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1 Introduction

Let G = (V,E) be a simple graph. We write u ∼ v if {u, v} ∈ E. We say
that G is a minor of a graph G′ = (V ′, E′) if G can be obtained from G′ by
a sequence of edge and vertex deletions and edge contractions. Equivalently,
there is a function π : V ′ → V such that for every u ∈ G, π−1(v) is connected
and if u ∼ v in G, then u′ ∼ v′ in G′ for some u′ ∈ π−1(u) and v′ ∈ π−1(v).

If G and G′ are rooted graphs, that is, there are distinguished vertices r ∈ V

and r′ ∈ V ′, then G is a rooted minor of G′ if the above conditions are satisfied
and π(r′) = r.

Define a relation ≤ on the set of finite graphs G by letting G ≤ G′ if G is
isomorphic to a minor of G′. Clearly this relation is reflexive (take π = idV (G)

in the definition above) and transitive (if G ≤ G′ ≤ G′′ with functions

V (G′′)
π1−→ V (G′)

π2−→ V (G)

as in the definition above, take π = π2 ◦ π1). This makes ≤ a quasi-order on G.
Furthermore, it is easy to see that if G ≤ G′ and G′ ≤ G, then G and G′ are

isomorphic. Thus we obtain from � a partial order on the set of isomorphism
classes of graphs.

Recall that � is a well-quasi order on G is a quasi-order such that for any
sequence x1, x2, . . . in G there exist i < j with xi � xj . This is equivalent to
the following: � has no infinite antichain (set of incomparable elements) and is
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well-founded (every nonempty subset of G has a minimal element with respect
to �). A consequence of this is that if H ⊂ G is an upper set with respect to �
(that is, if G ∈ H and G � G′, then G′ ∈ H), then H has finitely many minimal
elements G1, . . . , Gn, and G ∈ H if and only if Gi � G for some i.

Robertson and Seymour in a series of papers starting with [1] prove the so-
called Wagner’s conjecture: that the relation ≤ defined above is a well-quasi
order.

The equivalent condition for well-quasi ordering can then be restated: if H
is some set of finite graphs such that if G ∈ H, then any minor of G is in H,
then there is a finite set of graphs G1, . . . , Gn such that G ∈ H if and only if G
does not contain a minor isomorphic to any Gi. We say that H is characterized
by the forbidden minors G1, . . . , Gn.

Indeed, a number of interesting properties of graphs that are preserved under
deletions and edge contractions can be characterized by forbidden minors. For
example:

• A graph is a forest (has no cycles) if and only if it has no minor isomorphic
to the triangle K3. (Proof is trivial.)

• A graph is planar if and only if it has no minor isomorphic to K5 or to
K3,3 (see Figure 1). This is Wagner’s theorem.

• A graph is outerplanar (i.e., can be embedded in the plane so that all
vertices are in the outer face) if and only if it has no minor isomorphic to
K4 or to K2,3. This is not difficult to show using the fact that outerplanar
graphs can be decomposed into triangulated polygons.

• A graph can be embedded in RP
2 if and only if it has no minor isomorphic

to any of a set of 35 forbidden minors ([4]).

Wagner’s conjecture implies that all properties preserved under deletions
and contractions can be characterized by forbidden minors. (Important cases
are sets of graphs that can be embedded in a given surface.)

Figure 1: The two forbidden minors for planar graphs and a nonplanar graph
with K5 minor highlighted.
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2 Properties excluding a planar graph

The goal of [1], [3], [4], and [5] is to show the following.

Theorem 1. If H is a set of finite graphs closed under taking minors, and H
does not contain some planar graph, then H can be characterized by forbidden
minors.

This is a special case of Wagner’s conjecture, which omits the supposition
that H does not contain some planar graph. We give an outline of part of
Robertson and Seymour’s largely self-contained proofs of Theorem 1.

2.1 Path-width and tree-width

Path-width and tree-width are invariants associated with a graph that are im-
portant to the proof of Theorem 1. We state the definitions given in [1] and [2]
in clearer terms.

Let G be a graph. A path-decomposition of G consists of a path P (with
vertices v1, v2, . . . , vn connected in sequence) together with a function ρmapping
each vertex of G to a subset of the vertices of P (that is, an element of P(V (P )),
where P denotes the power set) such that:

(1) For each u ∈ V (G), the subgraph of P induced by ρ(u) is connected.

(2) If u ∼ v in G, then ρ(u) ∩ ρ(v) 6= ∅.

(We may otherwise define the decomposition by associating a subset Xi of V (G)
to each vertex vi of P and requiring that if u ∼ v, then some Xi contains both u

and v and that if i ≤ j ≤ k, then Xi ∩Xk ⊆ Xj . The two definitions are equiv-
alent: given the function ρ, we may define the Xi = {u ∈ V (G) : vi ∈ ρ(u)}. In
the other direction, given the Xi, we may define ρ(u) = {vi : u ∈ Xi}.)

Let the width of such a decomposition be maxi |{u : vi ∈ ρ(u)}| − 1. The
path-width of G is the minimum k such that there exists a path-decomposition
of G of width k.

For convenience and intuition, we will say v ∈ V (P ) lies under u ∈ V (G) if
v ∈ ρ(u), as drawn in Figure 2.

Obviously, path-width is a graph invariant, as it is preserved under isomor-
phism. For example, one can show that a graph has path-width 0 if and only
if it has no edges and that a graph has path-width 1 if and only if each of its
connected components is a caterpillar (i.e., a graph obtained from a path by
appending edges – “legs” – to the vertices of the path; see Figure 2). We shall
return to the caterpillar example later.

For further elaboration of this definition, we give the proofs of three state-
ments stated without proof in [1], restated under our definition of path-decomposition.

Lemma 1 ([1], 1.3-1.6). The following hold for a graph G:

(a) If every connected component of G has path-width ≤ k, then G has path-
width ≤ k.
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Figure 2: Path-decomposition of a caterpillar. The thick black segments are
edges of the graph G, the thin black segments are edges of the path P , and blue
arrows have been drawn from each vertex u ∈ G to each vertex in ρ(u).

(b) If X ⊂ V (G) and G\X has path-width ≤ k, then G has path-width ≤ k+|X|.

(c) If ρ : V (G) → P(V (P )) is a path-decomposition of G, where V (P ) =
{v1, . . . , vr}, for 1 ≤ i ≤ r − 1, |{u : {vi, vi+1} ⊆ ρ(u)}| ≤ k, and for
1 ≤ i ≤ r, the subgraph of G induced by {v ∈ V (G) : ρ(v) = {i}} has path-
width ≤ k′, then G has path-width ≤ k′ + 2k.

Proof. (a) Let G1 and G2 be disjoint graphs. Let P1 and P2 be paths and ρ1 :
V (G1) → P(V (P1)) and ρ2 : V (G2) → P(V (P2)) path-decompositions of
widths k1 and k2, respectively. Let P be the path formed by concatenating
the paths P1 and P2, and define ρ : V (G1∪G2) → V (P ) such that ρ|V (G1) =
ρ1 and ρ|V (G2) = ρ2. Then ρ is a path-decomposition of G1 ∪ G2 of width
max(k1, k2), because, for v ∈ P , |{u : v ∈ ρ(u)}| = |{u : v ∈ ρ1(u)}| if v ∈ P1

and |{u : v ∈ ρ(u)}| = |{u : v ∈ ρ2(u)}| if v ∈ P2.

This shows that the path-width of the disjoint union of two graphs is equal
to the maximum of their path-widths.

(b) Let G be a graph and X ⊆ V (G). Let P be a path and ρ : V (G \ X) →
P(V (P )) a path-decomposition of width k. Extend ρ to a function ρ′ :
V (G) → P(V (P )) by setting ρ′(u) = V (P ) for u ∈ X. Then ρ′ is a path-
decomposition of G of width k + |X|, because, for v ∈ P , {u : v ∈ ρ′(u)} =
{u : v ∈ ρ(u)} ∪X.

(c) Let ρ : V (G) → P(V (P )) be a path-decomposition of a graph G, where
V (P ) = {v1, . . . , vr},

∣
∣ρ−1(vi) ∩ ρ−1(vi+1)

∣
∣ ≤ k for 1 ≤ i ≤ r − 1 and the

subgraph of G induced by {v : ρ(v) = {i}} has path-width at most k′ for
1 ≤ k ≤ r.

Let P1, . . . , Pr be paths and for each i let ρi : {v : ρ(v) = {i}} → P(V (Pi))
be a path-decomposition of the subgraph of G induced by {v : ρ(v) = {i}}
of width at most k′.
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Let Q be the path formed by concatenating the paths P1, . . . , Pn, and define
ρ′ : V (G) → P(V (Q)) by setting

ρ′(v) =

{

ρi(v) if ρ(v) = {i} for some i,
⋃

i:vi∈ρ(v) V (Pi) else
.

Then ρ′ is a path-decomposition of G of width at most k′ + 2k, since if
v ∈ Pi, then

|{u : v ∈ ρ′(u)}| =
∣
∣ρ−1

i (v) ∪ {u : vi ∈ ρ(u), |ρ(u)| > 1}
∣
∣

≤
∣
∣ρ−1

i (v)
∣
∣+ |{u : {vi, vi−1} ⊆ ρ(u)} ∪ {u : {vi, vi+1} ⊆ ρ(u)}|

≤ k′ + 2k.

(Note also that (a) follows from (c) by taking the path P = {v1, v2} and
letting ρ−1(v1) = V (G1) and ρ−1(v2) = V (G2).)

We also note the following.

Lemma 2. If G is a minor of G′, then the path-width of G′ is not less than the
path-width of G.

Proof. It suffices, given a path-decomposition ofG′, to produce a path-decomposition
of G of the same or lesser width.

Let π : G′ → G be the function as in the definition of minor, and let
ρ′ : G′ → P(V (P )) be a path-decomposition. We define ρ : G → P(V (P )) by
ρ(u) =

⋃

w∈π−1(u) ρ(w). It is clear that ρ is a path-decomposition of G.

Because
∣
∣ρ−1(v)

∣
∣ =

∣
∣π((ρ′)−1(v))

∣
∣ ≤

∣
∣(ρ′)−1(v)

∣
∣, the width of ρ does not

exceed the width of ρ′, as deisred.

A tree-decomposition of a graphG is defined similarly to path-decomposition,
except that the path P is replaced by a tree T . Correspondingly, the tree-width
of a graph G is the minimum k such that there exists a tree-decomposition of
G of width k.

Lemma 2 holds when “path-width” is replaced with “tree-width”.

2.2 Excluding a forest

An important step in the proof of Theorem 1 is the following:

Theorem 2. Suppose F is a forest. There exists some w such that if a graph
G has path-width greater than w, then G has a minor isomorphic to F .

In this section we summarize [1]’s proof of Theorem 2.
We define several families of graphs indexed by a positive integer parameter.
The grid Gθ, where θ > 1, is a graph with θ2 vertices indexed by pairs (i, j),

where 1 ≤ i, j ≤ θ, and (i, j) is adjacent to (i± 1, j) and (i, j± 1), whenever the
indices make sense.
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The tree Yλ, where λ ≥ 1, is defined inductively by starting with the “Y”
tree K1,3 and performing the operation of appending two new vertices to each
leaf λ− 1 times.

The tree Hλ is obtained in the same way, but one begins with K1,2 in place
of K1,3. Also, H0 is defined to be the graph with one vertex.

The tree Pγ,δ, where γ, δ ≥ 1, is formed by taking δ copies of Hγ−1, append-
ing a new vertex to the “central” vertex of each copy, and joining these δ new
vertices by a path. When Pγ,δ is considered as a rooted tree, its root is at one
of the ends of the path.

All of these trees are illustrated in Figure 3.

Figure 3: The graphs G5, Y3, H4, and P3,6.

These graphs have properties related to graph minors that will be important.
The following facts are stated but not fully proven in [1]. We fill in the details.

Lemma 3 ([1],3.2-3.5). The graph Yλ is isomorphic to a minor of Gθ, where

θ = 2⌈
λ+3

2 ⌉.
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Therefore, if a graph G has no minor isomorphic to Yλ, then G has no minor
isomorphic to Gθ.

Proof. First, clearly Hλ−1 is isomorphic to a minor of Hλ. Notice that Yλ is
formed by joining the central vertices of Hλ and Hλ−1 by an edge, while Hλ+1 is
formed by joining the central vertices of two copies of Hλ by two edges in series.
Therefore, Yλ is isomorphic to a minor of Hλ+1.

Next, we show by induction on λ that Hλ+1 can be embedded in Gθ−1,
where θ is as in the statement of the lemma. It suffices to consider λ odd and
to require that Hλ correspond to the center of the grid and that no vertices of
Hλ+1 correspond to any other vertices in the center of the grid. For λ = 1, such
an embedding of H2 in G3 is trivial to find. Figure 4 illustrates the construction
of an embedding of Hλ+2 in G2θ−1 given an embedding of Hλ+1 in Gθ−1.

From this we conclude that Yλ is isomorphic to a minor of Gθ−1, which is
isomorphic to a minor of Gθ, as desired.

Figure 4: Inductive step in the proof of Lemma 3: embedding of H8 in G31 and
(bordered) embedding of H6 in G15.

Lemma 4. Every forest F is isomorphic to a minor of Yλ for some λ.

Proof. Every forest is isomorphic to a minor of a tree because one may add edges
connecting components of the forest to obtain a tree that can be transformed
into the original forest by deleting the new edges.
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Every tree is isomorphic to a minor of a binary tree (i.e., a tree with no
vertices of degree exceeding 3) because one can repeatedly split vertices of degree
higher than 3 into two vertices of lesser degree connected by an edge until
one obtains a binary tree that can be transformed into the original tree by
contractions of the new edges.

Finally, the graphs Yλ contain the full binary trees of arbitrary height Hλ.

The critical step in the proof of Theorem 2 is motivated by some results about
graphs that do not contain Gθ as a minor. The main result is the following.
(Note that if G = (V,E) is a graph and A,B,W ⊂ V , then W separates A and
B for all a ∈ A and b ∈ B, every path from a to b contains a vertex of V .)

Lemma 5 ([1],2.7). Fix θ sufficiently large (θ > 6 suffices). Suppose G = (V,E)
is a graph and A1, A2 ⊆ V . If there exist 1

2θ
2 disjoint paths from A1 to A2 and

there exist θ2θ disjoint connected subgraphs B1, . . . , Bθ2θ each separating A1 and
A2, then G has a minor isomorphic to Gθ.

Sketch of proof. Step 1: If there exist disjoint paths P1, . . . , Pθ in G each inter-
secting the 1

2θ ·θ! disjoint paths Q1, . . . , Q 1
2
θ·θ! at one vertex, in that order, then

G has a minor isomorphic to Gθ. The proof is a pigeonhole argument: there are
1
2θ! orders (up to reversal) in which the Pi could intersect each Qj , so there are
Qj1 , . . . , Qjθ so that the Pi intersect the Qji in the same order. It is trivial to
extract a Gθ-minor.

Step 2: If there exist disjoint paths P1, . . . , Pθ in G each intersecting the
θ(θ − 1) disjoint trees R1, . . . , Rθ(θ−1) at one leaf, in that order, then G has a
minor isomorphic to Gθ. By performing contractions, we may reduce to the
case where each Rj is a star. Figure 5 shows how to then extract a Gθ-minor.

Step 3: If there exist 1
2θ

2 disjoint paths P1, . . . , P 1
2
θ2 in G each intersecting

the θ2θ−2 disjoint subgraphs B1, . . . , Bθ2θ−2 in that order, then G has a minor
isomorphic to Gθ. This can be deduced from the previous two steps, since any
connected graph with at least 1

2θ
2 vertices has a minor isomorphic to a path

with θ vertices or to a star with θ leaves.
Step 4: If A1, A2 ⊆ V , there is a unique set of disjoint paths P1, . . . , Pm

from A1 to A2 such that every vertex of G lies on one of the Pi, and there
exist 2mθ2θ−2

(
m
1
2
θ2

)
disjoint connected subgraphs each intersecting at least 1

2θ
2

of the Pi, then G has a minor isomorphic to Gθ. To prove this, one constructs
a labeling of each vertex v ∈ V with an integer µ(v) such that the labels are
strictly increasing along each path Pi and for each n, {v : µ(v) < n} is separated
from {v : µ(v) ≥ n} by

⋃

i {the first vertex v of Pi with µ(v) ≥ n}.
The result follows easily from Step 4.

Now we can finally relate containment of specific minors to path-width:

Theorem 3 ([1],3.6(i)). Fix λ > 2, γ ≥ 0, and δ ≥ 2, and let θ = 2⌈
λ+3

2 ⌉. If
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Figure 5: θ = 3. Three paths intersect θ(θ − 1) = 6 stars. The G3 minor is
highlighted in thick black and blue.

the path-width of a rooted connected graph G is greater than

w =
(

2θ
6
)
(

2θ
6
)...

(

2θ
6
)

︸ ︷︷ ︸

γ

δ

,

then G has a rooted minor isomorphic to Pγ,δ or a minor isomorphic to Gθ.

The proof is a long technical application of the lemmas about path-width and
Lemma 5 above. Another family of trees Qγ,δ, obtained by appending two new
vertices to each leaf in one of the copies of Hγ−2 in Pγ−1,δ, is defined. Bounds
on the path-width of rooted graphs having no minor isomorphic to Gθ and no
rooted minor isomorphic to Pγ,δ or Qγ,δ are established by a joint induction.

Proof of Theorem 2. By Lemma 4, choose λ such that F is isomorphic to a

minor of Yλ. Let θ = 2⌈
λ+3

2 ⌉. By the previous theorem with γ = λ and δ = 3,
there exists w such that if the path-width of G (therefore, of every connected
component of G) is greater than w, then every connected component of G has
a minor isomorphic to Pλ,3 or to Gθ.

But Pλ,3 clearly contains a minor isomorphic to Yλ, and Gθ contains such
a minor by Lemma 3. Therefore, G contains a minor isomorpic to Yλ, so G

contains a minor isomorphic to F .

To summarize, any forest is isomorphic to a minor of some Yλ and therefore
of some Gθ; we introduced the graphs Pγ,δ to show that any graph not having a
minor isomorphic to Gθ or Pγ,δ has bounded path-width, from which it followed
that any graph not having a minor isomorphic to Yλ has bounded path-width.

As a corollary to Theorem 2, for any set F of graphs of bounded path-width
there exist a forest F such that no G ∈ F has a minor isomorphic to F . For
example, suppose F is the set of caterpillars, which, as mentioned above, have
path-width bounded by 1. Indeed, no caterpillar has a minor isomoprhic to the
graph obtained from K1,3 = Y1 by replacing each edge by two edges in series.
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(The converse is not true: not every graph not containing this graph as a
minor has path-width 0 or 1. The graphs K3 or even K4 provides counterex-
amples with path-width 2 and 3, respectively. On the other hand, this graph is
contained in Y2, so λ = 2, θ = 8, and any graph with no minor isomorphic to
it has path-width at most

(

28
6
)
(

28
6
)3

.

This is less desirable – but not optimal.)

2.3 Planar graphs and sleeve unions

Theorem 4 ([3]). Suppose F is a planar graph. There exists some w such
that if a planar graph G has tree-width greater than w, then G has a minor
isomorphic to F .

This result is analogous to Theorem 2 in that “tree” has been replaced with
“planar graph” and “path-width” with “tree-width”.

To prove this theorem, we define another family of graphs Cr,s, the cylinders.
The graph Cr,s is the product of the cycle with r vertices and the path with s

vertices. The s copies of the cycle with r vertices in Cr,s are labeled C1, . . . , Cs

in the obvious order, where Cs is the “inner” cycle. (See Figure 6.) We also let
Nλ,s be the graph formed by identifying the leaves of Yλ with the vertices on
the inner cycle of C3·2λ−1,s. (Notice that Yλ indeed has 3 · 2λ−1 leaves.)

Figure 6: The graphs C12,3 and N3,3.

We need several simple results about tree-width as it relates to cylinders.
They will be used to define an operation on graphs that, in some sense, respects
tree-width.

Lemma 6 ([3],3.8). Let H be a graph, and let G be formed from H by identifying
some r vertices v1, . . . , vr of H with the r vertices of the inner cycle Cs of Cr,s.
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Suppose G has tree-width w. Then H has a tree-decomposition (T, ρ) of width
not exceeding w such that

⋂r
i=1 ρ(vi) is nonempty.

That is, given a tree-decomposition of H with a cylinder glued to it, we may
produce a tree-decomposition of H of lesser width such that some vertex of the
tree lies under all the vertices of H that were glued to the cylinder.

The proof of Lemma 6 is technical and we omit it. The main intermediate
step concerns tree-decompositions of cylinders: if (T, ρ) is a tree-decomposition
of Cr,s, then there exists some t ∈ T such that there are r vertex-disjoint paths
from {u : t ∈ ρ(u)} to Cs. This is used to produce a tree-decomposition of H
given a tree-decomposition of G.

This motivates the notion of the sleeve union of graphs. Let H1 and H2

be graphs that each contain Cr,s as a minor. Let G1 be formed from H1 by
identifying some r vertices u1, . . . , ur of H1 with the inner cycle of a copy of
Cr,s to H1. Let G2 similarly be formed from H2 by attaching a copy of Cr,s

along the vertices v1, . . . , vr. Let G be the graph formed from H1 and H2 by
identifying ui with vi. Then G is the sleeve union of G1 and G2.

As illustrated in Figure 7, one can imagine G1 and G2 sliding into each
other as hands into sleeves. The graphs G1 and G2 are both minors of G: G1

is formed by replacing H1 by its minor Cr,s in G, and G2 is similarly formed by
deletions and contractions in the H2 portion of G.

This operation behaves well with tree-width.

Lemma 7 ([3],3.10). If G is the sleeve union of G1 and G2, then the tree-width
of G is the maximum of the tree-widths of G1 and G2.

Proof. Let w be this maximum.
Let H1 and H2 be subgraphs of G as in the definition of sleeve union. Be-

cause G1 and G2 both have tree-width w, by Lemma 6, one can find tree-
decompositions (T1, ρ1) of H1 and (T2, ρ2) of H2, both of width at most w, such
that there are t1 ∈ T1 and t2 ∈ T2 with t1 ∈ ρ(ui) and t2 ∈ ρ(vi) for all i.

Let T be the tree formed from the disjoint union of T1 and T2 by adding an
edge from t1 to t2, and define a tree-decomposition (T, ρ) of G by

ρ(v) =







ρ1(v) v ∈ H1 \H1,

ρ2(v) v ∈ H2 \H1,

ρ1(v) ∪ ρ2(v) v ∈ H1 ∩H2

.

Clearly this is a tree-decomposition of G of width w.
Conversely, the tree-width of G is at least w because G1 and G2 are minors

of G, by Lemma 2.

So far, we have not used planarity of any of the graphs involved. We now
consider planar graphs together with their embeddings in the plane.

Suppose G is a connected planar graph together with an embedding M in
the plane. Let G′ be its planar dual, with the dual embedding M ′ in the plane.
The radius of M is the maximum distance from the vertex of G′ corresponding
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Figure 7: Sleeve union of two graphs, each containing C4,2 as a minor.

to the infinite face of G to any other vertex of G′. The radius of a graph G is
the minimum radius of an embedding of G. For example, the embeddings of
C12,3 and N3,3 shown above in Figure 6 both have radius 3; in fact, 3 is the
radius of each of these graphs, since they can be shown to have no embedding
of radius 1 or 2.

Now we shall use the graphs Nλ,s to relate radius to tree-width.
One can show the following:

Lemma 8 ([3],2.4). If G is a planar graph of radius s, then G is isomorphic to
a minor of Nλ,s for some λ.

The proof proceeds as follows: we find a sequence of s circuits, each one
contained in the region bounded by the previous one, in an embedding of G;
removing these circuits yields a graph with radius 0, that is, a forest. Finally,
observe that any forest is isomorphic to a minor of some Yλ (as shown in the
previous section) and that if λ < λ′, then Nλ,s is isomorphic to a minor of Nλ′,s.

Lemma 9 ([3],2.5). The tree-width of Nλ,s does not exceed 3s+ 1.

This is shown by explicit construction of a tree-decomposition of Nλ,s, where
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the tree is isomorphic toYλ−1. A “proof by colourful picture” is shown in Figure
8.

Figure 8: Tree-decomposition of N3,3. The tree Y2 is thought of as the copy of
Y3 at the center with its leaves removed, shown in thick black. Each vertex v

is coloured with {u : v ∈ ρ(u)}.

Corollary 1. A planar graph of radius s has tree-width not exceeding 3s+ 1.

Proof. From the previous two lemmas.

Finally, we relate sleeve unions and cylinders to planarity and radius.
An embedding of a graph G in the plane is said to major Cr,s if there are

circuits C1, . . . , Cs in G, where each Ci+1 is contained in the region bounded
by Ci, and paths P1, . . . , Pr from C1 to Cs such that the intersection of Pi with
each Cj is connected. (That is, G has a “topological minor” isomorphic to Cr,s:
there are nested circuits in G corresponding to the nested circuits of Cr,s.) In
particular, if G majors Cr,s, then G has radius at least s.

One can show the following fact about decompositions of graphs into sleeve
unions:

Lemma 10 ([3],4.3). Suppose G can not be expressed as the sleeve union of two
graphs.

(a) If G majors Cr,s, where r is even and r < s, then G majors Cr+1,s−r.

(b) If G majors Cr,s, where r is odd and r < s− 1, then G majors Cr+1,s−r−1.

From this it follows by induction that if G cannot be expressed as the sleeve
union of two graphs and does not major Cr,s, then G has radius at most s +
⌊
1
2 (r

2 − 1)
⌋
and, by Corollary 1, tree-width at most 3

(
s+

⌊
1
2 (r

2 − 1)
⌋)

− 2.
This decomposition theorem, combined with Lemma 7, allows us to prove

the theorem.

Proof of Theorem 4. Let H be a planar graph. There exists r such that Cr,r

has a minor isomorphic to H. Let w = 3
(
r +

⌊
1
2 (r

2 − 1)
⌋)

− 2.
Suppose G is a planar graph having tree-width greater than w.
If G can be expressed as a sleeve union of two of its minors G1 and G2, then

by Lemma 7 at least one of G1 and G2 (assume G1) has tree-width greater than
w, and we reduce to a smaller case by replacing G by G1.

So suppose G cannot be expressed as a sleeve union of two of its minors.
But, by the previous lemma, G majors Cr,r, so G has a minor isomorphic to H,
as desired.
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2.4 Planar graphs and grids

Theorem 5 ([5]). Suppose F is a planar graph. There exists some w such that
if a graph G has tree-width greater than w, then G has a minor isomorphic to
F .

This result is analogous to Theorem 2 in that “tree” has been replaced with
“graph” and “path-width” with “tree-width”. It strengthens Theorem 4.

The method of proof will be similar to that of Theorem 2. The following is
analogous to Lemma 3.

Lemma 11 ([5],2.1). For all sufficiently large θ, there exists w such that if a
graph G has tree-width greater than w, then G has a minor isomorphic to Gθ.

The constant w is even more impractical than in Lemma 3, as will be seen
in the proof sketch below.

The idea of the proof is to show that if G has no minor isomorphic to Gθ,
then G does not contain certain structures that involve two pairwise intersecting
families of subgraphs.

Namely, an (m,n)-web in G is a set of paths P1, . . . , Pm, Q1, . . . , Qn in G

such that the Pi are disjoint, the Qi are disjoint, and each Pi intersects each
Qj . We also require that the Pi have no edges in common with the Qj .

An (m,n)-mesh inG is defined in the same way, but with “paths” replaced by
“connected subgraphs” and permitting that the Pi and Qj not be edge-disjoint.

Sketch of proof of Lemma 11. We first define a (huge) constant w1 depending
on θ. Let α be a function recursively defined by α(2, n) = n+ 1 and α(k, n) =

2nθ
4

+ α
(

k − 1, 2nθ
4

+ n+ 1
)

for n ≥ 3. Let θ′ = 2α
(
1
2θ

2, 1
2θ

2
)
. Let w1 =

φ0+2φ1+ · · ·+2φθ′−1+φθ′ , where φθ′ = 1
2θ

2 and φi is defined recursively from

φθ′ by φi = φi+12
φi+1θ

2

.
The motivation for this bizarre constant is that one can show, using results

about grids mentioned two sections previously, that if a graph G contains a
(w1, w1)-web, then G contains a minor isomorphic to Gθ.

Now, let w′

2 =
(
1
2θ

2
)w1−1

and w′

3 = w1

(
w′

2

w1

)
+ 1

2θ
2
( w′

2
1
2
θ2

)
; let w2 =

(
1
2θ

2
)w′

3−1

and w3 = w2

(
w2

w′

3

)
+ 1

2θ
2
(
w2
1
2
θ2

)
. An involved pigeonhole argument shows that if a

graph G contains a (w2, w3)-mesh, then G contains a (w′

2, w
′

3)-mesh where each
of the connected subgraphs is a path, and that then G contains a (w1, w1)-web
and therefore a minor isomorphic to Gθ.

Finally, choose w > α(w2, w3)(1 + 3
4 (w2(3

w2 − 1))). One can show by an
argument similar to the proof of Theorem 7 that if a graph G has tree-width
greater than w, then G has a minor isomorphic to Gθ. The reduction operation
in this case is not decomposition of G as a sleeve union, but writing G as the
union of two subgraphs with relatively “few” vertices in common and of roughly
equal size. One can show that if G cannot be written as such a union, then G

has a minor isomorphic to Gθ by showing it has a (w2, w3)-mesh.
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Specifically, “few” means fewer than α(w2, w3) and “roughly equal” means
each subgraph has no more than 1 − 1

3
4
(w2(3w2−1))

of the number of vertices in

G – this explains this factors in the definition of w.

This lemma implies the theorem just as Lemma 3 implied Theorem 2.

Proof of theorem 2. Suppose F is a planar graph. Let θ be sufficiently large
(θ ≥ 6) such that F is isomorphic to a minor of Gθ. Choose w as in the
previous lemma. Then, if a graph G has tree-width greater than w, then G has
a minor isomorphic to Gθ, and hence has a minor isomorphic to F .

Let us see how impractical this is. For example, the trees are the connected
graphs not having the planar graph K3 as a minor. The results above required
θ ≥ 6, and G6 contains K3 as a minor. So, let θ = 6. But even the constant
θ′ = 2α(18, 18) defined in the proof of Lemma 11 would not fit on this page!
On the other hand, trees are precisely the connected graphs with tree-width not
exceeding the (considerably smaller) constant 1.

2.5 Families with bounded tree-width

Theorem 1 is implied by Theorem 5 and the following:

Theorem 6. Fix an integer k. The relation � is a well-quasi order on the set
of graphs with tree-width not greater than k.

The previous two theorems imply the main result.

Proof of Theorem 1. Suppose H is a set of finite graphs closed under taking
minors and H does not contain some planar graph F . By Theorem 5, H has
bounded tree-width. By Theorem 6, � restricts to a well-quasi order on H, so
H has finitely many minimal elements.

References

[1] N. Robertson and P.D. Seymour, Graph Minors. I. Excluding a Forest, Jour-
nal of Combinatorial Theory 35 (1983).

[2] N. Robertson and P.D. Seymour, Graph Minors. II. Algorithmic Aspects of
Tree-Width, Journal of Algorithms 7 (1986).

[3] N. Robertson and P.D. Seymour, Graph Minors. III. Planar Tree-Width,
Journal of Combinatorial Theory 36 (1984).

[4] N. Robertson and P.D. Seymour, Graph Minors. IV. Tree-Width and Well
Quasi-Ordering, Journal of Combinatorial Theory 48 (1990).

[5] N. Robertson and P.D. Seymour, Graph Minors. V. Excluding a Planar
Graph, Journal of Combinatorial Theory 41 (1986).

15


