a discrete probability measure ν. Let µ = Eν(X) =

∑n
i=1 νixi ∈ ri(S). Let

dφ : S × ri(S) → [0,∞) be a Bregman divergence. The Bregman information of the random variable X
for the Bregman divergence dφ is

Iφ(X) = Eν(dφ(X,µ)) =

n∑
i=1

νidφ(xi, µ)

We work through a few examples for calculating Bregman Information.

Example 3.1. Variance and the squared Euclidean distance.

Let X = {x1, ..., xn} ⊂ Rd and consider the uniform measure, νi = 1/n over X . Let dφ be the squared
Euclidean distance. Then the Bregman information is

Iφ(X) =

n∑
i=1

νidφ(xi, µ) =
1

n

n∑
i=1

‖xi − µ‖2

This is the sample variance.

Example 3.2. Mutual information and the KL-Divergence.

Let U, V be two discrete random variables with joint distribution {p(ui, vj) : i = 1, ..., n, j = 1, ...,m}. The
mutual information between U, V is defined by

I(U ;V ) =

n∑
i=1

m∑
j=1

p(ui, vj) log
p(ui, vj)

p(ui)p(vj)
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Expanding the terms, we have

I(U ;V ) =

n∑
i=1

p(ui)

m∑
j=1

p(vj |ui) log
p(vj |ui)
p(vj)

=

n∑
i=1

p(ui)KL
(
p(V |ui)‖p(V )

)
Define a random variable Zu that takes values in the set of probability distributions Zu = {p(V |ui)}ni=1

following probability measure {νi}ni=1 = {p(ui)}ni=1 over Zu. The mean of Zu is

µ = Eµ(p(V |u)) =
∑

p(ui)p(V |ui) =

n∑
i=1

p(ui, V ) = p(V )

If dφ is the KL-Divergence, then the Bregman information of Zu is

Iφ(Zu) =

n∑
i=1

νidφ(p(V |ui), µ) =

n∑
i=1

p(ui)KL
(
p(V |ui)‖p(V )

)
= I(U ;V )

Therefore, the mutual information of U, V is the Bregman information of Zu. Similarly, we can show

I(U ;V ) =

m∑
j=1

p(vi)KL
(
p(U |vj)‖p(U)

)
= Iφ(Zv)

where Zv is a random variable that takes values in the set of probability distributions Zv = {p(U |vi)}mj=1

following probability measure {νj}mj=1 = {p(vj)}mj=1 over Zv.
Example 3.3. We can interpret the Bregman information as the difference in the values of Jensen’s In-
equality.

Proposition 3.3. Jensen’s Inequality.

For any convex and differentiable function f and random variable X,

E(f(X)) ≥ f(E(X))

Proof. By Theorem 2.3, we have

f(X) ≥ f(E(X)) + (X − E(X))f ′(E(X))

E(f(X)) ≥ E
(
f(E(X)) + (X − E(X))f ′(E(X))

)
= f(E(X)) + f ′(E(X))E

(
X − E(X)

)
= f(E(X))

Now, for a Bregman information Iφ(X), we have

Iφ(X) = E
(
dφ(X,E(X))

)
= E

(
φ(X)− φ(E(X))− 〈X − E(X),∇φ(E(X))〉

)

= E(φ(X))− φ(E(X))− E

(
〈X − E(X),∇φ(E(X))〉

)
= E(φ(X))− φ(E(X))

≥ 0
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3.2 The Hard Clustering Algorithm

Using the results in Theorem 3.1 and Theorem 3.2, we begin to formulate the hard clustering problem with
Bregman divergences. If X is a random variable over a set X = {x1, ..., xn} following probability measure ν
with large Bregman information, it makes sense to split X into smaller sets each with its own Bregman repre-
sentative and find another random variable M that serves as an appropriate representation, or quantization
of X. More specifically, let {Xh}kh=1 be k disjoint partitions of X , M = {µh =

∑
xi∈Xh

νixi
πh
}kh=1 be the set

of representatives, and π = {πh =
∑
xi∈Xh νi}

k
h=1 be the induced probability measure on M. The induced

variable M takes values inM following π. We can think of cluster representatives µh as the “cluster centers”.

We can measure the quality of the quantization M in two ways. The first way is to calculate the expected
Bregman divergence between X and M . Since M is a deterministic function of X, we have

EX,M (dφ(X,M)) = EX(dφ(X,M)) =

k∑
h=1

∑
xi∈Xh

νidφ(xi, µh)

=

k∑
h=1

πh
∑
xi∈Xh

νi
πh
dφ(xi, µh)

= Eπ

(
Iφ(Xh)

)
where Xh is the random variable with values in Xh following a probability distribution νi/πh. We see this
quantity is equal to the expected Bregman information of the partitions.

The second way is to calculate the loss in Bregman information due to the quantization, defined by

Lφ(M) = Iφ(X)− Iφ(M)

Since the choice of k is not clear, different quantization M ’s result from different k. If k = 1, then with
probability 1 we pick Eν(X) and the loss is Iφ(X). If k = n, then M = X and the loss is 0. The following
theorem states these two quantities are the same.

Theorem 3.4. Let X be a random variable that takes values in X = {xi}ni=1 ⊂ S ⊂ Rd following the positive
probability measure ν. Let {Xh}kh=1 be a partitioning of X , where 1 ≤ k ≤ n and let πh =

∑
xi∈Xh νi be

the induced probability measure π on the partitions. For h = 1, ..., k, let Xh be the random variable that
takes values in Xh following νi/πh for xi ∈ Xh. Let M = {µh}kh=1, µh ∈ ri(S) be the set of representatives
of {Xh}kh=1 and M be a random variable that takes values in M following π. Then

Lφ(M) = Iφ(X)− Iφ(M) = Eπ

(
Iφ(Xh)

)
=

k∑
h=1

πh
∑
xi∈Xh

νi
πh
dφ(xi, µh)

Proof. Recall µh =
∑
xi∈Xh

νixi
πh

. We can directly calculate.

Iφ(X) =

n∑
i=1

νidφ(xi, µ)

=

k∑
h=1

∑
xi∈Xh

νi

(
φ(xi)− φ(µ)− 〈xi − µ,∇φ(µ)〉

)

=

k∑
h=1

∑
xi∈Xh

νi

(
φ(xi)− φ(µh)− 〈xi − µh,∇φ(µh)〉+ 〈xi − µh,∇φ(µh)〉

)
+

k∑
h=1

∑
xi∈Xh

νi

(
φ(µh)− φ(µ)− 〈xi − µh,∇φ(µ)〉 − 〈µh − µ,∇φ(µ)〉

)
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=

k∑
h=1

∑
xi∈Xh

νi

(
dφ(xi, µh) + dφ(µh, µ) + 〈xi − µh,∇φ(µh)−∇φ(µ)〉

)

=

k∑
h=1

πh
∑
xi∈Xh

νi
πh
dφ(xi, µh) +

k∑
h=1

∑
xi∈Xh

νidφ(µh, µ)+

k∑
h=1

πh
∑
xi∈Xh

νi
πh
〈xi − µh,∇φ(µh)−∇φ(µ)〉

=

k∑
h=1

πhIφ(Xh) +

k∑
h=1

πhdφ(µh, µ) +

k∑
h=1

πh

〈 ∑
xi∈Xh

νi(xi − µh)

πh
, φ(µh)−∇φ(µ)

〉

= Eπ

(
Iφ(Xh)

)
+ Iφ(M) +

k∑
h=1

πh〈µh − µh, φ(µh)−∇φ(µ)〉

Therefore, we exactly have Iφ(X)− Iφ(M) = Eπ

(
Iφ(Xh)

)
.

Since Iφ(X) is the total Bregman information, we can interpret Iφ(M) as the between cluster Bregman
information and hence Lφ(M) is the within cluster Bregman information. Analaysis of variance (ANOVA) is
the special case with this variance as the Bregman information (Example 3.1). We now define the Bregman
hard clustering problem as the problem of finding a partitioning of X (finding a random variable M) to
minimize Lφ(M) = Iφ(X)− Iφ(M), the loss in Bregman information.

Algorithm 1: Bregman Hard Clustering
Data: A set X = {xi}ni=1 ⊂ S ⊂ Rd; a probability measure ν over X ; a Bregman divergence

dφ : S × ri(S)→ R; a natural number k (the number of clusters)
Result: A local minimizer M∗ of Lφ(M) where M = {µh}kh=1 and M is the induced random

variable; a partitioning {Xh}kh=1 of X

Choose the representatives: Initialize M = {µh}kh=1 with µh ∈ ri(S).
opt← False
while not opt do

“The Assignment Step”
Xh ← ∅, 1 ≤ h ≤ k
for i=1 to n do

h = h∗(xi)← arg minh′ dφ(xi, µh′)
Xh ← Xh ∪ {xi}

end
for h=1 to k do

“The Estimation Step”
πh ←

∑
xi∈Xh νi

µh ← 1
πh

∑
xi∈Xh νixi

M∗ ← {µh}kh=1

end
if M∗ ==M then

opt← True
else
M←M∗

end

end

return M∗, {Xh}kh=1
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Theorem 3.5. The Bregman hard clustering algorithm monotonically decreases the loss function Lφ(M)
and hence produces a local minimizer of minM Lφ(M). In addition, it terminates in a finite number of
iterations to a partition that is locally optimal.

Proof. At iteration t, let {X (t)
h }kh=1 be the partitioning of X andM(t) = {µ(t)

h }kh=1 be the corresponding set
of cluster representatives. Recalling the definition of h∗(xi) in the assignment step, we have

Lφ(M (t)) =

k∑
h=1

∑
xi∈X (t)

h

νidφ(xu, µ
(t)
h ) ≥

k∑
h=1

∑
xi∈X (t)

h

νidφ(xu, µ
(t)
h∗(xi)

)

By the estimation step, we have

k∑
h=1

∑
xi∈X (t)

h

νidφ(xu, µ
(t)
h∗(xi)

) ≥
k∑
h=1

∑
xi∈X (t+1)

h

νidφ(xu, µ
(t+1)
h ) = Lφ(M (t+1))

Thus Lφ(M) is monotonically decreasing. If we have equality at any step, this implies the clusters did not
change and hence the algorithm will terminate.

Since the number of distinct partitioning of n objects into k clusters is finite and the algorithm objective
monotonically decreases, the algorithm must terminate in a finite number of iterations to a solution that is
locally optimal.

Remark. We note some useful properties of the Bregman hard clustering algorithm.

(a) Linear separators: By Proposition 2.5(d), the partitions induced by the Bregman hard clustering
algorithm are separated by hyperplanes.

(b) Scalability: The computational complexity of the algorithm scales linearly with n and k, making it
appropriate for large clustering problems.

(c) Mixed data types: Since the Bregman divergence is linear, this algorithm is very applicable to mixed
data types. One can choose dφ corresponding to a convex combination of convex functions that are
each appropriate for a subset of the features.

In light of Theorems 3.1 and 3.2, we see the hard clustering algorithm with cluster centroids as the
optimal representatives works if and only if the distance measure taken is a Bregman divergence. This holds
because the mean, or the expectation, is the best predictor only for Bregman divergences. This special
family of functions becomes the only possible extension of the K-Means algorithm. However, there are
similar clustering algorithms that one can use with distance metrics such as the L1 norm, but the optimal
cluster representative will not be the mean. For example, the K-Medians algorithm uses the median as
cluster representative and the L1 norm as the distance metric, and this algorithm can be shown to converge
to a local minimum.

15



4 Relation to Exponential Families

In this section, we will present some results on Legendre duality and introduce exponential families,
an important class of probability distributions that are widely studied in statistics. We will establish an
one-to-one correspondence between regular exponential families and regular Bregman divergences. This will
provide the basis for the soft clustering algorithm presented in Section 5. We assume the reader has some
familiarity with measure theory.

4.1 Legendre Duality

We present some more results on convex functions, including the epigraph and the subgradient, and
introduce the Legendre function to establish a notion of Legendre duality.

Definition 4.1. Let f : Rd → R. The epigraph of f is defined to be

epi(f) = {(x, y) : x ∈ Rd, y ∈ R, f(x) ≤ y}

Proposition 4.1. Let S ⊂ Rd be a convex set. A function f : S → R is convex if and only if its epigraph
is convex.

Proof. Suppose f is convex. Let (x1, y1), (x2, y2) ∈ epi(f), λ ∈ (0, 1) and let (x′, y′) = (1 − λ)(x1, y1) +
λ(x2, y2). Then

y′ = (1− λ)y1 + λy2

≥ (1− λ)f(x1) + λf(x2)

≥ f
(

(1− λ)x1 + λx2)
)

= f(x′)

Hence epi(f) is convex.

Suppose epi(f) is convex. Let x1, x2 ∈ S, λ ∈ (0, 1). The points (x1, f(x1)), (x2, f(x2)) in the epigraph of

f , so (1 − λ)(x1, f(x1)) + λ(x2, f(x2)) =
(

(1 − λ)x1 + λx2, (1 − λ)f(x1) + λf(x2)
)
∈ epi(f). Therefore,

f
(

(1− λ)x1 + λx2

)
≤ (1− λ)f(x1) + λf(x2) and f is convex.

Definition 4.2. A convex function f is proper if dom(ψ) is nonempty. A convex function is closed if it is
lower semi-continuous, that is, all of its sublevel sets, {x ∈ dom(f) : f(x) ≤ y} for y ∈ R, are closed. This
definition is also equivalent to epi(f) being closed.

Definition 4.3. Let ψ be a real-valued function on Rd. Its conjugate function ψ∗ is given by

ψ∗(t) = sup
θ∈dom(ψ)

{
〈t, θ〉 − ψ(θ)

}
Proposition 4.2. The conjugate function ψ∗ is a convex function and ψ(x) ≥ ψ∗∗(x).

Proof. Let y, z ∈ dom(ψ∗) and λ ∈ (0, 1). Then

ψ∗
(

(1− λ)y + λz
)

= sup
x∈dom(ψ)

{
〈(1− λ)y + λz, x〉 − ψ(x)

}
≤ (1− λ) sup

x∈dom(ψ)

{
〈y, x〉 − ψ(x)

}
+ λ sup

x∈dom(ψ)

{
〈z, x〉 − ψ(x)

}
= (1− λ)ψ∗(y) + λψ∗(z)
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Hence ψ∗ is always convex. For the second part, for x ∈ dom(ψ), y ∈ dom(ψ∗),

ψ∗(y) ≥ 〈y, x〉 − ψ(x)

ψ(x) ≥ 〈y, x〉 − ψ∗(y)

⇒ ψ(x) ≥ sup
y∈dom(ψ∗)

{
〈y, x〉 − ψ∗(y)

}
= ψ∗∗(x)

This shows ψ(x) ≥ ψ∗∗(x) for all x.

Theorem 4.3. If ψ is a proper, closed, convex function, then ψ∗ is too and ψ∗∗ = ψ.

Proof. Suppose ψ is proper, closed and convex. Then ψ∗ is proper and convex, so it remains to show ψ∗ is
closed. We will show that all sublevel sets Lλ = {y : ψ∗(y) ≤ λ} are closed. Let {yn} be a sequence in Lλ
such that yn → y ∈ dom(ψ∗). Then for all x ∈ dom(ψ) and for all n, we have

〈yn, x〉 − ψ(x) ≤ ψ∗(yn) ≤ λ
⇒〈y, x〉 − ψ(x) ≤ λ
⇒ψ∗(y) = sup

x∈dom(ψ)

{〈y, x〉 − ψ(x)} ≤ λ

Thus y ∈ Lλ and Lλ is closed.

We prove by contradiction that ψ = ψ∗∗. We showed in Proposition 4.2 that ψ(x) ≥ ψ∗∗(x), so suppose
there exists x such that ψ∗∗(x) < ψ(x). Since ψ is closed and convex, epi(ψ) is closed and convex. By the
Hyperplane Separation Theorem, there exists a hyperplane in Rn+1 that strictly separates (x, ψ∗∗(x)) from
epi(ψ). This hyperplane cannot be vertical by the shape of the epigraph, so we can normalize the normal
vector of the hyperplane to be 1 in the vertical component. Therefore, there exists ε > 0 and y ∈ Rn, the
non-vertical component, such that for all z ∈ Rn,

ψ(z) + ε ≥ 〈y, z − x〉+ ψ∗∗(x)

〈y, x〉 − ψ∗∗(x) + ε ≥ 〈y, z〉 − ψ(z)

Taking the supremum over z, we have

〈y, x〉 − ψ∗∗(x) + ε ≥ ψ∗(y)

〈y, x〉 − ψ∗(y) + ε ≥ ψ∗∗(x)

= sup
w
{〈w, x〉 − ψ∗(w)}

This a contradiction to the definition of supremum. Thus we have ψ = ψ∗∗.

To prove our main result of Legendre duality, we introduce the concept of subgradient for convex functions.
Subgradients are a generalization of the derivative to non-differentiable convex functions.

Definition 4.4. Let ψ : S → R be a convex function, where S ⊂ Rn is a convex set. A vector v ∈ Rn is a
subgradient for x0 ∈ S for all x ∈ S, we have

ψ(x) ≥ 〈v, x− x0〉+ ψ(x0)

We will let ∂ψ(x) denote the set of subgradients of ψ at x.

Notice that ψ is differentiable if and only if ∂ψ(x) = {v} contains one element, namely v = ∇ψ(x). In
addition, a point x0 is a minimizer of a convex function ψ if and only if ψ is subdifferentiable at x0 and
0 ∈ ∂ψ(x0). This follows directly from the fact that ψ(x) ≥ ψ(x0) for all x. If ψ is differentiable, this reduces
to the case that we know, ∇ψ(x0) = 0.
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Theorem 4.4. If ψ is a proper, closed, convex function, then the following are equivalent.

(a) y ∈ ∂ψ(x).

(b) x ∈ ∂ψ∗(y).

(c) 〈x, y〉 = ψ(x) + ψ∗(y).

Proof. We will show (a)⇒(c)⇒(b)⇒(a).

If y ∈ ∂ψ(x), then by the closed and convexity of φ,

ψ∗(y) = sup
v∈dom(ψ)

{
〈y, v〉 − ψ(v)

}
= max
v∈dom(ψ)

{
〈y, v〉 − ψ(v)

}
We know that v∗ = x is the global minimizer if and only if 0 ∈ ∂(〈y, x〉 − ψ(x)) = y − ∂ψ(x), which is
equivalent to y ∈ ∂ψ(x). Therefore ψ∗(y) = 〈x, y〉 − ψ(x) and 〈x, y〉 = ψ(x) + ψ∗(y).

Suppose 〈x, y〉 = ψ(x) + ψ∗(y). For any u, we have

ψ∗(u) = sup
v∈dom(ψ)

{
〈v, u〉 − ψ(v)

}
≥ 〈x, u〉 − ψ(x)

= 〈u− y, x〉+ 〈y, x〉 − ψ(x)

= 〈u− y, x〉+ ψ∗(y)

Hence x ∈ ∂ψ∗(y) by definition of subgradient.

To show the last implication, since ψ(x) = ψ∗∗(x), we repeat the argument in the first implication and get

x ∈ ∂ψ∗(y)⇒ y ∈ ∂ψ∗∗(x) = ∂ψ(x)

Thus the claim is true.

Definition 4.5. Let ψ be a proper, closed, convex function with Θ = int(dom(ψ)). The pair (Θ, ψ) is called
a convex function of Legendre type or a Legendre function if the following hold.

(a) Θ is nonempty.

(b) ψ is strictly convex and differentiable on θ.

(c) For all θb ∈ bd(Θ), limθ→θb‖∇ψ(θ)‖ → ∞ where θ ∈ Θ.

Proposition 4.5. If ψ is proper, closed, convex, then ψ∗ is differentiable and

∇ψ∗(t) = arg max
x∈dom(ψ)

{〈t, x〉 − ψ(x)}

Proof. By Theorem 4.4, x maximizes 〈x, y〉 − ψ(x) if and only if y ∈ ∂ψ(x), which is equivalent to x ∈
∂ψ∗(y). Since ψ is strictly convex and differentiable on Θ = int(dom(ψ)), there is a unique minimizer, so
∂ψ∗(y) = {∇ψ∗(y)} = {x}. hence ψ∗ is differentiable and ∇ψ∗(y) = arg maxx∈dom(ψ){〈y, x〉 − ψ(x)}. In
addition, ψ∗(t) attains its supremum at the unique θ satisfying t = ∇ψ(θ).

The results presented in this section are the setup for this main theorem on Legendre duality. This
theorem will be used to establish the one-to-one correspondence of the natural parameter and expectation of
exponential families in Section 4.2. The gist of the argument is mostly given above. The full proof is given
in Section 26 of [11].
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Theorem 4.6. Let ψ be a real-valued proper, closed, convex, differentiable, function with conjugate function
ψ∗. Let Θ = int(dom(ψ)) and Θ∗ = int(dom(ψ∗)). If (Θ, ψ) is a Legendre function, then

(a) (Θ∗, ψ∗) is a Legendre function and (Θ, ψ) and (Θ∗, ψ∗) are called Legendre duals of each other.

(b) The gradient function ∇ψ : Θ→ Θ∗ is an injective function from the open convex set Θ onto the open
convex set Θ∗.

(c) The gradient functions ∇ψ,∇ψ∗ are continuous and

∇ψ∗(t) = (∇ψ)−1(t) = arg max
x∈dom(ψ)

{〈t, x〉 − ψ(x)}

4.2 Exponential Families

Let (Ω,B) be a measurable space and let t : Ω → T ⊂ Rd be measurable. We may have T discrete. Let
p0 : T → R+ be any function such that dP0(ω) = p0(t(ω))dt(ω) is a measure on (Ω,B) and

∫
ω∈Ω

dP0(ω) <∞.
If T is a discrete set, dt(ω) is the counting measure and P0 is absolutely continuous with respect to the
counting measure. If T is not discrete, then P0 is absolutely continuous with respect to the Lebesgue
measure dt(ω). We have that t(w) is a random variable from (Ω,B, P0) to (T, σ(T )), where σ(T ) is the
σ−algebra generated by T . Let Θ be the set of all θ ∈ Rd such that

0 <

∫
ω∈Ω

e〈θ,t(ω)〉dP0(ω) =

∫
ω∈Ω

e〈θ,t(ω)〉p0(t(ω))dt(ω) <∞

Then, it is possible to define a function ψ : Θ→ R such that

ψ(θ) = log

(∫
ω∈Ω

e〈θ,t(ω)〉dP0(ω)

)
Definition 4.6. A family of probability distributions Fψ parametrized by θ ∈ Θ ⊂ Rd where the probability
density functions with respect to the measure dt(ω) can expressed in the form

f(ω, θ) = e〈θ,t(ω)〉−ψ(θ)p0(t(ω))

is called an exponential family with natural statistic t(ω), natural parameter θ, and natural parameter
space Θ. It is clear f(ω, θ) of this form are indeed probability density functions with respect to dt(ω), since∫
ω∈Ω

f(ω, θ)dt(ω) = 1. Notice e−ψ(θ) is the normalizing constant.

If the components of t(ω) are affinely independent, that is there exists a nonzero a ∈ Rd such that
P0({ω : 〈t(ω), a〉 = c}) = 1, for all ω ∈ Ω, then this representation is said to be minimal. For a mini-
mal representation, there exists a unique probability density function f(ω, θ) for each θ ∈ Θ and we call Fψ
a full exponential family of order d.

If the natural parameter space Θ is open, then we call Fψ a regular exponential family.

Letting x = t(ω), the probability density function g(x, θ) with respect to the measure dx given by

g(x, θ) = e〈θ,x〉−ψ(θ)p0(x) has the property that f(ω,θ)
g(x,θ) is θ−free. It can be shown that x is a minimally

sufficient statistic for the family Fψ [4].

Example 4.1. Gaussian Distributions.

The probability density functions for the one-dimensional Gaussian distribution is given by

f(ω, µ, σ) =
1√
2πσ

e−
(ω−µ)2

2σ2 =
1√
2πσ

e−
(ω2−2ωµ)

2σ2 e−
µ2

2σ2

The natural statistic is given by x = (ω, ω2) and the corresponding natural parameter is θ = ( µσ2 ,− 1
2σ2 ). In

addition, θ is minimally sufficient.
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It is more convenient to work with the minimal natural sufficient statistic x, so we modify the definition
of exponential families to be in terms of x.

Definition 4.7. Let Fψ = {pψ,θ|θ ∈ Θ = int(Θ) = dom(ψ) ⊂ Rd} be a multivariate parametric family of
distributions. We call Fψ a regular exponential family if each probability density is of the form

pψ,θ(x) = e〈x,θ〉−ψ(θ)p0(x)

for all x ∈ Rd where x is a minimal sufficient statistic for the family.

We call the function ψ(θ) the log partition function or the cumulant function corresponding to the
exponential family. It is uniquely determined up to an additive constant term.

We now present a result without proof regarding the cumulant function of a regular exponential family.
The result of convexity follows as a result of Hölder’s Inequality and the fact that x is minimal sufficient
implies the strict convexity [4].

Proposition 4.7. Let ψ be the cumulant function of a regular exponential family with natural parameter
space θ = dom(ψ). Then ψ is a proper, closed, convex function with int(Θ) = Θ and (Θ, ψ) is a convex
function of Legendre type.

Definition 4.8. Let X be a d−dimensional real random vector distributed according to a regular exponential
family density pψ,θ specified with natural parameter θ ∈ Θ. Define the expectation µ, or the expectation
of X with respect to pψ,θ, to be

µ = µ(θ) = Epψ,θ (X) =

∫
Rd
xpψ,θ(x)dx

Notice that µ is a d−dimensional real vector as well.

Using the theory of Legendre duality, we look at the relationship between the natural parameter θ and
the expectation µ. If we differentiate

∫
pψ,θ(x)dx = 1 with respect to θ, we have

0 =

∫
(x−∇ψ(θ))pψ,θ(x)dx⇒ µ(θ) = ∇ψ(θ)

Let φ(µ) = ψ∗(µ) = supθ∈Θ{〈µ, θ〉−ψ(θ)}. Since (Θ, ψ) is a Legendre function, the pair (Θ, ψ), (int(dom(φ)), φ)
are Legendre duals of each other. Hence the mappings between int(dom(φ)) and Θ are given by µ(θ) = ∇ψ(θ)
and θ(µ) = ∇φ(µ) and we can write the conjugate function of ψ as

φ(µ) = 〈θ(µ), µ〉 − ψ(θ(µ))

for all µ ∈ int(dom(φ)). This duality illustrates the simple relation between µ, θ.

4.3 The Bijection

Our main goal is to show there is a bijection between regular exponential families and regular
Bregman divergences, a subset of the Bregman divergences. First, we show is there exists a unique
Bregman divergence corresponding to every regular exponential family distribution. We can think of this as
a one-to-one mapping.

Theorem 4.8. Let pψ,θ be the probability density function of a regular exponential family distribution.
Let φ be the conjugate function of ψ such that (int(dom(φ)), φ) is the Legendre dual of (Θ, ψ). Let θ ∈ Θ
be the natural parameter and µ ∈ int(dom(φ)) be the corresponding expectation. Let dφ be the Bregman
divergence derived from φ. Then pψ,θ can be uniquely expressed as

pψ,θ(x) = e−dφ(x,µ)bφ(x)

for all x ∈ dom(φ) where bφ : dom(φ)→ R+ is a uniquely determined function.
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Proof. For all x ∈ dom(φ), we have

〈x, θ〉 − ψ(θ) = 〈µ, θ〉 − ψ(θ) + 〈x− µ, θ〉
= φ(µ) + 〈x− µ,∇φ(µ)〉
= −dφ(x, µ) + φ(x)

pψ,θ(x) = e〈x,θ〉−ψ(θ)p0(x)

= e−dφ(x,µ)bφ(x)

where bφ(x) = eφ(x)p0(x).

Since pψ,θ uniquely determines ψ up to a constant, the expectation µ = ∇ψ(θ) corresponding to θ is uniquely
determined, and hence the corresponding conjugate functions φ are unique up to an additive constant term.
Therefore dφ(x, µ) is uniquely determined by Proposition 2.9(e). The Legendre duality of φ, ψ imply that no
two different exponential families will correspond to the same Bregman divergence. Thus, we can conclude
bφ(x) = edφ(x,µ)pψ,θ(x) is uniquely determined as well.

We acknowledge that the above theorem is only useful if it is true for all x that we can sample from
pψ,θ(x). To make this notion concrete, we introduce the following definition.

Definition 4.9. We say x0 can be sampled from pψ,θ(x) if for all I such that x0 ∈ I,
∫
I
dx > 0, we have∫

I
dP0(x) > 0, where P0 was defined earlier in this section. We define Iψ to be the set of instances that can

be sampled from pψ,θ.

Indeed, it can be shown that Iψ ⊂ dom(φ), where φ is the conjugate of ψ, and hence the theorem is
useful. We omit the proof here but the interested reader can see Theorem 9.1 in [4]. We give an example of
a case where Iψ and int(dom(φ)) are disjoint, so this extra step is necessary to acknowledge.

Example 4.2. Let X be a Bernoulli random variable where P (X = 1) = q, P (X = 0) = 1 − q for some
q ∈ [0, 1]. The instance space for X is Iψ = {0, 1}. We find the cumulant function of X.

p(x; q) = qx(1− q)1−x

= ex log q+(1−x) log(1−q)

= ex log( q
1−q )−log( 1

1−q )

Let θ = log q
1−q , this is the natural parameter. Then 1

1−q = eθ + 1 and

p(x; θ) = exθ−log(1+eθ)

Hence the cumulant function is ψ(θ) = log(1+eθ) and the expectation is µ = q. Then the conjugate function
of ψ is

φ(µ) = 〈θ(µ), µ〉 − ψ(θ(µ))

= µ log

(
µ

1− µ

)
− log log

(
1 + elog( µ

1−µ )
)

= µ logµ− µ log(1− µ)− log

(
1 +

µ

1− µ

)
= µ logµ− (1− µ) log(1− µ)

for µ ∈ (0, 1). Taking limits as µ→ 0 and µ→ 1, we have φ(µ) = 0 for µ = 0 and µ = 1 since φ is a closed
function. Hence the domain of φ is [0, 1] and the parameter space of µ is int(dom(φ)) = (0, 1). Hence we see
Iψ and int(dom(φ)) are disjoint but Iψ ⊂ dom(φ).
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We now define the regular Bregman divergence, a class of Bregman divergences with another smoothness
condition. More results on exponentially convex functions can be found in [1].

Definition 4.10. A function F : Θ → (0,∞),Θ ⊂ Rd is called exponentially convex if f is continuous
and the kernel Kf (α, β) = f(α+ β), α+ β ∈ Θ satisfies

n∑
i=1

n∑
j=1

Kf (θi, θj)uiuj ≥ 0

for all {θ1, ..., θn} ⊂ Θ with θi + θj ∈ Θ and ui ∈ C. That is, the kernel is positive semi-definite.

Proposition 4.9. An exponentially convex function is convex. The logarithm of an exponentially convex
function is convex.

Proof. For n = 1, we have f(θ) ≥ 0 for all θ ∈ Θ. For n = 2, we have

f(θ1)u2
1 + 2f

(
θ1 + θ2

2

)
u1u2 + f(θ2)u2

2 ≥ 0

Setting u1 = −1, u2 = 1, we have

f

(
θ1 + θ2

2

)
≤ f(θ1) + f(θ2)

2

By Theorem 2.8, f is midpoint convex so it is convex.

In addition,

0 ≤ f(θ1)u2
1 + 2f

(
θ1 + θ2

2

)
u1u2 + f(θ2)u2

2

= (
√
f(θ1)u1 +

√
f(θ2)u2)2 + 2f

(
θ1 + θ2

2

)
u1u2 − 2

√
f(θ1)f(θ2)u1u2

If f(θ1) = f(θ2) = 0, then by above, f
(
θ1+θ2

2

)
= 0 =

√
f(θ1)f(θ2). Now, we can suppose f(θ1) 6= 0. Set

u2 = 1 and u1 = −
√

f(θ2)
f(θ1) . Then

0 ≤ 2f

(
θ1 + θ2

2

)(
−

√
f(θ2)

f(θ1)

)
− 2
√
f(θ1)f(θ2)

(
−

√
f(θ2)

f(θ1)

)

f

(
θ1 + θ2

2

)
≤
√
f(θ1)f(θ2)

log

(
f

(
θ1 + θ2

2

))
≤ log(f(θ1)) + log(f(θ2))

2

Hence log(f) is also convex by Theorem 2.8.

Definition 4.11. Let f : Θ→ (0,∞) be an exponentially convex function such that Θ is open and ψ(θ) =
log(f(θ)) is strictly convex. Let φ be the conjugate function of ψ. Then we call the Bregman divergence dφ
a regular Bregman divergence.

We will use the following theorem from [7] along with a technical lemma to establish our main result.

Theorem 4.10. Let Θ ⊂ Rd be an open convex set. A necessary and sufficient condition that there
exists a unique, bounded, non-negative measure ν such that f : Θ → (0,∞) can be represented as f(θ) =∫
Rd e

〈x,θ〉dν(x) is that f is exponentially convex.
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Lemma 4.11. Let ψ be the cumulant of an exponential family with base measure P0 and natural parameter
space Θ ⊂ Rd. Then if P0 is concentrated on an affine subspace of Rd, then ψ is not strictly convex.

Proof. Suppose P0 is concentrated on an affine subspace S = {x ∈ Rd : 〈x, b〉 = c} for some c ∈ R, b ∈ Rd.
Let I = {θ : θ = αb, α ∈ R}. Then for any θ = αb ∈ I, we have 〈x, θ〉 = αc for all x ∈ S. Then the cumulant
function is

ψ(θ) = log

(∫
Rd
e〈x,θ〉dP0(x)

)
= log

(∫
S

eαcdP0(x)

)
= log (eαcP0(S))

= 〈y, θ〉+ log(P0(S))

for any y ∈ S. Since affine functions are convex but not strictly convex, ψ is not strictly convex.

Now, we are set to prove the main theorem of this exposition.

Theorem 4.12. There is a bijection between regular exponential families and regular Bregman divergences.

Proof. In Theorem 4.8, we showed there is a unique Bregman divergence corresponding to every regular ex-
ponential family. Hence, for the one-to-one direction, it remains to show this Bregman divergence is regular.
Then, we show that for every regular Bregman divergence, there exists a unique regular exponential family.

Let Fψ be a regular exponential family with cumulant function ψ and natural parameter space Θ. Then
there exists a non-negative bounded measure ν such that for all θ ∈ Θ,

1 =

∫
Rd
e〈x,θ〉−ψ(θ)dν(x)

eψ(θ) =

∫
Rd
e〈x,θ〉dν(x)

Hence by Theorem 4.10, eψ(θ) is an exponentially convex function on Θ. Furthermore, by Proposition 4.7, ψ
is strictly convex. Therefore, the Bregman divergence dφ, where φ is the conjugate of ψ is a regular Bregman
divergence.

For the other direction, let dφ be a regular Bregman divergence and ψ the conjugate of φ. By Definition 4.9,
ψ is strictly convex and Θ = dom(ψ) is an open set. In addition, eψ(θ) is exponentially convex. Therefore,
Theorem 4.10 implies there exists a unique nonnegative bounded measure ν such that

eψ(θ) =

∫
Rd
e〈x,θ〉dν(x)

Choose b ∈ Θ such that

eψ(b) =

∫
Rd
e〈x,b〉dν(x)

Then dP0(x) = e〈x,b〉−ψ(b)dν(x) is a probability density function. We notice that∫
Rd
e〈x,θ〉dP0(x) =

∫
Rd e

〈x,θ+b〉dν(x)

eψ(b)

= eψ(θ+b)−ψ(b)
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Therefore the set of θ ∈ Rd such that
∫
Rd e

〈x,θ〉dP0(x) <∞ is the set {θ ∈ Rd : θ + b ∈ Θ} and for any such
θ + b ∈ Θ, we have ∫

Rd
e〈x,θ+b〉−ψ(θ+b)dν(x) = 1

This implies the exponential family Fψ consisting of the densities pψ,θ(x) = e〈x,θ〉−ψ(θ) with respect to the
measure ν has natural parameter space Θ and cumulant function ψ(θ).

By Lemma 4.11, P0 is not concentrated on an affine subspace of Rd, which means x is full and a minimal
statistic. In addition, Θ is open, so Fψ is a regular exponential family. To show the family is unique, we
note that for any Bregman divergence dφ, the generating function can be φ0(x) = φ(x) + 〈x, a〉 + c for
a ∈ Rd, c ∈ R. The corresponding conjugate function ψ0 of φ0 is

ψ0(θ) = sup
x

{
〈θ, x〉 − φ0(x)

}
= sup

x

{
〈θ, x〉 − φ(x)− 〈a, x〉 − c

}
= sup

x

{
〈θ − a, x〉 − φ(x)

}
− c

= ψ(θ − a)− c

Hence the corresponding cumulant functions differs only by a constant. Since cumulant functions are unique
up to additive constant, the exponential family Fψ is unique.

We give three examples of this bijection. In all these examples, the expectation can be calculated in the
regular manner of integration, but we calculate it in using duality results.

Example 4.3. We look at the d−dimensional Gaussian distribution N(a, σ2Id).

We express the probability density function in the canonical form of an exponential family.

p(x; a) = (2πσ2)−
d
2 exp

(
− 1

2σ2
‖x− a‖2

)
= (2πσ2)−

d
2 exp

(
〈x, a

σ2
〉
)

exp

(
− 1

2σ2
‖a‖2

)
exp

(
− 1

2σ2
‖x‖2

)
= eθ−ψ(θ)p0(x)

θ =
a

σ2

ψ(θ) =
σ2

2
‖θ‖2

p0(x) = exp

(
− 1

2σ2
‖x‖2

)
(2πσ2)−

d
2

The expectation is µ = ∇ψ(θ) = σ2θ = a. The Legendre dual φ of ψ is

φ(µ) = 〈µ, θ〉 − ψ(θ)

= 〈µ, µ/σ2〉 − σ2

2
‖θ‖2

=
‖µ‖2

σ2
− σ2

2

‖µ‖2

σ4

=
‖µ‖2

2σ2
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The Bregman divergence dφ is

dφ(x, µ) = φ(x)− φ(µ)− 〈x− µ,∇φ(µ)〉

=
‖x‖2

2σ2
− ‖µ‖

2

2σ2
− 〈x− µ, µ/σ2〉

=
‖x− µ‖2

2σ2

The function bφ(x) is bφ(x) = eφ(x)p0(x) = (2πσ2)−d/2. Thus, we see that pψ,θ(x) = e−dφ(x,µ)bφ(x) like in
Theorem 4.8.

Example 4.4. Another example of an exponential family is aptly the Exponential distribution, with prob-
ability distribution function p(x;λ) = λe−λx, λ > 0, x ≥ 0. We have

p(x;λ) = ex(−λ)−(− log λ)

= exθ−ψ(θ)p0(x)

θ = −λ
ψ(θ) = − log λ = − log(−θ)
p0(x) = 1

The expectation is µ = ψ′(θ) = − 1
θ = 1

λ . The Legendre dual φ of ψ is

φ(µ) = µθ − ψ(θ) = (−1/θ)θ + log(−θ) = −1− logµ

The Bregman divergence dφ is

dφ(x, µ) = φ(x)− φ(µ)− (x− µ)φ′(µ)

= (−1− log x)− (−1− logµ)− (x− µ)(−1/µ)

=
x

µ
− log

(
x

µ

)
− 1

The function bφ(x) is bφ(x) = eφ(x)p0(x) = e−1−log x = 1
ex . Thus, we see that

e−dφ(x,µ)bφ(x) = e−
x
µ · x

µ
· e · 1

ex

= e−
x
µ

1

µ

= e−λxλ

= p(x;λ)

Example 4.5. The last example we consider is a discrete distribution: the multinomial. The multinomial
distribution is a generalization of the binomial distribution. We can think of the multinomial distribution
as modeling N rolls of a d−sided unfair die. The density function is

p(x; q) =
N !∏d
j=1 xj !

d∏
j=1

q
xj
j

where x = (x1, ..., xd1) ∈ Zd−1
+ ,

∑d
j=1 xj = N represent the frequencies of events, and q = (q1, ..., qd−1), qj ≥

0,
∑d
j=1 qj = 1 represent the probabilities of events. Note the subscript runs up to d−1 only, since xd, qd can
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be uniquely determined by (x1, ..., xd−1), (q1, ..., qd−1). We show that we can express the multinomial as the
density of an exponential distribution in x = (x1, ..., xd−1),θ = (log( q1qd ), ..., log( qd−1

qd
)). Let p0(x) = N !∏d

j=1 xj !
.

p(x,q) = exp

 d∑
j=1

xj log qj

 p0(x)

= exp

d−1∑
j=1

xj log qj + (N −
d−1∑
j=1

xj) log qd

 p0(x)

= exp

d−1∑
j=1

xj log

(
qj
qd

)
+N log qd

 p0(x)

= exp

(
〈x,θ〉 −N log

(
1

qd

))
p0(x)

= exp

〈x,θ〉 −N log

 d∑
j=1

qj
qd

 p0(x)

= exp

〈x,θ〉 −N log

1 +

d−1∑
j=1

eθj

 p0(x)

The cumulant function is ψ(θ) = −N log qd = N log
(

1 +
∑d−1
j=1 e

θj
)

. The expectation µ is

µ = ∇ψ(θ) =

(
Neθ1

1 +
∑d−1
j=1 e

θj
, ...,

Neθd−1

1 +
∑d−1
j=1 e

θj

)
= Nq

This is very expected, since the jth expectation is the probability of the jth event multiplied by the number
of trials: µj = Nqj . The Legendre dual φ of ψ is

φ(µ) = 〈µ,θ〉 − ψ(θ)

=

d−1∑
j=1

Nqj log

(
qj
qd

)
+N log qd

=

d∑
j=1

Nqj log(qj)

= N

d∑
j=1

(µj
N

)
log
(µj
N

)
Notice this is a multiple of the negative entropy for a discrete probability distribution given by {µj/N}dj=1
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(see Example 2.3). Then, the corresponding Bregman divergence dφ is

dφ(x,µ) = φ(x)− φ(µ)− 〈x− µ,∇φ(µ)〉

= N

d∑
j=1

(xj
N

)
log
(xj
N

)
−N

d∑
j=1

(µj
N

)
log
(µj
N

)
−

d∑
j=1

(xj − µj)
(

1 + log
(µj
N

))

= N

d∑
j=1

(xj
N

)
log
(xj
N

)
−
(xj
N

)
log
(µj
N

)

= N

d∑
j=1

(xj
N

)
log

(
xj/N

µj/N

)

As expected, this is a multiple of the KL-divergence. The function bφ(x) is

bφ(x) = eφ(x)p0(x)

= exp

 d∑
j=1

xj log
(xj
N

) N !∏d
j=1 xj !

=

∏d
j=1 x

xj
j

NN

N !∏d
j=1 xj !

Indeed, we have

e−dφ(x,µ)bφ(x) =

d∏
j=1

µx
j

j

x
xj
j

∏d
j=1 x

xj
j

NN

N !∏d
j=1 xj !

=

d∏
j=1

q
xj
j

N !∏d
j=1 xj !

= pψ,θ(x)
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5 Bregman Soft Clustering

As mentioned in the introduction, soft clustering does not assign each data point to a cluster, but rather
each data point is assigned a probability belonging to each of the clusters, and potentially belong
to more than one cluster. The probabilities also indicate some sort of degree to which data points belong
to the clusters. For example, points at the center of cluster will have higher probability than those on
the boundary. The collection of probabilities is called a soft partition. In this section, we will formulate
the Bregman soft clustering problem as a parameter estimation problem for mixture models which can be
solved by the Expectation-Maximization (EM) algorithm. In addition, we will see that the hard clustering
algorithm is a special case of the soft clustering algorithm.

5.1 The Expectation-Maximization Algorithm

First, we give a short introduction to the EM algorithm, an iterative method used to find maximum
likelihood estimators (MLEs) when the model depends on latent variables, or missing variables. These
latent variables may be unobservable or observable but missing from the dataset. We have the following
data structure: X is the complete dataset, Y is observed, and Z is missing. We write

X = (Y,Z) ∼ fθ(y, z)

to indicate that X is distributed with pdf fθ(y, z), where θ is the unknown parameter of interest. We seek

the MLE θ̂ of θ based on only the observed data Y :

θ̂ = θ̂(y) = arg max
θ
fθ(y) = arg max

θ

∫
fθ(y, z)dz

The integral may be intractable and hard to compute. The EM algorithm iteratively applies two steps.

• First E-Step: Let θ̂0 = θ̂0(y) be an initial estimate or guess. Compute the expectation of the
log-likelihood function of θ with respect to the current estimate:

Eθ̂0

[
log

(
fθ(Y, Z)

fθ̂0(Y,Z)

∣∣∣∣∣Y = y

)]
≡ J(θ|θ̂0(y), y)

• First M-Step: Find
θ̂1 = θ̂1(y) = arg max

θ
J(θ|θ̂0(y), y)

Notice that J(θ̂1|θ̂0, y) ≥ J(θ̂0|θ̂0, y) = 0.

• Further Steps: For k = 1, 2, ..., repeat the E-step and M-step using θ̂k to compute θ̂k+1.

Theorem 5.1. The likelihood increases at each iteration of the EM algorithm: fθ̂k+1
(y) ≥ fθ̂k(y).

Proof. We investigate log

(
fθ̂k+1

(y)

fθ̂k
(y)

)
.

log

(
fθ̂k+1

(y)

fθ̂k(y)

)
= Eθ̂k

[
log

(
fθ̂k+1

(Y )

fθ̂k(Y )

∣∣∣∣∣Y = y

)]

= Eθ̂k

[
log

(
fθ̂k+1

(Y,Z)

fθ̂k(Y,Z)

∣∣∣∣∣Y = y

)]
− Eθ̂k

[
log

(
fθ̂k+1

(Z|Y )

fθ̂k(Z|Y )

∣∣∣∣∣Y = y

)]

= J(θ̂k+1|θ̂k, y) + Eθ̂k

[
log

(
fθ̂k(Z|Y )

fθ̂k+1
(Z|Y )

∣∣∣∣∣Y = y

)]
≥ 0

28



The first term is nonnegative by definition. The second term is a conditional KL divergenceKLZ|Y (fθ̂k , fθ̂k+1
)

and so it is nonnegative (recall Example 2.3). Hence fθ̂k+1
(y) ≥ fθ̂k(y).

This shows the EM algorithm, if convergent, will converge to a local maximizer of the likelihood. However
it is not guaranteed to converge, and when it converges, the limit θ̂k → θ̂ may not converge to the true MLE.
The theory behind the EM algorithm is well-studied. For more on the EM algorithm and its properties, see
[6], [8].

In certain cases such as missing data in an exponential family, there is a simple representation of the
estimates θ̂k [10]. Suppose the complete data X = (Y,Z) has the canonical exponential family form

fθ(y, z) = p0(y, z)a(θ)e〈T (y,z),θ〉

where T (y, z) is a sufficient statistic for θ ∈ Rd. Then

log

(
fθ(y, z)

fθ̂0(y, z)

)
= log

(
a(θ)

a(θ0)

)
+ (θ − θ̂0)TT (y, z)

J(θ|θ̂0, y) = log

(
a(θ)

a(θ0)

)
+ (θ − θ̂0)TEθ̂0

(
T (Y,Z)|Y = y

)
= log

(
fθ(T̂1(y))

fθ̂0(T̂1(y))

)

where T̂1(y) = Eθ̂0

(
T (Y,Z)|Y = y

)
. This is just the complete log-likelihood ratio of Y based on the value

T̂1. Hence, the (k + 1)st E-step computes

T̂k+1 = T̂k+1(y) = Eθ̂k

(
T (Y,Z)|Y = y

)
The (k + 1)st M-step maximizes the complete log-likelihood ratio

θ̂k+1 = arg max
θ

log

(
fθ(T̂k+1(y))

fθ̂0(T̂k+1(y))

)

This is a very simple computation and illustrates the elegance of exponential families.

Our use case for the EM algorithm is in finite mixture models. It is a hierarchical model where random
variables X1, ..., Xn are sampled from a mixture probability density function, defined by

f(x) =

K∑
k=1

πkgθk(x)

where {gθk(x)}Kk=1 are a set of pdfs belonging to the same parametric family with parameter θk and {πk}Kk=1

are mixture weights with πk ≥ 0,
∑K
k=1 πk = 1. Let Zi,k, i ∈ {1, ..., n}, k ∈ {1, ...,K} be the indicator

variable such that Zi,k = 1 if Xi was drawn from component k; this is our latent variable. The mixture
weight πk = P (Zi,k = 1) is the probability that Xi belongs to mixture component k, that is, Xi was sampled
from pdf gθk(x). We say that Xi is sampled from a mixture model. The complete set of parameters for
maximum likelihood estimation is Γ = {π1, ..., πK , θ1, ..., θK}.

We use the EM algorithm to estimate these parameters. In the E-step, the expected log-likelihood gives
us estimates for the probability that Xi was sampled from mixture k, which we calculate using Bayes’ Rule.
This gives a soft partitioning for the soft clustering that we desire.
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Algorithm 2: EM for MLE of Mixture Models
Data: A set X = {xi}ni=1 ⊂ Rd; a natural number K (the number of clusters)

Result: A local minimizer Γ∗ of LX (Γ) =
∏n
i=1

∑K
k=1 πkpψ,θk(xi) where Γ = {θk, πk}Kk=1; a soft

partitioning {{p(k|xi)}Kk=1}ni=1, where p(k|xi) is the probability of xi belonging to
mixture component k.

Initialize Γ = {θk, πk}Kk=1 with θk ∈ Θ, πk ≥ 0,
∑K
k=1 πk = 1.

opt← False
while not opt do

“The E-Step”
for i=1 to n do

for k=1 to K do

p(k|xi)←
πkpψ,θk (xi)∑K
j=1 πjpψ,θj (xi)

end

end
“The M-Step”
for k=1 to K do

πk ← 1
n

∑n
i=1 p(k|xi)

θk ← arg maxθ
∑n
i=1 log(pψ,θ(xi))p(k|xi)

Γ∗ ← {θk, πk}Kk=1

end
if Γ∗ == Γ then

opt← True
else

Γ← Γ∗

end

end

return Γ∗, {{p(k|xi)}Kk=1}ni=1

5.2 The Soft Clustering Algorithm

Let X1, ..., Xn be independently and identically distributed (iid) sample drawn from a single exponential
family X ∼ pψ,θ(x), we know the problem of maximum likelihood estimation of θ is equivalent to minimizing
negative log-likelihood. By Theorem 4.8, minimizing the negative log-likelihood is equivalent to maximizing
the corresponding expected Bregman divergence, because

− log(pψ,θ(x)) = −dφ(x, µ) + log(bφ(x))

By Theorem 3.1, the optimal distribution has µ = E(X) as the expectation, that is, the MLE θ̂ of θ satisfies

E(X) = ∇ψ(θ̂). In addition, the minimum negative log-likelihood of X under an exponential family with
cumulant function ψ is Iφ(X), the Bregman information of X (up to an additive constant), where φ is the
the Legendre conjugate of ψ.

If X1, ..., Xn are an iid sample from a mixture model of K densities from the same exponential family, then
we know from Algorithm 2, we can obtain the soft clustering. Therefore, for regular Bregman divergences,
we can define the Bregman soft clustering problem as learning the maximum likelihood parameters Γ =
{πk, θk}Kk=1 ≡ {πk, µk}Kk=1 of a mixture model

f(x|Γ) =

K∑
k=1

πke
−dφ(x,µk)bφ(x)
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where we used Theorem 4.8 to express the regular exponential family in the desired form. With this view-
point, we obtain a simplified version of Algorithm 2 which is the Bregman soft clustering algorithm. In
particular, the M-step becomes very straightforward to solve when the corresponding Bregman divergence
dφ is known. Hence, in some situations, it may be easier to use regular Bregman divergences for mixture
models instead of coming up with an appropriate exponential family.

Algorithm 3: Bregman Soft Clustering
Data: A set X = {xi}ni=1 ⊂ S ⊂ Rd; a Bregman divergence dφ : S × ri(S)→ R; a natural

number K (the number of clusters)

Result: A local minimizer Γ∗ of Lφ(Γ) =
∏n
i=1

∑K
k=1 πke

−dφ(xi,µk)bφ(xi) where
Γ = {µk, πk}Kk=1; a soft partitioning {{p(k|xi)}Kk=1}ni=1, where p(k|xi) is the probability
of xi belonging to cluster #k.

Initialize Γ = {θk, πk}Kk=1 with µk ∈ ri(S), πk ≥ 0,
∑K
k=1 πk = 1.

opt← False
while not opt do

“The E-Step”
for i=1 to n do

for k=1 to K do

p(k|xi)← πk exp(−dφ(xi,µk))∑K
j=1 πj exp(−dφ(xi,µj))

end

end
“The M- Step”
for k=1 to K do

πk ← 1
n

∑n
i=1 p(k|xi)

µk ←
∑n
i=1 p(k|xi)xi∑n
i=1 p(k|xi)

Γ∗ ← {µk, πk}Kk=1

end
if Γ∗ == Γ then

opt← True
else

Γ← Γ∗

end

end

return Γ∗, {{p(k|xi)}Kk=1}ni=1

Notice the E-step in Algorithm 3 is the same as in Algorithm 2, since the bφ(xi) cancels in the numerator
and denominator. We now prove that the M-steps in Algorithm 2 and 3 are equivalent for regular Bregman
divergences and exponential families, that is, the M-step in Algorithm 3 is correct.

Theorem 5.2. For a mixture model with density

p(x|Γ) =

K∑
k=1

πke
−dφ(x,µk)bφ(x)

the maximization step for the density parameters in Algorithm 2 reduces to

µk =

∑n
i=1 p(k|xi)xi∑n
i=1 p(k|xi)

for 1 ≤ k ≤ K. This is the M-step in Algorithm 3.
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Proof. The maximization step in Algorithm 2 for θk, 1 ≤ k ≤ K is given by

θk ← arg max
θ

n∑
i=1

log(pψ,θ(xi))p(k|xi)

The component densities are
pψ,θk(x) = e−dφ(x,µk)bφ(x)

for 1 ≤ k ≤ K. Substituting these into the maximization step, we get update equations for the expectations
µk. For 1 ≤ k ≤ K,

µk = arg max
µ

n∑
i=1

(
log(bφ(xi))− dφ(xi, µ)

)
p(k|xi)

= arg min
µ
dφ(xi, µ)p(k|xi)

= arg min
µ
dφ(xi, µ)p(k|xi)

(
1∑n

j=1 p(k|xj)

)
= arg min

µ
dφ(xi, µ)ν(xi)

where ν(xi) = p(k|xi)∑n
j=1 p(k|xj)

. By Theorem 3.1, we must have

µk =

∑n
i=1 xip(k|xi)∑n
i=1 p(k|xi)

This is the desired update equation for the expectations {µk}Kk=1.

We can also consider the Bregman soft clustering problem where the samples are weighted, that is,
associate each xi with a weight νi such that

∑n
i=1 νi = 1. We then maximize the weighted likelihood

function

logLφ(Γ) =

n∑
i=1

νi log

(
K∑
k=1

πke
−dφ(xi,µk)bφ(xi)

)
Then the E-step will remain the same and the M-step will have update equations

πk =

n∑
i=1

µip(k|xi)

µk =

∑n
i=1 νixip(k|xi)∑n
i=1 νip(k|xi)

Notice that the original case is identical to νi = 1/n for all i, since the samples are weighted equally.

Another interesting viewpoint is to consider the Bregman hard clustering as a limit of Bregman soft
clustering. For a convex function φ and constant c > 0, cφ is also convex with Bregman divergence dcφ = cdφ.
Hence if we take c→∞, the probabilities p(k|xi)→ {0, 1} in the E-step. This means the EM algorithm of
the soft clustering problem reduces to the hard clustering algorithm.

5.3 Clustering in the Second Argument

So far, we have considered the case where the Bregman divergence took the data point as the first
argument and the cluster representative as the second argument. In this case, we get unique cluster repre-
sentatives. We can consider an alternative clustering problem where the data point is the second argument
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and the cluster representative in the Bregman divergence. Formally, we consider an alternate version of the
hard clustering problem. Given a set X = {xi} and a positive probability measure ν, we find a partition
{Xh}kh=1 and corresponding cluster representatives {µh}kh=1 that solve

min
µh,h=1,...,k

k∑
h=1

∑
xi∈Xh

νidφ(µh, xi)

Because Bregman divergences are not necessarily convex in the second argument, the cluster representatives
are not necessarily the expectation. However, we can show that this problem is equivalent to the original
Bregman hard clustering problem using a different Bregman divergence and representation. We first state
and prove a proposition about the duality of the Bregman divergence.

Proposition 5.3. Let φ : S → R be a strictly convex function and dφ its corresponding Bregman divergence.
Let ψ be its conjugate. For all µ1, µ2 ∈ ri(S), we have a duality between the Bregman divergences:

dφ(µ1, µ2) = dψ(θ2, θ1)

where θi = ∇φ(µi), µi = ∇ψ(θi), i = 1, 2. We call dψ the dual Bregman divergence to dφ.

Proof. We know by Section 4.2 that φ(µ) = 〈θ(µ), µ〉−ψ(θ(µ)). From the definition of Bregman divergence,
we have

dφ(µ1, µ2) = φ(µ1)− φ(µ2)− 〈µ1 − µ2,∇φ(µ2)〉
= 〈θ1, µ1〉 − ψ(θ1)− 〈θ2, µ2〉+ ψ(θ2)− 〈µ1 − µ2, θ2〉
= ψ(θ2)− ψ(θ1)− 〈θ1, µ1〉+ 〈µ1, θ2〉
= ψ(θ2)− ψ(θ1)− 〈θ2 − θ2,∇ψ(θ1)〉
= dψ(θ2, θ1)

The change in argument in the duality is what will give our result.

Now, we are ready to state the alternate Bregman hard clustering problem in terms of the original
Bregman hard clustering problem. Let φ be a strictly convex function and dφ its corresponding Bregman
divergence such that (int(dom(φ)), φ) is a convex function of Legendre type. Let (int(dom(ψ)), ψ) be the
corresponding Legendre dual. Let X = {xi}ni=1 be our original set. Let X θ = {θxi}ni=1 = {∇φ(xi)}ni=1 be
the dual space. Let θh = ∇φ(µh) denote the cluster representatives in the dual space. For a probability
measure ν over X , the alternative Bregman hard clustering problem can be expressed as

min
µh,h=1,...,k

k∑
h=1

∑
xi∈Xh

νidφ(µh, xi) = min
θh,h=1,...,k

k∑
h=1

∑
θxi∈X

θ
h

νidψ(θxi , θh)

where X θh are the clusters in the dual space. This implies the alternative Bregman hard clustering problem is
equivalent to the original Bregman hard clustering problem with the dual divergence dψ. We can easily get
the original cluster representatives µh = ∇ψ(θh) from θh given by the expectation. Of course, this method
will work efficiently only if dψ can be found easily, just like in the EM scheme. This alternative formulation
also extends to the Bregman soft clustering case by replacing dφ(xi, µh) by dψ(θh, θxi).
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6 Conclusion

In this paper, we presented clustering algorithms based on minimizing functions of Bregman divergence.
In the hard clustering case, we showed it was a direct generalization of the K-Means algorithm, and that
Bregman divergences are the only such possible function for which cluster centers are the mean. In the soft
clustering case, we developed the theory behind regular exponential families and their bijection with regular
Bregman divergences. This bijection allowed us simplify the EM algorithm for mixture density estimation
for the soft clustering problem. Bregman divergences are truly an important theoretical tool that allow us to
solve many applied problems, not just in unsupervised learning, but also in problems tied to rate distortion
theory and information theory.
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