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1 Introduction

In recent decades, physicists and mathematicians alike have looked toward random matrix theory to help
bring insight into systems that involve a multitude of interacting variables. Such systems arise in quantum
chaos, thermodynamics, optics, number theory, and encryption, to name a few [4, 15, 18, 20]. Not surpris-
ingly, random matrix theory was popularized in the mid-1950s in direct response to the difficulty of modeling
a particularly complex system: the highly excited states of heavy atomic nuclei.

The energy levels of these heavy atomic nuclei are the eigenvalues of a Hamiltonian operator, which, in a
sense, encodes the system. However, the complicated structure of the heavy nuclei rendered it impossible to
accurately define a Hamiltonian for the system. Eugene Wigner, a theoretical physicist and mathematician
who would later win a Nobel Prize for his contributions to nuclear physics, recognized the need to develop
a new statistical approach to modeling this system.

The difference between Wigner’s scheme and other statistical methods was the absence of a collection of
known individual states to average over in order to predict individual states of future systems. As Freeman
Dyson, another renowned physicist and mathematician, expressed, this statistical theory would need to
“define in a mathematically precise way an ensemble of systems in which all possible laws of interaction
are equally probable” [7]. The proposed solution was to create a Hamiltonian out of random elements with
certain properties.

Wigner is famous for pioneering this approach. In 1955, he began with (2N + 1) × (2N + 1) real
symmetric matrices (for N large), whose diagonal elements were all zero [25]. The off-diagonal elements had
uniform absolute value v with randomly distributed signs. By calculating moments and utilizing perturbation
theory, he proved that the distribution of the eigenvalues averaged over all such matrices tended toward a
semicircular distribution1 . In 1958, Wigner relaxed the conditions on the elements of the real symmetric
matrices. Independence of entries, uniform variance, and bounded moments comprised the new sufficient
conditions [26].

In the 1960s, other mathematicians and physicists explored random matrix theory and contributed to
a wider knowledge of the field. Madan Lal Mehta and Michel Gaudin concluded that the matrices could
be Hermitian, provided that the elements were randomly and independently distributed with distributions
invariant under unitary transformations [10]. Considering the limit as the dimension of properly normalized
Hermitian matrices approached infinity, Mehta and Guadin showed that the eigenvalues tended toward a
semicircular distribution. Their proof involved Hermite polynomials and properties of the harmonic oscillator
wave functions. It was not until the mid-1960s that Vladimir Marchenko and Leonid Pastur suggested a
new approach to proving that the eigenvalues of a certain set of matrices tend toward a particular limiting
distribution [16]. They proposed finding the Stieltjes transform of the limiting distribution of the eigenvalues
and then using an inversion formula to arrive at the desired result.

1This is the first manifestation of Wigner’s semicircular law, which we will define later.
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Over the years, as random matrix theory has developed, new sufficient conditions on the matrix elements
and innovative proof techniques have surfaced. This paper is an exposition of Wigner’s semicircular law. In
brief, the law in its current form states that the distribution of eigenvalues of random Hermitian matrices
tends toward a semicircular distribution, independent of the underlying probability measure. Our goal is to
explore the proof of this law utilizing the Stieltjes transform.

2 Preliminaries

2.1 Important Definitions

Definition 2.1.1 (Wigner Matrix). A Wigner matrix A is a random Hermitian matrix. The entries [aij ]
above the main diagonal are complex-valued, independent, and identically distributed with mean 0 and
variance 1, and aji = aij . The entries on the main diagonal [aii] are real-valued, independent, and identically
distributed with mean 0 and variance 1. Furthermore, all entries are uniformly bounded in modulus by K,
and the joint distribution of the entries [aij ] is absolutely continuous with respect to Lebesgue measure.

For the result in this paper, we want to work with a normalized Hermitian matrix. The proper normal-
ization of an n× n Wigner matrix Mn is 1√

n
[23]. Note that normalizing Mn contracts its eigenvalues by a

factor of 1√
n

but does not change their order.2

Definition 2.1.2 (Empirical Spectral Distribution). The empirical spectral distribution (ESD) of the nor-
malized matrix Mn√

n
is

µn :=
1

n

n∑
j=1

δλj/√n,

where λj for j = 1, . . . , n are the eigenvalues of Mn.

A distribution of particular interest is the distribution µsc of the semicircular law, which is given by

µsc :=
1

2π

√
4− x2,

for |x| ≤ 2.

2.2 The Stieltjes Transform

Definition 2.2.1 (Stieltjes Transform). The Stieltjes transform of an arbitrary measure µ is defined by

sµ(z) :=

∫
R

1

x− z
dµ(x)

for all z ∈ C outside the support of µ.

We will denote by sµ, sn, and ssc the Stieltjes transforms of the distributions µ, µn, and µsc, respectively.

3 Statement of the Theorem

Theorem 3.0.1 (Wigner’s Semicircular Law). Let Mn be a sequence of n × n Wigner matrices. Let µn
be the empirical spectral distribution of Mn√

n
. Let µsc be the distribution of the semicircular law. Then, µn

converges to µsc weakly almost surely.

2It is worth noting at this point that the eigenvalues of these matrices are most likely distinct, as are the eigenvalues of any
square matrix (Theorem A.1.1).
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We will prove this theorem in three steps:

1. For any fixed z in the upper half plane, |sn(z, ω)− E[sn(z)]| converges to zero almost surely.

2. For any fixed z in the upper half plane, sn(z, ω) converges to ssc(z).

3. Outside of a null set, sn(z, ω) converges to ssc(z) for all z in the upper half plane.

This will be sufficient to prove Wigner’s semicircular law given the following theorem.

Theorem 3.0.2. Let µk be a sequence of random probability measures on the real line, and let µ be a
deterministic probability measure. Then µk converges weakly almost surely to µ if and only if sµk(z) converges
almost surely to sµ(z) for every z in the upper half-plane.

Proof. Suppose µk converges to µ weakly almost surely. That is,
∫
R f(x)dµk(x) converges to

∫
R f(x)dµ(x)

for all continuous, bounded functions f .
Consider the function f(x) = (x− z)−1 for fixed z with positive imaginary part. Then, as we will prove

in Lemma 4.0.1 and Proposition 4.0.3, f is continuous and bounded. Thus, it must be true that∫
R

1

x− z
dµk(x)→

∫
R

1

x− z
dµ(x),

which is to say, sµk converges to sµ almost surely for all z in the upper half plane.
Conversely, suppose sµk converges to sµ almost surely for all z in the upper half plane. Let φ be a function

on the real line with compact support. In order to prove that µk converges to µ weakly almost surely, we
will first prove that µk converges to µ vaguely almost surely by showing that

∫
R φ(x)dµk(x) converges to∫

R φ(x)dµ(x) using a series of approximations.
Let z = a+ ib, and consider the integral

Tφ(z) =
1

π
=
[∫

R

φ(x)dx

x− (a+ ib)

]
=

1

π
=
[∫

R

φ(x)dx

a− (x+ ib)

]
.

According to Theorem B.0.3, this converges to φ(a) as b→ 0+ uniformly in a. Therefore, for all ε > 0, there
exists δ > 0 such that

|Tφ(a+ ib)− φ(a)| < ε

whenever |b| < δ. It follows that∣∣∣∣∫
R
Tφ(a+ ib)dµk(a)−

∫
R
φ(a)dµk(a)

∣∣∣∣ =

∣∣∣∣∫
R

(Tφ(a+ ib)− φ(a)) dµk(a)

∣∣∣∣
≤
∫
R
|Tφ(a+ ib)− φ(a)| dµk(a)

<

∫
R
ε dµk(a)

= ε.

Note that the same calculation and conclusion can be produced by replacing µk with µ. Thus, by the triangle
inequality,∣∣∣∣∫ φdµk −

∫
φdµ

∣∣∣∣ ≤ ∣∣∣∣∫ φdµk −
∫
Tφdµk

∣∣∣∣+

∣∣∣∣∫ Tφdµ−
∫
φdµk

∣∣∣∣+

∣∣∣∣∫ Tφdµk −
∫
Tφdµ

∣∣∣∣
< 2ε+

∣∣∣∣∫ Tφdµk −
∫
Tφdµ

∣∣∣∣ . (1)
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Next, since φ has compact support on the line, it is nonzero on a finite interval, which means Tφ(a+ ib) can
be approximated by a Riemann sum:∣∣∣∣∣∣Tφ(a+ ib)−∆

1

π
=
∑
j

φ(xj)

a− (xj + ib)

∣∣∣∣∣∣ < ε,

where the intervals are chosen to be uniform of length ∆. Then, we have∣∣∣∣∣∣
∫
R
Tφ(a+ ib)dµk(a)−∆

1

π
=
∫
R

∑
j

φ(xj)

a− (xj + ib)
dµk(a)

∣∣∣∣∣∣ < 2ε,

with the same inequality for µ. To simplify our notation, define g(a) by

g(a) = ∆
1

π
=
∑
j

φ(xj)

a− (xj + ib)
.

Then, by the triangle inequality,∣∣∣∣∫ Tφdµk −
∫
Tφdµ

∣∣∣∣ ≤ ∣∣∣∣∫ Tφdµk −
∫
gdµk

∣∣∣∣+

∣∣∣∣∫ gdµ−
∫
Tφdµ

∣∣∣∣+

∣∣∣∣∫ gdµk −
∫
gdµ

∣∣∣∣
< 4ε+

∣∣∣∣∫ gdµk −
∫
gdµ

∣∣∣∣ . (2)

Lastly, observe that∫
R

∆
1

π
=
∑
j

φ(xj)

a− (xj + ib)

 dµk(a) = ∆
1

π
=
∑
j

φ(xj)

∫
R

1

a− (xj + ib)
dµk(a)

= ∆
1

π
=
∑
j

φ(xj)sµk(xj + ib),

and note that a similar formula holds for µ. By assumption, sµk(z) converges to sµ(z) almost surely for all
z in the upper half plane, so for k large,∣∣∣∣∣∣∆ 1

π
=
∑
j

φ(xj)sµk(xj + ib)−∆
1

π
=
∑
j

φ(xj)sµ(xj + ib)

∣∣∣∣∣∣ < ε. (3)

Combining Equations (1), (2), and (3), we get∣∣∣∣∫
R
φ(a)dµk(a)−

∫
R
φ(a)dµ(a)

∣∣∣∣ < 2ε+

∣∣∣∣∫
R
Tφ(a+ ib)dµk(a)−

∫
R
Tφ(a+ ib)dµ(a)

∣∣∣∣
< 2ε+ 4ε+

∣∣∣∣∫
R
g(a)dµk(a)−

∫
R
g(a)dµ(a)

∣∣∣∣
< 2ε+ 4ε+ ε

= 7ε.

Therefore,
∫
R φ(a)dµk(a) converges to

∫
R φ(a)dµ(a) almost surely, which means µn converges vaguely almost

surely to µ. Now, since µk and µ are probability measures on the real line, µk(R) = 1 for all k, and µ(R) = 1.
So it follows that µ(R) = limk→∞ µk(R). Then, according to the Portemanteau Theorem [14], µk converges
to µ weakly almost surely.

Before proceeding to prove the three steps we outlined previously, we will discuss some of the properties
of the Stieltjes transform of a measure.
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4 Properties of the Stieltjes Transform

Lemma 4.0.1. For z away from the real axis, the Stieltjes transform of an arbitrary measure µ has the
pointwise bound

|sµ(z)| ≤ 1

|=(z)|
.

Proof. Since ∣∣∣∣ 1

x− z

∣∣∣∣ =
1

|x− z|
≤ 1

|=(z)|
,

we have

|sµ(z)| =
∣∣∣∣∫

R

1

x− z
dµ(x)

∣∣∣∣
≤
∫
R

1

|=(z)|
dµ(x)

=
1

|=(z)|

∫
R
dµ(x)

=
1

|=(z)|
.

Proposition 4.0.2. The Stieltjes transform of µn has the identity

sn(z) =

∫
R

1

x− z
dµn(x) =

1

n
tr

(
1√
n
Mn − zIn

)−1

. (4)

Proof. To see that this is true, let Xn = Mn√
n

. Let λ1 ≤ . . . ≤ λn be the eigenvalues of Mn. Then the

eigenvalues of Xn are
λ1√
n
≤ . . . ≤ λn√

n
.

We want to show that the eigenvalues of Xn − zIn are
λj√
n
− z, where j = 1, . . . , n. Let ej be an eigenvector

of Xn. Then,

Xnej =
λj√
n
ej ,

which implies

(Xn − zIn)ej = Xnej − zej

=
λj√
n
ej − zej

=

(
λj√
n
− z
)
ej , (5)

as desired. Next, we want to show that the eigenvalues of (Xn − zIn)−1 are (
λj√
n
− z)−1. Note that, in

addition to being an eigenvector of Xn, ej is an eigenvector of (Xn − zIn) by Equation (5). Then, since
Ax = λx implies Akx = λkx for all k ∈ Z,

(Xn − zIn)−1ej =

(
λj√
n
− z
)−1

ej .
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Therefore, ∫
R

1

x− z
dµn(x) =

1

n
tr (Xn − zIn)

−1
=

1

n
tr

(
1√
n
Mn − zIn

)−1

.

Remark. From this identity, we see that the imaginary part of sn(z) is positive for z in the upper half
plane. Let z = a+ ib be a point in the upper half plane. Then,

= (sn(z)) = =

(
1

n
tr

(
1√
n
Mn − zIn

)−1
)

= =

 1

n

n∑
j=1

1
λj√
n
− z


=

1

n

n∑
j=1

b(
λj√
n
− a
)2

+ b2
. (6)

This will be important in Section 6.

Next, we want to consider the expansion of the right-hand side of Equation (4). We have

(Xn − zIn)−1 =

[
−z
(
−Xn

z
+ In

)]−1

= −1

z

(
In −

Xn

z

)−1

= −1

z

(
I +

Xn

z
+
X2
n

z2
+ . . .+

Xk
n

zk
+ . . .

)
.

This expansion is true when ||Xnz || < 1, which holds when |z| > ||X||. Therefore, when |z| is large,

sn(z) = − 1

nz
tr

[
I +

Xn

z
+
X2
n

z2
+ . . .

]
= − 1

nz

[
n+

1

z
tr(Xn) +

1

z2
tr(X2

n) + . . .

]
.

In terms of the matrix Mn, we have

sn(z) = −1

z

[
1 +

1

zn
tr

(
Mn√
n

)
+

1

z2n
tr

(
Mn√
n

)2

+
1

z3n
tr

(
Mn√
n

)3

+ . . .

]
.

Therefore, for any µn,

sn(z) = −1

z
− 1

z2n
O(1), (7)

since tr
(
Mn√
n

)
= O(1). Equation (7) will be useful later when we define a recursion relation for a sequence of

Stieltjes transforms of measures, but right now we want to prove that sn(z) is both continuous and analytic.
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Proposition 4.0.3. The Stieltjes transform of µ is continuous at all points z in the upper half plane.

Proof. Let z = a + ib be a complex number with positive imaginary part. Let δ = 1
2b. Let fj(x, zj) =

(x− zj)−1 so that limzj→z fj(x, zj) = f(x, z). Then, for all zj within δ of z,

|fj(x, zj)| =
∣∣∣∣ 1

x− zj

∣∣∣∣ ≤ 1

=(x− zj)
≤ 1

=(zj)
≤ 1

δ
.

Let g(x, z) = 1
δ , so ∣∣∣∣ 1

x− zj

∣∣∣∣ ≤ g(x, z).

Note that
∫
R g(x, z)dµ(x) <∞ because∫

R
g(x, z)dµ(x) =

∫
R

(
1

δ

)
dµ(x)

=
1

δ

∫
R
dµ(x)

=
1

δ
.

Therefore, by the Lebesgue Dominated Convergence Theorem,

lim
zj→z

∫
R

1

x− zj
dµ(x) =

∫
R

1

x− z
dµ(x),

which is to say, limzj→z sµ(zj) = sµ(z). Thus, the Stieltjes transform of µ is continuous at all points z in
the upper half plane.

Proposition 4.0.4. The Stieltjes transform of µ is analytic at all points z in the upper half plane.

Proof. Note that f(x, z) = (x − z)−1 is analytic for all z in the upper half plane. This means that for any
triangle C in the upper half plane, ∫

C

f(x, z)dz = 0

by the Cauchy Integral Theorem.
Let dµ(x) = g(x)dx, where g is a Riemann-integrable function. Then,∫

C

sµ(z)dz =

∫
C

[∫
R

dµ(x)

x− z

]
dz =

∫
C

[∫
R

g(x)dx

x− z

]
dz.

By Fubini’s Theorem, we can change the order of integration to get∫
C

[∫
R

g(x)dx

x− z

]
dz =

∫
R
g(x)

[∫
C

dz

x− z

]
dx = 0.

Since sµ(z) is continuous in the upper half plane, this tells us that sµ(z) is analytic in the upper half plane
by Morera’s Theorem.

4.1 Stieltjes Transform of the Semicircular Law

Theorem 4.1.1. The Stieltjes transform of the distribution µsc of the semicircular law is

ssc(z) =
−z +

√
z2 − 4

2
.
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Proof. Fix z in the upper half plane. Then,

ssc(z) =

∫
R

1

x− z
dµsc(x) =

1

2π

∫ 2

−2

1

x− z
√

4− x2dx.

Let x = 2 cos y. This gives us

ssc(z) =
1

2π

∫ 0

π

1

(2 cos y)− z
√

4− (2 cos y)2(−2 sin y dy)

=
1

π

∫ π

0

2

2 cos y − z
sin2 y dy

=
1

π

∫ 2π

0

1

2
(
eiy+e−iy

2

)
− z

(
eiy − e−iy

2i

)2

dy.

Let ζ = eiy. Then,

1

π

∫ 2π

0

1

2
(
eiy+e−iy

2

)
− z

(
eiy − e−iy

2i

)2

dy = − 1

4πi

∮
|ζ|=1

(ζ2 − 1)2

ζ2(ζ2 + 1− zζ)
dζ. (8)

The integrand has three poles: ζ0 = 0, ζ1 = z+
√
z2−4
2 , and ζ1 = z−

√
z2−4
2 , where we choose the branch of the

square root with positive imaginary part. In order to apply the Residue Theorem to evaluate the integral,
we need to determine which of the poles falls inside the unit circle.

We know
√
z = sign(=(z))

|z|+ z√
2(|z|+ <(z))

,

for any z 6= 0. This means

<(
√
z) = sign(=(z))

|z|+ <(z)√
2(|z|+ <(z))

= sign(=(z))

√
|z|2 − (<(z))2√
2(|z| − <(z))

= sign(=(z))

√
=(z)2√

2(|z| − <(z))

=
=(z)√

2(|z| − <(z))
.

Applying this to
√
z2 − 4, we find

<(
√
z2 − 4) =

=(z2 − 4)√
2(|z2 − 4| − <(z2 − 4))

=
2<(z)=(z)√

2(|z2 − 4| − <(z2 − 4))
.

Since we have assumed =(z) > 0, we see that <(
√
z2 − 4) and the real part of z have the same sign. Thus,

|ζ1| > |ζ2|. Furthermore, ζ1ζ2 = 1, so it must be that |ζ1| > 1 and |ζ2| < 1. Therefore, in order to evaluate
integral (8), we need to calculate the residue of the integrand at ζ0 and at ζ2. For ζ0, we have

Res(ζ0) =
4ζ0(ζ2

0 − 1)(ζ2
0 + 1− zζ0)− (ζ2

0 − 1)2(2ζ0 − z)
(ζ2

0 + 1− zζ0)2
= z.
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For ζ2, we have

Res(ζ2) =
(ζ2

2 − 1)2

ζ2
2

(
ζ2 −

(
z+
√
z2−4
2

)) = −
√
z2 − 4.

Thus, by the Residue Theorem,

ssc(z) = − 1

4πi

∮
|ζ|=1

(ζ2 − 1)2

ζ2(ζ2 + 1− zζ)
dζ

= 2πi

(
− 1

4πi

(
z −

√
z2 − 4

))
=
−z +

√
z2 − 4

2
. (9)

5 Step One

Theorem 5.0.1. For fixed z in the upper half of the complex plane,
∣∣sn(z, ω)− E[sn(z)]

∣∣ converges almost
surely to zero.

In order to prove this theorem, we need a few calculations and results.

5.1 Recursion Relation

Proposition 5.1.1. The Stieltjes transform of µn satisfies the recursion relation

sn(z) = sn−1(z) + O

(
1

n

)
.

Proof. To begin with, note that√
n(n− 1)sn−1

( √
n√

n− 1
z

)
=

1

n− 1

√
n(n− 1)tr

(
Mn−1√
n− 1

−
√
n√

n− 1
zI

)−1

=

√
n√

n− 1

( √
n√

n− 1

)−1

tr

(
Mn−1√

n
− zI

)−1

= tr

(
Mn−1√

n
− zI

)−1

. (10)

Let λj(Mn−1) be the eigenvalues of Mn−1, and let λj(Mn) be the eigenvalues of Mn. Then,

√
n(n− 1)sn−1

( √
n√

n− 1
z

)
− nsn(z) = tr

(
Mn−1√

n
− zI

)−1

− tr

(
Mn√
n
− zI

)−1

=

n−1∑
j=1

1
λj(Mn−1)√

n
− z
−

n∑
j=1

1
λj(Mn)√

n
− z

. (11)

We want to show that (11) is bounded. Fix z = a+ ib in the upper half plane, and consider the function

f(x) =
1

x− z
.

Let xj =
λj(Mn)√

n
and x̃j =

λj(Mn−1)√
n

. By Cauchy’s Interlace Theorem (A.2.1),

x1 ≤ x̃1 ≤ x2 ≤ . . . ≤ xn−1 ≤ x̃n−1 ≤ xn.

9



For k = 1, 2, . . . , n− 1, consider f(x̃k)− f(xk). By the Mean Value Theorem,

f(x̃k)− f(xk) = f ′(ξk)∆k,

for some ξk ∈ (xk, x̃k), where ∆k = x̃k − xk. Therefore,

n−1∑
j=1

1
λj(Mn−1)√

n
− z
−

n∑
j=1

1
λj(Mn)√

n
− z

=

n−1∑
j=1

1

x̃j − z
−

n∑
j=1

1

xj − z

= −f(xn) +

n−1∑
k=1

f(x̃k)− f(xk)

= −f(xn) +

n−1∑
k=1

f ′(ξk)∆k

≈ −f(xn) +

∫
R
f ′(ξ)dξ

= −f(xn) +

∫
R

−1

(ξ − z)2
dξ.

Then, since 0 < |f(xn)| ≤ 1
b ,∣∣∣∣−f(xn) +

∫
R

−1

(ξ − z)2
dξ

∣∣∣∣ ≤ |f(xn)|+
∣∣∣∣∫

R

−1

(ξ − z)2
dξ

∣∣∣∣
≤ 1

b
+

∫
R

1

(ξ − a)2 + b2
dξ

=
1

b
+

1

b2
arctan

(
x− a
b

) ∣∣∣∣∣
∞

x=−∞

=
1

b
+
π

b
.

Thus,
n−1∑
j=1

1
λj(Mn−1)√

n
− z
−

n∑
j=1

1
λj(Mn)√

n
− z

= O(1).

Then we have √
n(n− 1)sn−1

( √
n√

n− 1
z

)
− nsn(z) = O(1).

Dividing by n gives us √
n− 1

n
sn−1

( √
n√

n− 1
z

)
− sn(z) = O

(
1

n

)
.

Lastly, we need to show that we can approximate√
n− 1

n
sn−1

( √
n√

n− 1
z

)
by sn−1(z). In order to do this, recall Equation (7), our estimate of the Taylor series expansion of sn(z):

sn(z) = −1

z
− 1

z2n
O(1).

10



We also need the Taylor expansion of
√
n−1√
n

about infinity, which is given by

√
n− 1√
n

= 1− 1

2n
− 1

8n2
+ . . . = 1 + O

(
1

n

)
.

Therefore, √
n− 1

n
sn−1

( √
n√

n− 1
(z)

)
=

√
n− 1

n

[
−
√
n− 1√
n

1

z
− n− 1

n

1

z2(n− 1)
O(1)

]
=

[
1 + O

(
1

n

)][
−1

z
− 1

z2(n− 1)
O(1)

]
=

[
1 + O

(
1

n

)]
sn−1(z)

= sn−1(z) + O

(
1

n

)
. (12)

This gives us the relation

sn−1(z) + O

(
1

n

)
− sn(z) = O

(
1

n

)
,

which simplifies to our desired recursion relation,

sn(z) = sn−1(z) + O

(
1

n

)
. (13)

From recursion relation (13), we see that the most permuting rows or columns of Mn can influence sn(z),
while keeping the matrix Hermitian, is O

(
1
n

)
. So we can apply McDiarmid’s Inequality (Proposition D.0.1)

to show that sn(z) is concentrated around its mean. For all κ > 0, consider

P

(∣∣∣sn(z)− E[sn(z)]
∣∣∣ ≥ κ√

n

)
.

By McDiarmid’s Inequality,

P

(∣∣∣sn(z)− E[sn(z)]
∣∣∣ ≥ κ√

n

)
≤ 2 exp

−2
(

κ√
n

)2

∑n
i=1 c

2
i

 ,

where ci is O
(

1
n

)
. Therefore,

P

(∣∣sn(z)− E[sn(z)]
∣∣ ≥ κ√

n

)
≤ Cecκ

2

,

for absolute constants C, c > 0. We will utilize this inequality in our proof of Theorem 5.0.1.

5.2 Proof of Step One

Proof of Theorem 5.0.1. Fix z and define fn(ω) ≥ 0 by fn(ω) = sn(z, ω) − E[sn(z)]. Note that fn(ω)
converges to zero if and only if lim supn→∞ fn(ω) = 0 because fn(ω) ≥ 0, which means lim infn→∞ fn(ω) ≥ 0.
Fix ε and let An = {ω : fn(ω) ≥ ε}. If ω ∈ lim supn→∞(An), then fn(ω) ≥ ε infinitely often (that is, for
infinitely many n). If ω /∈ lim supn→∞(An), then fn(ω) ≥ ε only finitely many times, which is to say, for
some N ∈ N, fn(ω) < ε for all n ≥ N .

11



We want to be able to say that

lim sup
n→∞

An = {ω : lim sup
n→∞

fn(ω) ≥ ε}. (14)

This is allowed because lim supn→∞ fn(ω) ≥ ε if and only if fn(ω) ≥ ε infinitely often, which is equivalent
to lim supn→∞An.

Now, consider inequality (5.1):

P

(∣∣sn(z)− E[sn(z)]
∣∣ ≥ κ√

n

)
= P

(
ω : fn(ω) ≥ κ√

n

)
≤ Ce−cλ

2

.

Let κ = εn
1/4. Then,

P
(
ω : fn(ω) ≥ ε

n1/4

)
≤ Ce−cε

2√n.

By the Integral Test (Appendix E), we have

∞∑
n=1

P
(
ω : fn(ω) ≥ ε

n1/4

)
≤
∞∑
n=1

Ce−cε
2√n <∞.

So, by the Borel-Cantelli Theorem (C.0.1),

P

(
ω : ω ∈ lim sup

n→∞

{
σ : fn(σ) ≥ ε

n1/4

})
= 0.

Note that
{ω : fn(ω) ≥ ε} ⊂

{
σ : fn(σ) ≥ ε

n1/4

}
.

Thus, it must be that for every ε > 0

P

(
ω : ω ∈ lim sup

n→∞
{σ : fn(σ) ≥ ε}

)
= 0.

Now let ε = 1
m for fixed m. So for each m,

P

(
ω : ω ∈ lim sup

n→∞

{
σ : fn(σ) ≥ 1

m

})
= P

(
ω : ω ∈

{
σ : lim sup

n→∞
fn(σ) ≥ 1

m

})
= 0

by Equation (14). Therefore,

P

(
ω : ω ∈

∞⋃
m=1

{
σ : lim sup

n→∞
fn(σ) ≥ 1

m

})
= 0,

as well, because
{⋃∞

m=1
1
m

}
is a countable set. If lim supn→∞ fn(ω) > 0, then

ω ∈
{
σ : lim sup

n→∞
fn(σ) >

1

m

}
,

for some m. Thus,
P (ω : fn(ω) does not converge to zero) = 0,

which is to say fn(ω) =
∣∣sn(z, ω)− E[sn(z)]

∣∣ converges to zero for almost all ω.

12



6 Step Two

Theorem 6.0.1. For any fixed z in the upper half plane, E[sn(z)] converges to ssc(z).

In order to prove this theorem, we wish to derive the formula

E[sn(z)] =
1

−z − E[sn(z)]
+ o(1).

We will do this with the help of Proposition 6.1.1.

6.1 Schur Complement Formula

Proposition 6.1.1. Let An be an n× n matrix, and let An−1 be the top left (n− 1)× (n− 1) minor of An.
Denote the bottom rightmost entry of An by ann. Let V, Y ∈ Cn−1 be the rightmost column of An with the
last entry removed and the bottom row of An with the last entry removed, respectively. That is,

An =

[
An−1 V
Y ann

]
.

Suppose that An and An−1 are both invertible, and let bnn be the bottom rightmost entry of A−1
n . Then,

bnn =
1

ann − Y A−1
n−1V

.

Proof. Let Z denote the rightmost column of A−1
n with the last entry removed. Let W be the bottom row

of A−1
n with the last entry removed, and let Bn−1 be the top left (n− 1)× (n− 1) minor of A−1

n . That is,

A−1
n =

[
Bn−1 Z
W bnn

]
.

Since AnA
−1
n = I, where I is the identity matrix,

[
Y ann

]
×
[
Z
bnn

]
= Y · Z + annbnn = 1. (15)

Also, [
An−1 V

]
×
[
Z
bnn

]
= An−1Z + bnnV = ~0. (16)

Solving Equation (16) for Z we find
Z = −bnnA−1

n−1V. (17)

If we substitute the right-hand side of Equation (17) for Z in Equation (15), we get

Y · [−bnnA−1
n−1V ] + annbnn = 1.

Solving this for bnn, we find

bnn =
1

ann − Y A−1
n−1V

.

Note that we can write

Mn =

[
Mn−1 X
X∗ ξnn

]
,

13



where Mn−1 is the top left (n−1)×(n−1) minor of Mn, X is the rightmost column of Mn with the last entry
removed, and ξnn is the bottom rightmost element of Mn. Then, consider the particular case of Proposition
6.1.1 where

An =
1√
n
Mn − zIn.

This means

An−1 =
1√
n
Mn−1 − zIn−1,

V = 1√
n
X, Y = 1√

n
X∗, and ann = 1√

n
ξnn − z. This means

bnn =
1

( 1√
n
ξnn − z)− 1

nX
∗( 1√

n
Mn−1 − zIn−1)−1X

=
1

−z − 1
nX
∗( 1√

n
Mn−1 − zIn−1)−1X + 1√

n
ξnn

.

We will be considering what happens as n→∞, so we can take 1√
n
ξnn = o(1), to get

bnn =
1

−z − 1
nX
∗( 1√

n
Mn−1 − zIn−1)−1X + o(1)

. (18)

Note that

E[sn(z)] = E

[
1

n
tr

(
1√
n
Mn − zIn

)−1
]

= E

[(
1√
n
Mn − zIn

)−1

nn

]
= E [bnn] ,

since the entries on the diagonal are independent and identically distributed. Therefore, if we take expecta-
tions of both sides of Equation (18), we get

E[sn(z)] = E

[
1

−z − 1
nX
∗( 1√

n
Mn−1 − zIn−1)−1X + o(1)

]
. (19)

Let Rn−1 = ( 1√
n
Mn−1 − zIn−1)−1. We want to show that

1

n
X∗Rn−1X = E[sn(z)] + o(1). (20)

In this way, we will be replacing something random with something deterministic, which will enable us
to evaluate the expectation on the right-hand side of Equation (19). We will arrive at Equation (20) by
justifying the series of approximations

1

n
X∗Rn−1X =

1

n
trRn−1 + o(1)

= sn−1(z) + o(1)

= sn(z) + o(1)

= E[sn(z)] + o(1). (21)
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6.2 First Approximation

Proposition 6.2.1. For Rn−1 defined above,

1

n
X∗Rn−1X =

1

n
trRn−1 + o(1).

Before we can prove Proposition 6.2.1, we need a few calculations and results.
Let A be any square matrix. We can write

A =
A+A∗

2
+
A−A∗

2
.

Let H = A+A∗

2 and Q = −iA−A
∗

2 . Then,
A = H + iQ.

Note that H is Hermitian because

H∗ =

(
A+A∗

2

)∗
=
A∗ +A

2
= H.

Similarly, Q is Hermitian because

Q∗ =

(
−i A−A

∗

2

)∗
= i

A∗ −A
2

= −i −A
∗ +A

2
= Q.

Let ξj , for j = 1, . . . , n, be the eigenvalues of H with corresponding eigenvectors ej . By the Spectral
Theorem, we can write

H =

n∑
j=1

ξjeje
∗
j

=
∑
ξj>0

ξjeje
∗
j +

∑
ξj<0

ξjeje
∗
j .

Let P =
∑
ξj>0 ξjeje

∗
j , and let N = −

∑
ξj<0 ξjeje

∗
j . Note that these are positive semi-definite matrices. We

can write
H = P −N.

Similarly for Q, let ξ̃j , for j = 1, . . . , n, be its eigenvalues with corresponding eigenvectors ẽj . By the Spectral
Theorem,

Q =

n∑
j=1

ξ̃j ẽj ẽ
∗
j

=
∑
ξ̃j>0

ξ̃j ẽj ẽ
∗
j +

∑
ξ̃j<0

ξ̃j ẽj ẽ
∗
j .

Let P̃ =
∑
ξ̃j>0 ξ̃j ẽj ẽ

∗
j , and let Ñ = −

∑
ξ̃j<0 ξ̃j ẽj ẽ

∗
j . So, we can write

Q = P̃ − Ñ .

Returning to our matrix A, we have
A = P −N + iP̃ − iÑ ,

a combination of four positive semi-definite matrices.
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Let a = ||A||op, and normalize the matrices by 1
2aK
√
n−1

to get

A

2aK
√
n− 1

=
P −N + iP̃ − iÑ

2aK
√
n− 1

.

In order to apply Talagrand’s Inequality (Proposition D.0.2), we need to prove that for any positive
semi-definite matrix T with ||T ||op ≤ a, FT (X) = X∗TX

2aK
√
n−1

is convex and 1-Lipschitz.3

Proposition 6.2.2. Let T be an (n − 1) × (n − 1) positive semi-definite matrix. Let FT (X) = X∗TX
2aK
√
n−1

,

where X is an (n− 1) column vector with entries uniformly bounded by K. Then, F is convex.

Proof. Parameterize X by X = X0 + tZ, for some (n−1) column vector Z 6= 0. Let g(t) = FT (X0 + tZ). We
will prove that FT is convex by showing that g′′(t) ≥ 0 for all t ∈ R, which will be sufficient due to Theorem
C.0.4. We have

g(t) =
1

2aK
√
n− 1

(X0 + tZ)∗T (X0 + tZ)

=
1

2aK
√
n− 1

(X∗0TX0 + tZ∗TX0 + tX∗0TZ + t2Z∗TZ)

= FT (X0) +
t

aK
√
n− 1

<(X∗0TZ) + t2FT (Z).

Then,
g′′(t) = 2FT (Z) > 0.

By Proposition 6.2.2, replacing T with P,N, P̃ , and Ñ , respectively, we see that FP , FN , FP̃ , and FÑ are
convex.

Proposition 6.2.3. The function FT (X) = X∗TX
2aK
√
n−1

is 1-Lipschitz.

Proof. Note that

1

2aK
√
n− 1

[(X∗1 −X∗2 )TX1 +X∗2T (X1 −X2)] =
1

2aK
√
n− 1

(X∗1TX1 −X∗2TX1 +X∗2TX1 −X∗2TX2)

=
1

2aK
√
n− 1

(X∗1TX1 −X∗2TX2)

=
1

2aK
√
n− 1

X∗1TX1 −
1

2aK
√
n− 1

X∗2TX2

= FT (X1)− FT (X2).

Therefore, by the triangle inequality,

|FT (X1)− FT (X2)| = 1

2aK
√
n− 1

[(X∗1 −X∗2 )TX1 +X∗2T (X1 −X2)]

≤ 1

2aK
√
n− 1

[
||(X∗1 −X∗2 )TX1||+ ||X∗2T (X1 −X2)||

]
=

1

2aK
√
n− 1

[
||X∗1 −X∗2 || · ||T || · ||X1||+ ||X∗2 || · ||T || · ||X1 −X2||

]
≤ 1

2aK
√
n− 1

[
aK
√
n− 1 ||X∗1 −X∗2 ||+ aK

√
n− 1 ||X1 −X2||

]
=

1

2aK
√
n− 1

[
2aK
√
n− 1 ||X1 −X2||

]
= ||X1 −X2||.

3We consider a function f to be 1-Lipschitz if |f(x)− f(y)| ≤ c|x− y|, for all x and y and for c ≤ 1.
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Thus, FT is 1-Lipschitz.

To see that Proposition 6.2.3 implies FP , FN , FP̃ , and FÑ are 1-Lipschitz, observe that the operator

norms of P,N, P̃ , and Ñ cannot exceed a. This is because

||P ||op =
√

max
ξj>0

ξj ≤ ||H||op ≤ a, ||N ||op =
√

max
ξj<0

ξj ≤ ||H||op ≤ a,

||P̃ ||op =
√

max
ξ̃j>0

ξ̃j ≤ ||Q||op ≤ a, and ||Ñ ||op =
√

max
ξ̃j<0

ξ̃j ≤ ||Q||op ≤ a.

So, by replacing T with P,N, P̃ , and Ñ , respectively, in Proposition 6.2.3, we find that FP , FN , FP̃ , and FÑ
are 1-Lipschitz.

Now, note that{∣∣∣∣ X∗AX

2aK
√
n− 1

− E
[

X∗AX

2aK
√
n− 1

]∣∣∣∣ ≥ ε} ⊆{∣∣∣∣ X∗PX

2aK
√
n− 1

− E
[

X∗PX

2aK
√
n− 1

]∣∣∣∣ ≥ ε

4

}
∪
{∣∣∣∣ X∗NX

2aK
√
n− 1

− E
[

X∗NX

2aK
√
n− 1

]∣∣∣∣ ≥ ε

4

}
∪

{∣∣∣∣∣ X∗P̃X

2aK
√
n− 1

− E

[
X∗P̃X

2aK
√
n− 1

]∣∣∣∣∣ ≥ ε

4

}

∪

{∣∣∣∣∣ X∗ÑX

2aK
√
n− 1

− E

[
X∗ÑX

2aK
√
n− 1

]∣∣∣∣∣ ≥ ε

4

}
.

By Talagrand’s Inequality (Proposition D.0.2),{∣∣∣∣ X∗PX

2aK
√
n− 1

− E
[

X∗PX

2aK
√
n− 1

]∣∣∣∣ ≥ ε

4

}
≤ Ce−c ε

2

16 ,

for absolute constants c, C > 0. This inequality holds for N, P̃ , and Ñ , as well. Therefore,{∣∣∣∣ X∗AX

2aK
√
n− 1

− E
[

X∗AX

2aK
√
n− 1

]∣∣∣∣ ≥ ε} ≤ 4Ce−c
ε2

16 .

This can be written {∣∣∣∣ 1nX∗AX − E
[

1

n
X∗AX

]∣∣∣∣ ≥ ε2aK
√
n− 1

n

}
≤ 4Ce−c

ε2

16 .

Since √
n− 1

n
<

√
n

n
=

1√
n
,

we have

4Ce−c
ε2

16 ≥ P
(∣∣∣∣ 1nX∗AX − E

[
1

n
X∗AX

]∣∣∣∣ ≥ ε2aK
√
n− 1

n

)
≥ P

(∣∣∣∣ 1nX∗AX − E
[

1

n
X∗AX

]∣∣∣∣ ≥ ε2aK√
n

)
.

Let ε = n
1/4. Then,

P

(∣∣∣∣ 1nX∗AX − E
[

1

n
X∗AX

]∣∣∣∣ ≥ 2aK

n1/4

)
≤ 4Ce−c

√
n

16 . (22)

Now we are ready to prove Proposition 6.2.1.
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Proof of Proposition 6.2.1. Let B =
{∣∣ 1
nX
∗AX − E

[
1
nX
∗AX

]∣∣ ≥ 2aK
n1/4

}
. Recall that A is deterministic, not

random, so

E
[

1

n
X∗nAXn

]
=

1

n

n−1∑
i,j=n−1

E[ξinaijξnj ]

=
1

n

n−1∑
i,j=1

aijE[ξinξnj ]

=
1

n

n−1∑
i,j=1

aijδij

=
1

n
trA.

Thus, we can write

B =

{∣∣∣∣ 1nX∗AX − 1

n
trA

∣∣∣∣ ≥ 2aK

n1/4

}
. (23)

Now consider what happens when we replace the deterministic matrix A in (23) with the random variable
Rn−1. Let S =

{∣∣ 1
nX
∗Rn−1X − 1

n trRn−1

∣∣ ≥ 2aK
n1/4

}
. We want to estimate P (S), and we will do so with the

help of Example 5.1.5 from Rick Durrett’s book [6], Probability: Theory and Examples:

Example 5.1.5 Suppose X and Y are independent. Let ϕ be a function with E[|ϕ(X,Y )|] <∞
and let g(y) = E[ϕ(X, y)]. Then E[ϕ(X,Y )|Y ] = g(Y ).

To be consistent with Durrett’s example, let X = X and Y = Rn−1. For deterministic x and r, define ϕ by

ϕ(x, r) = χ
(∣∣∣∣ 1nx∗rx− 1

n
tr(r)

∣∣∣∣ ≥ 2aK

n1/4

)
,

where χ is the characteristic function. Then,

g(r) = E[ϕ(X, r)] =

∫
Ω

ϕ (X(ω), r) dω.

The random variables X and Rn−1 are independent, and it is easy to check that E[|ϕ(X,Rn−1)|] ≤ 1, so

g(Rn−1) = E[ϕ(X,Rn−1)|Rn−1]

according to the example. Observe that, since r is deterministic,

g(r) = P

(∣∣∣∣ 1nX∗rX − 1

n
tr(r)

∣∣∣∣ ≥ 2aK

n1/4

)
≤ 4Ce−c

√
n

16

by inequality (22). Now, since

P (S) = E[ϕ(X,Rn−1)] = E
[
E[ϕ(X,Rn−1)|Rn−1]

]
= E[g(Rn−1)],

18



we have

P (S) =

∫
Ω

g(Rn−1)dω

=

∣∣∣∣∫
Ω

g(Rn−1)dω

∣∣∣∣
≤
∫

Ω

|g(Rn−1)|dω

≤
∫

Ω

4Ce−c
√
n

16 dω

= 4Ce−c
√
n

16

∫
Ω

dω

= 4Ce−c
√
n

16 .

Therefore,

P

(∣∣∣∣ 1nX∗Rn−1X −
1

n
trRn−1

∣∣∣∣ ≥ 2aK

n1/4

)
≤ 4Ce−c

√
n

16 ,

which means
1

n
X∗Rn−1X =

1

n
trRn−1 = o(1).

6.3 Justification of the Remaining Equalities

By Equations (10) and (12),

1

n
trRn−1 =

1

n

[√
n(n− 1)sn−1

( √
n√

n− 1
z

)]
= sn−1(z) + O

(
1

n

)
.

According to Equation (13), sn−1(z) = sn(z) + O
(

1
n

)
. Lastly, we showed in Theorem 5.0.1, that sn(z) =

E[sn(z)] + o(1). Thus, we have justified all steps leading to

1

n
X∗Rn−1X = E[sn(z)] + o(1).

6.4 Proof of Theorem 6.0.1

By replacing 1
nX
∗Rn−1X with E[sn(z)] + o(1) in Equation (19), we get

E[sn(z)] = E
[

1

−z − E[sn(z)] + o(1)

]
.

Since z is fixed,

E[sn(z)] =
1

−z − E[sn(z)] + o(1)
+ o(1). (24)

The denominator on the right-hand side is bounded, so we can rewrite Equation (24) as

E[sn(z)] =
1

−z − E[sn(z)]
+ o(1), (25)
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because

1

−z − E[sn(z)] + o(1)
− 1

−z − E[sn(z)]
=

o(1)(
− z − E[sn(z)] + o(1)

)(
− z − E[sn(z)]

) = o(1).

Proof of Theorem 6.0.1. Equation (25) tells us that if L = limn→∞ E[sn(z)] exists, it must satisfy the fixed
point formula

L =
1

−z − L
.

Since each sn(z) has positive imaginary part by Equation (6), L must have positive imaginary part. There-
fore, if the limit exists,

L =
−z +

√
z2 − 4

2
(26)

because we have chosen the convention that we take the branch of the square root with positive imaginary
part. Note that by Theorem 4.1.1,

ssc(z) =
−z +

√
z2 − 4

2
,

so if the limit exists,
lim
n→∞

E[sn(z)] = ssc(z).

In order to prove that the limit does exist, let W = {z : =(z) > δ}, and let fn = E[sn]. This function is
analytic by Proposition B.0.2 for all z ∈ W , and |fn(z)| is uniformly bounded by 1

δ according to Equation
(28) for all z ∈W . Let gnk be any subsequence of fn. Since |gnk | < 1

δ , there exists a subsequence gnkj that

converges uniformly on compact subsets of W to a function G by Montel’s Theorem (C.0.2). However, since
{gnkj } ⊆ {fn}, we have

lim
n→∞

gnkj = L

for all z ∈W . Thus, it must be that gnk(z) converges to ssc(z) for all z ∈W .
We claim that this implies fn converges to ssc for all z ∈ W . Assume, for contradiction, that fn does

not converge to ssc on W . This means, for some ε > 0, there does not exist an N such that n ≥ N implies
||fn−ssc||∞ < ε. Thus, there exists a sequence nk that goes to infinity such that ||fnk−ssc||∞ ≥ ε. However,
we have shown that every subsequence of fn has a subsequence that converges on W to ssc. That is, for j
large, ||fnkj − ssc||∞ < ε, where fnkj is a subsequence of fnk . Thus, we have a contradiction, as this would

imply ||fnk − ssc||∞ < ε, for large k. So, it must be that fn converges to ssc on W .
Since this holds for all δ > 0, E[sn(z)] converges to ssc(z) for fixed z in the upper half plane.

7 Step Three

Theorem 7.0.1. Outside of a null set, sn(z, ω) converges to ssc(z) for every z in the upper half plane.

Proof. Theorem 5.0.1 and Theorem 6.0.1 have shown that for a fixed z in the upper half of the complex
plane, sn(z, ω) converges to ssc(z) almost surely. This means that for each z in the upper half plane, there
exists a null set Nz such that for all ω ∈ N c

z ,

sn(z, ω)→ ssc(z).

Let CQ = {zj}∞j=1 be the set of all points in the upper half plane with rational coordinates. Then, let
N = ∪Nzj . The set N is a null set because it is the union of countably many sets, all of which have measure
zero. So,

sn(z, ω)→ ssc(z)
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for all ω ∈ N c and all z ∈ CQ. Fix m > 0, and let Cm = {z : =(z) > 1
m}. Therefore, by the elementary

bound (Lemma 4.0.1),

|sn(z)| ≤ 1

|=(z)|
< m,

for all z ∈ Cm. We can now apply Vitali’s Theorem (C.0.3) to conclude that

sn(z, ω)→ ssc(z)

for all ω ∈ N c and all z ∈ Cm. Since this holds for all m > 0, we see

sn(z, ω)→ ssc(z)

for all ω ∈ N c and all z in the upper half of the complex plane.

8 Proof of the Semicircular Law

We have everything we need to prove Wigner’s semicircular law.

Proof of Theorem 3.0.1. By Theorem 7.0.1, we know that sn(z) converges to ssc(z) almost surely for every
z in the upper half plane. Then, according to Theorem 3.0.2, this means µn converges to µsc weakly almost
surely.

Appendix A Eigenvalues

A.1 Eigenvalues of Matrices are Most Likely Distinct

Theorem A.1.1. Let A be any square matrix. Assume that the joint distribution of its elements [aij ] is
absolutely continuous with respect to Lebesgue measure. Then, with probability 1, the eigenvalues of A are
distinct.

Proof. Let p be a polynomial defined by

p(x) = det(xI −A)

= xn + (−1)tr(A)xn−1 + . . .+ (−1)ndet(A)

= xn + σ1x
n−1 + σ2x

n−2 + . . .+ σn−1x+ σn.

Let r1, . . . rn be the roots (not necessarily distinct) of the polynomial p. Then,

(r1 − r2)2(r1 − r3)2(r1 − r4)2 . . . (r2 − r3)2 . . . (rn−1 − rn)2 = g(σ1, σ2, . . . , σn).

We will refer to the function g as the discriminant D. It is written in terms of the elementary symmetric
functions σ1, . . . , σn, which themselves are determined by the elements [aij ] of the matrix A. Note that if
any of the roots of p are not distinct, then the discriminant is zero. In order to prove that the eigenvalues
are distinct with probability 1, we will show that the zero locus of p has measure zero.

We know ∣∣∣∣ 1 r1

1 r2

∣∣∣∣ = r2 − r1

and ∣∣∣∣∣∣
1 r1 r2

1

1 r2 r2
2

1 r3 r2
3

∣∣∣∣∣∣ = (r2 − r1)(r3 − r2)(r3 − r1).

21



Therefore, by induction, we see that∣∣∣∣∣∣∣∣∣
1 r1 . . . rn−1

1

1 r2 . . . rn−1
2

...
...

. . .
...

1 rn . . . rn−1
n

∣∣∣∣∣∣∣∣∣ =

n∏
i<j

(rj − ri).

However, we want to find a formula for
n∏
i<j

(rj − ri)2

using determinants. Since A is a square matrix,

(det(A))2 = det(A) det(A) = det(A) det(AT ) = det(ATA).

So,

det(ATA) = det




1 1 . . . 1
r1 r2 . . . rn−1

n
...

...
. . .

...
rn−1
1 rn−1

2 . . . rn−1
n




1 r1 . . . rn−1
1

1 r2 . . . rn−1
2

...
...

. . .
...

1 rn . . . rn−1
n




=

∣∣∣∣∣∣∣∣∣
n

∑
r . . .

∑
rn−1∑

r
∑
r2 . . .

∑
rn

...
...

. . .
...∑

rn−1
∑
rn . . .

∑
r2n−1

∣∣∣∣∣∣∣∣∣
=

n∏
i<j

(rj − ri)2,

a polynomial in power sums. Now, we want to express this product in terms of the elementary symmetric
polynomials:

σj(n) =

n∑
k1<k2<...<kj

(
j∏
i=1

rki

)
.

Note that they can be written as

σj(n) = ri
∂

∂ri
(σj(n)) +

∂

∂ri
(σj+1(n)) .
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Let B` =
∑n
i=1 r

`
i . Then,

m−1∑
j=0

(−1)jBm−jσj(n) =

m−1∑
j=0

(−1)j

[
n∑
i=1

rm−ji

] [
ri
∂

∂ri
(σj(n)) +

∂

∂ri
(σj+1(n))

]

=

n∑
i=1

m−1∑
j=0

[
(−1)jrm−ji

(
ri
∂

∂ri
(σj(n)) +

∂

∂ri
(σj+1(n))

)]

=

n∑
i=1

[
rmi

(
ri
∂

∂ri
(σ0(n)) +

∂

∂ri
(σ1(n))

)
− rm−1

i

(
ri
∂

∂ri
(σ1(n)) +

∂

∂ri
(σ2(n))

)
+ . . .+ (−1)m−1ri

(
ri
∂

∂ri
(σm−1(n)) +

∂

∂ri
(σm(n))

)]
=

n∑
i=1

[
rm+1
i

∂

∂ri
(σ0(n)) +

(
rmi

∂

∂ri
(σ1(n))− rmi

∂

∂ri
(σ1(n))

)
+ . . .+

(
(−1)m−2r2

i

∂

∂ri
(σm−1(n)) + (−1)m−1r2

i

∂

∂ri
(σm−1(n))

)
+ (−1)m−1ri

∂

∂ri
(σm(n))

]
=

n∑
i=1

(−1)m−1ri
∂

∂ri
(σm(n))

= (−1)m−1m(σm(n)), (27)

where the final equality follows from Euler’s theorem for homogeneous functions. This gives us Newton’s
identities:

σm = − 1

m

m−1∑
j=0

(−1)m−jBm−jσj .

So we have ∣∣∣∣∣∣∣∣∣
n B1 . . . Bn−1

B1 B2 . . . Bn
...

...
. . .

...
Bn−1 Bn . . . B2n−1

∣∣∣∣∣∣∣∣∣ =

n∏
i<j

(rj − ri)2.

From Equation (27), we find that

B1 = σ1

B2 = σ2
1 − 2σ2

B3 = σ3
1 − 3σ1σ2 + 3σ3

B4 = σ4
1 − 4σ2

1σ2 + 4σ1σ3 + 2σ2
2 − 4σ4

...

Thus, ∣∣∣∣∣∣∣∣∣
n σ1 σ2

1 − 2σ2 . . .
σ1 σ2

1 − 2σ2 σ3
1 − 3σ1σ2 + 3σ3 . . .

σ2
1 − 2σ2 σ3

1 − 3σ1σ2 + 3σ3 σ4
1 − 4σ2

1σ2 + 4σ1σ3 + 2σ2
2 − 4σ4 . . .

...
...

...
. . .

∣∣∣∣∣∣∣∣∣ =

n∏
i<j

(rj − ri)2.

This is the discriminant D we wanted to find. It is written in terms of the elementary symmetric functions
σ1, . . . , σn, which themselves are determined by the entries [aij ] of the matrix A. Note that if any of the
roots of p are not distinct, then

∏n
i<j(rj − ri)2 = 0, which is a polynomial in Rn. The zero locus of this

polynomial has measure zero. Therefore, we can say the eigenvalues of A are distinct with probability 1.
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A.2 Cauchy’s Interlace Theorem

Theorem A.2.1. Let An be an n× n Hermitian matrix. Write

An =

[
Bn−1 X
X∗ ann

]
,

where Bn−1 is the top left (n − 1) × (n − 1) principal submatrix of An, X is the rightmost (n − 1) column
vector of An, X∗ is the complex conjugate transpose of X, and ann is the bottom rightmost entry of An.
Note that this means Bn−1 is also a Hermitian matrix. Let α1 ≤ . . . ≤ αn be the eigenvalues of An, and let
β1 ≤ . . . ≤ βn−1 be the eigenvalues of Bn−1. Then,

αk ≤ βk ≤ αk+1.

Proof. Let ui, for i = 1, . . . , n, and vj , for j = 1, . . . , n− 1 be the eigenvectors of An and Bn−1, respectively.
Note that u∗i uj = δij , where δij is the Kronecker delta, because An is Hermitian. Similarly, v∗i vj = δij . Let

wi =

[
vi
0

]
.

Let 1 ≤ k ≤ n − 1. Denote the span of uk, . . . , un by S1 and the span of w1, . . . , wk by S2. Note that
dim(S1) = n− k + 1 and dim(S2) = k. By the elementary formula

dim(S1 ∩ S2) = dim(S1) + dim(S2)− dim(S1 + S2),

we know that dim(S1 ∩ S2) > 0, since dim(S1 + S2) ≤ n. Thus, there exists y ∈ S1 ∩ S2 such that y∗y = 1
and αk ≤ y∗Any ≤ βk. This is because y is a linear combination of the eigenvectors uk, . . . , un of An and a
linear combination of the eigenvectors w1, . . . , wk of Bn−1. Thus,

αk ≤ y∗Any ≤ αn.

Also,
y∗Any = y∗Bn−1y

and
β1 ≤ y∗Bn−1y ≤ βk

imply
β1 ≤ y∗Any ≤ βk.

Therefore,
αk ≤ y∗Any ≤ βk.

Now we will consider

−An =

[
−Bn−1 −X
−X∗ −ann

]
.

Then, the eigenvalues of −An are α̃1 ≥ . . . ≥ α̃n, where α̃i = −αi. Similarly, the eigenvalues of −Bn−1

are β̃1 ≥ . . . ≥ β̃n, where β̃i = −βi. The eigenvectors are still ui and vj for −An and −Bn−1, respectively.

Then, let S̃1 be the span of u1, . . . , uk+1, and let S̃2 be the span of wk, . . . , wn. As before, there must exist
some z ∈ S̃1 ∩ S̃2 such that z∗z = 1 and

α̃1 ≥ z∗(−An)z ≥ α̃k+1,

which means z∗Anz ≤ −α̃k+1 = αk+1. Similarly,

z∗(−An)z = z∗(−Bn−1)z,

which leads to the inequality
β̃k ≥ z∗(−Bn)z ≥ β̃n.

Thus, z∗Bn−1z ≥ −β̃k = βk. Therefore, βk ≤ z∗Anz ≤ αk+1. Putting everything together, we have

αk ≤ βk ≤ αk+1.
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Appendix B Properties of the Expectation of the Stieltjes Trans-
form of a Measure

Proposition B.0.1. The expectation of the Stieltjes transform of µ is continuous at all points z in the upper
half plane.

Proof. Fix δ > 0 and let W = {z : =(z) > δ}. Recall that sµ(z, ω) is continuous for all z with =(z) > 0
according to Proposition 4.0.3. By Lemma 4.0.1, we know |sµ(z, ω)| < 1

δ for all z ∈ W . This implies
|E[sµ(z)]| < 1

δ because ∣∣∣E[sµ(z)]
∣∣∣ =

∣∣∣∣∫
Ω

sµ(z, ω)dω

∣∣∣∣
≤
∫

Ω

|sµ(z, ω)|dω

<

∫
Ω

1

δ
dω

=
1

δ

∫
Ω

dω

=
1

δ
. (28)

For any zj ∈W , let fj(zj) = E[sµ(zj)] so that limzj→z fj(zj) = f(z). Let g(z, ω) = 1
δ , so∣∣∣E[sµ(zj)]

∣∣∣ < g(z, ω).

Note that
∫

Ω
g(z, ω)dω <∞ because ∫

Ω

g(z, ω)dω =

∫
Ω

(
1

δ

)
dω

=
1

δ

∫
Ω

dω

=
1

δ
.

Therefore, by the Lebesgue Dominated Convergence Theorem,

lim
zj→z

∫
Ω

sµ(zj , ω)dω =

∫
Ω

sµ(z, ω)dω,

which is to say, limzj→z E[sµ(zj)] = E[sµ(z)]. Since this holds for any δ > 0, we can say that the expectation
of the Stieltjes transform of µ is continuous at all points z in the upper half plane.

Proposition B.0.2. For all z in the upper half plane, E[sµ(z)] is analytic.

Proof. Proposition 4.0.4 tells us that sµ(z, ω) is analytic for all z in the upper half plane. Thus, for any
triangle C in the upper half plane, ∫

C

sµ(z, ω)dz = 0

by the Cauchy Integral Theorem.
Then, ∫

C

E[sµ(z)]dz =

∫
C

[∫
Ω

sµ(z, ω)dω

]
dz.
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By Fubini’s Theorem, we can change the order of integration to get∫
C

[∫
Ω

sµ(z, ω)dω

]
dz =

∫
Ω

[∫
C

sµ(z, ω)dz

]
dω = 0.

Since E[sµ(z)] is continuous in the upper half plane according to Proposition B.0.1, this tells us that E[sµ(z)]
is analytic in the upper half plane by Morera’s Theorem.

Theorem B.0.3. (Poisson Kernel) Let ϕ be a continuous function on R with compact support. Let Tϕ(z) =
1
π=
[∫

R
ϕ(x)dx
x−z

]
, and let z = a+ ib. Then,

lim
z→a0

Tϕ(z) = ϕ(a0).

Proof. Since Tϕ(z) = 1
π=
[∫

R
ϕ(x)dx
x−z

]
, we have

Tϕ(z) =
1

π

∫
R

bϕ(x)dx

(x− a)2 + b2
=

∫
R

1

π

b

(x− a)2 + b2
ϕ(x)dx =

∫
R
P (z − x)ϕ(x)dx,

where P is the Poisson kernel. Choose δ > 0 such that |ϕ(a) − ϕ(a0)| < ε, for some ε > 0, whenever
|a− a0| < δ. Let ψ = ψ1 + ψ2, where

ψ1 =

{
ϕ− ϕ(a0) |a− a0| < δ
0 otherwise

and

ψ2 =

{
0 |a− a0| < δ
ϕ− ϕ(a0) otherwise

.

Thus, we want to show that
lim
z→a0

Tψ(z) = 0.

Notice that |ψ1| < ε. Then,
T−ε < Tψ1

< Tε,

which means −ε < Tψ1
< ε, so |Tψ1

| < ε.
Next, we need to show that

lim
z→a0

Tψ2
(z) = 0.

Since,

Tψ2
(z) =

∫
|a−x|≥δ

bψ2(x)dx

(x− a)2 + b2
,

the integrand is continuous in x, a, and b. Thus, we can pass the limit inside the integral to get

lim
z→a0

Tψ2
(z) =

∫
|a−x|≥δ

lim
z→a0

bψ2(x)dx

(x− a)2 + b2
= 0,

because b→ 0+. Therefore,
lim
z→a0

Tψ(z) = 0,

so
lim
z→a0

Tϕ(z) = ϕ(a0).
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Appendix C General Theorems

Theorem C.0.1 (Borel-Cantelli Theorem). Let An be a sequence of events in the sample space Ω.

(i) If
∞∑
n=1

P (An) <∞,

then P (lim supn→∞(An)) = 0.

(ii) Suppose each event Aj is independent. If

∞∑
j=1

P (Aj) =∞,

then P (lim supj→∞(Aj)) = 1.

Proof. (i) Suppose
∞∑
n=1

P (An) <∞.

Thus, we know

lim
k→∞

∞∑
n=k

P (An) = 0.

Let B1 =
⋃∞
n=1An, B2 =

⋃∞
n=2An, and so on. Note that

lim sup
n→∞

(An) ∈ B1 ∩B2 ∩B3 ∩ . . . ∩B` ∈ B`.

Since B` =
⋃∞
n=`An,

P (B`) = P (A` ∪A`+1 ∪ . . .) ≤
∞∑
n=`

P (An).

Therefore,

P (lim sup
n→∞

(An)) ≤ P (B`) ≤
∞∑
n=`

P (An).

Taking the limit as n→∞, we get

lim
n→∞

P (lim sup
n→∞

(An)) ≤ lim
`→∞

∞∑
n=`

P (An) = 0.

(ii) Let the set S = lim supj→∞(Aj). We will show that P (SC) = 0. We know

SC =

 ∞⋂
k=1

∞⋃
j=k

Aj

C

=

∞⋃
k=1

∞⋂
j=k

ACj .

In order to prove that P (SC) = 0, we will prove that P
(⋂∞

j=k A
C
j

)
= 0, for each k. Fix m > 0 and

consider

P

k+m⋂
j=k

ACj

 .
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Since the events are independent,

P

k+m⋂
j=k

ACj

 =

k+m∏
j=k

P (ACj ).

Then,
P (ACj ) = 1− P (Aj) ≤ e−P (Aj).

This is because 0 ≤ P (Aj) ≤ 1 and the Taylor series expansion of e−x is given by

e−x = 1− x+
x2

2
− x3

6
+ . . .

= 1− x+ (c)
x2

2
,

where 0 < c by the Mean Value Theorem. So,

k+m∏
j=k

P (ACj ) ≤
k+m∏
j=k

e−P (Aj) = e−
∑m+k
j=k P (Aj).

Taking the limit as m→∞,
∑m+k
j=k P (Aj)→∞, by assumption. Thus,

lim
m→∞

k+m∏
j=k

e−P (Aj) = e−
∑m+k
j=k P (Aj) = 0.

Theorem C.0.2 (Montel’s Theorem). Suppose fn ∈ O(W ) is a sequence of analytic functions. Suppose for
some M > 0, |fn(z)| ≤ M for all n and all z ∈ W . Then there exists a subsequence fnk which converges
uniformly on all compact subsets of W to a function f ∈ O(W ).

Proof. Choose z0 ∈ W and consider the disk Dr = {z : |z − z0| < r} ⊆ W , for some r > 0. Define the disk
Dρ by

Dρ = {z : |z − z0| ≤ ρ < r}.

Let δ = r − ρ. Then we have,

|f ′n(z)| =

∣∣∣∣∣ 1

2πi

∫
|ζ−z|= δ

2

fn(ζ)

(ζ − z)2
dζ

∣∣∣∣∣ ≤ 1

2π
πδ
|fn(z)|
( δ2 )2

=
2|fn(z)|

δ
≤ 2M

r − ρ
.

Now, let R = {z ∈ W : z has rational coordinates}. Thus, we can enumerate the points in this set:
R = {zj}∞j=1. Fix z1 ∈ R ∩ Dρ. Since |fn(z1)| is bounded by M , there exists a convergent subsequence
fnk(z1) by the Bolzano-Weierstrass Theorem. To simplify notation, let fn1 = f11, fn2 = f22, and so on. Fix
z2 ∈ R ∩ Dρ. Then, since |f1n(z2)| ≤ M , there exists a convergent subsequence f1nk(z2). Let f21 = f1n1 ,
f22 = f1n2

, f23 = f1n3
, and so on. We continue this pattern for all zj ∈ R ∩Dρ.

Let gk = fkk, and consider the subsequence of fn:

g1, g2, g3, . . . .

Then gn(zj) converges for all zj ∈ R, because for n ≥ k, the limit as n → ∞ of gn(zk) exists. Let g be the
function to which gn converges. By the Fundamental Theorem of Calculus,

|gn(z1)− gn(z2)| =
∣∣∣∣∫ z2

z1

g′n(ζ)dζ

∣∣∣∣ ≤ 2M

r − ρ
|z2 − z1|.
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Let C = 2M
r−ρ for simplicity. Let K ⊂ W be compact. Fix ε > 0, and let γ = ε

6C . Cover K with open disks
Dγ of radius γ centered around each zj ∈ R ∩K. Since K is compact, finitely many of these disks form a
subcover of K. Thus, for every z ∈ K, there exists a zj ∈ R∩K such that |z− zj | < 2γ. Also, we know that
for any zj at the center of a disk in the finite subcover, |gn(zj) − gm(zj)| ≤ ε

3 when n,m ≥ Nj , a positive
integer. Let N = max{Nj}. Thus, |gn(zj)− gm(zj)| ≤ ε

3 when n,m ≥ N . Therefore, we have

|gn(z)− gm(z)| ≤ C|z − zj |+ |gn(zj)− gm(zj)|+ C|zj − z|

< C

(
2ε

6C

)
+
ε

3
+ C

(
2ε

6C

)
=
ε

3
+
ε

3
+
ε

3
= ε

when n,m ≥ N . Thus, there exists a subsequence of fn (namely gn) which converges uniformly on all
compact subsets of W to g.

Also, since each gn is analytic, g is analytic. To see this, let Γ be any triangle in W . Then, by the Cauchy
Integral Theorem, ∫

Γ

gn(ζ)dζ = 0,

for all n. So, by Morera’s Theorem, we have

lim
n→∞

∫
Γ

gn(ζ)dζ =

∫
Γ

lim
n→∞

gn(ζ)dζ =

∫
Γ

g(ζ)dζ = 0.

Note that we can bring the limit inside the integral because we have proved uniform convergence of gn to g
on all compact subsets of W . Thus, g is analytic in W .

Theorem C.0.3 (Vitali’s Theorem). Let fn, for n = 1, 2, . . ., be analytic functions in O(W ), satisfying
|fn(z)| ≤ M for every n and every z ∈ W , and fn(z) converges as n → ∞ for each z in a subset of W
having a limit point in W . Then there exists a function F̃ analytic in W for which fn(z) converges to f(z)
uniformly for all z ∈W .

Proof. Let S ⊂ W be a set with a limit point in W . Let F be the function to which fn(z) converges for
all z ∈ S. Let gnk be any subsequence of fn. Then, since |gnk | ≤ M , there exists a subsequence gnkj that

converges uniformly on compact subsets of W to G ∈ O(W ) by Montel’s Theorem. However, since fn(z)
converges to F (z) on S, gnkj (z) converges to F (z) on S. So, G(z) = F (z) on S.

Similarly, let hnk be any subsequence of fn. Since |hnk | ≤ M , there exists a subsequence hnkj that

converges uniformly on compact subets of W to H ∈ O(W ) by Montel’s Theorem. However, since fn(z)
converges to F (z) on S, hnkj (z) converges to F (z) on S. So, H(z) = F (z) = G(z) on S. Since H and G are

analytic functions that agree on S, H(z) = G(z) for all z ∈ W by the Identity Theorem. We will call this
function F̃ . Thus, every subsequence of fn has a subsequence that converges uniformly on compact sets of
W to F̃ .

Now, we will prove that fn converges uniformly on compact sets to F̃ . Let K ⊂W be compact. Assume,
for contradiction, that fn does not converge to F̃ on K. This means, for some ε > 0, there does not exist an
N such that n ≥ N implies ||fn− F̃ ||∞ < ε. Thus, there exists a sequence nk that goes to infinity such that
||fnk − F̃ ||∞ ≥ ε. However, we have shown that every subsequence of fn has a subsequence that converges
uniformly on K to F̃ . That is, for j large, ||fnkj − F̃ ||∞ < ε, where fnkj is a subsequence of fnk . Thus, we

have a contradiction, as this would imply ||fnk − F̃ ||∞ < ε, for large k. So, it must be that fn converges
uniformly on compact sets of W to the analytic function F̃ .
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Theorem C.0.4. If f : R→ R and f ′′(x0) ≥ 0 for all x0, then f is convex.

Proof. Let s + t = 1, where s, t > 0. Let x0 = sx + ty. We will prove that f is convex by showing
f(x0) ≤ sf(x) + tf(y). By Taylor’s Theorem and the Mean Value Theorem,

sf(x) + tf(y) = s

[
f(x0) + f ′(x0)(x− x0) +

f ′′(ξ)

2
(x− x0)2

]
+ t

[
f(x0) + f ′(x0)(y − x0) +

f ′′(η)

2
(y − x0)2

]
= (s+ t)f(x0) + f ′(x0) [s(x− x0) + t(y − x0)] +

1

2

[
f ′′(ξ)(x− x0)2 + f ′′(η)(y − x0)2

]
≥ f(x0) + f ′(x0) [sx+ ty − (s+ t)x0]

= f(x0) + f ′(x0)[x0 − x0]

= f(x0).

So, sf(x) + tf(y) ≥ f(x0).

Appendix D Inequalities

The following two inequalities were originally proved by Colin McDiarmid [17] and Michel Talagrand [22],
respectively, but in this paper we use Terrence Tao’s statements of the inequalities [23].

Proposition D.0.1 (McDiarmid’s Inequality). Suppose X1, . . . , Xn are independent random variables taking
values in ranges R1, . . . , Rn. Let F : R1 × · · · ×Rn → C be a function with the property that if we freeze all
but the ith coordinate of F (x1, . . . , xn) for some 1 ≤ i ≤ n, then F only fluctuates by most ci > 0. Thus,

|F (x1, . . . , xi−1, xi, xi+1, . . . , xn)− F (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci,

for all xj ∈ Xj and x′i ∈ Xi for 1 ≤ j ≤ n. Then, for any κ > 0, we have

P (|F (X)− E[F (X)]| ≥ κσ) ≤ Ce−cκ
2

,

for some absolute constants C, c > 0, where σ2 :=
∑n
i=1 c

2
i .

Proposition D.0.2 (Talagrand’s Inequality). Let K > 0, and suppose X1, . . . , Xn are independent complex
variables with |Xi| ≤ K for all 1 ≤ i ≤ n. Let F : Cn → R be a 1-Lipschitz convex function. Then, for any
ε, we have

P (|F (X)−M[F (X)]| ≥ εK) ≤ Ce−cε
2

,

and
P (|F (X)− E[F (X)]| ≥ εK) ≤ Ce−cε

2

,

for some absolute constants C, c > 0, where M[F (X)] is the median of F (X).

Appendix E Miscellaneous

E.1 Integral Test

Let 0 < r < 1. We want to show that ∫ ∞
1

r
√
xdx

converges. Let u =
√
x, which means 2u du = dx. Then,∫ ∞

1

r
√
xdx =

∫ ∞
1

2urudu.
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Applying integration by parts once, we have∫ ∞
1

2urudu =
2uru

log(r)

∣∣∣∣∞
u=1

− 2ru

log2(r)

∣∣∣∣∞
u=1

=

(
0− 2r

log(r)

)
−
(

0− 2r

log2(r)

)
=

2r

log2(r)

(
1− log(r)

)
<∞.

Therefore, by the Integral Test,
∞∑
n=1

r
√
n <∞ (0 < r < 1).
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