# Grassmann Coordinates 

and tableaux

Matthew Junge

Autumn 2012

## Goals

(1) Describe the classical embedding $G(k, n) \hookrightarrow \mathbb{P}^{N}$.
(2) Characterize the image of the embedding

- quadratic relations.
- vanishing polynomials.
(3) Reinterpret in terms of varieties and ideals.
(4) Application: classify representations over $G L_{n}(\mathbb{C})$.


## What is a Grassmannian?

A Grassmannian $G(k, n)$ is the set of all $k$-dimensional subspaces of $\mathbb{C}^{n}$.

For example,

$$
G(1,3)=\mathbb{P}^{2}
$$

where we identify all lines.
$G(k, n)$ can be given a topology by embedding it as a subspace of $\mathbb{P}^{N}$.

## The Embedding

- Fix $n, k$ and fix a basis for $\mathbb{C}^{n}$.
- Let $S_{k} \in G(k, n)$ be $k$-dimensional subspace.

Goal: Map $S_{k}$ to a point in $\mathbb{P}^{\binom{n}{k}-1}$.

## $S_{k} \mapsto p_{I} \subseteq \mathbb{P}^{\binom{n}{k}-1}$

- Let $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{C}^{n}$ be a basis for $S_{k}$, and let $A=\left[\begin{array}{cc}\alpha_{1} & \cdots \\ \vdots & \\ \alpha_{k} & \cdots\end{array}\right]$ be the corresponding $k \times n$ matrix.
- Let $I=i_{1} \ldots i_{k}$ with each $1 \leq i_{j} \leq n$ and $i_{1}<i_{2}<\cdots<i_{k}$.
- Let $A_{l}$ denote the $k \times k$ submatrix obtained by selecting the columns with suffixes $i_{1}, \ldots, i_{k}$.


## $S_{k} \mapsto p_{I} \subseteq \mathbb{P}^{\binom{n}{k}-1}$

- Let $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{C}^{n}$ be a basis for $S_{k}$, and let $A=\left[\begin{array}{cc}\alpha_{1} & \cdots \\ \vdots & \\ \alpha_{k} & \cdots\end{array}\right]$ be the corresponding $k \times n$ matrix.
- Let $I=i_{1} \ldots i_{k}$ with each $1 \leq i_{j} \leq n$ and $i_{1}<i_{2}<\cdots<i_{k}$.
- Let $A_{l}$ denote the $k \times k$ submatrix obtained by selecting the columns with suffixes $i_{1}, \ldots, i_{k}$.
- We define coordinate functions $\Phi_{l}\left(A_{l}\right)=\operatorname{det} A_{l}:=p_{l}$.
- This gives a map $\Phi: G(n, k) \rightarrow \mathbb{P}^{\binom{n}{k}-1}$

$$
S_{k} \mapsto \underbrace{}_{\substack{n \\ k \\ k}} \text {-tuple }, ~\left(\ldots, p_{l}, \ldots\right), \quad \forall I .
$$

## Details About Embedding

Proposition
$\Phi$ is injective.
Messy argument with coordinates.

## Details About Embedding

Proposition
$\Phi$ is injective.
Messy argument with coordinates.

## Proposition

$\Phi$ is not surjective.

## The Plücker Relations

$$
G(k, n) \hookrightarrow \mathbb{P}^{(n} k_{k}^{n}-1 .
$$

Goal: Characterize the image of $G(k, n)$. Let $X=\Phi(G(k, n))$.
The points in $X$ satisfy certain quadratic relations.

## The Plücker Relations

$$
G(k, n) \hookrightarrow \mathbb{P}^{(n} k_{k}^{n}-1 .
$$

Goal: Characterize the image of $G(k, n)$. Let $X=\Phi(G(k, n))$.
The points in $X$ satisfy certain quadratic relations.

## Proposition

The points in $X$ do not satisfy any linear relations.

## The Plücker Relations

## Theorem (Plücker Relations)

Fix $\boldsymbol{p} \in X$. For all $1 \leq s \leq n$ and any coordinates $p_{I}, p_{J}$ with $I=i_{1} \ldots i_{k}$ and $J=j_{1} \ldots j_{k}$ it holds that

$$
p_{I} p_{J}=\sum_{\lambda=1}^{k} p_{i_{1} \ldots i_{s-1} j_{\lambda} i_{s+1} \ldots i_{k}} p_{j_{1} \ldots j_{\lambda-1} i_{s} j_{\lambda+1} \ldots j_{k}}
$$

## The Plücker Relations

## Theorem (Plücker Relations)

Fix $\boldsymbol{p} \in X$. For all $1 \leq s \leq n$ and any coordinates $p_{I}, p_{J}$ with $I=i_{1} \ldots i_{k}$ and $J=j_{1} \ldots j_{k}$ it holds that

$$
p_{I} p_{J}=\sum_{\lambda=1}^{k} p_{i_{1} \ldots i_{s-1} j_{\lambda} i_{s+1} \ldots i_{k}} p_{j_{1} \ldots j_{\lambda-1} i_{s} j_{\lambda+1} \ldots j_{k}}
$$

## Theorem (Surjectivity Theorem)

If $\boldsymbol{p} \in \mathbb{P}^{N}$ satisfies the Plücker relations then there is a $k$-space $S_{k} \subseteq \mathbb{P}^{n}$ with coordinate $\boldsymbol{p}$.

## Basis Theorem I

## Definition

Let $1 \leq i_{1}, \ldots, i_{k-1} \leq n$ and let $1 \leq j_{1}, \ldots, j_{k+1} \leq n$ be distinct numbers. Denote these two choices by I and J. We define a quadratic basis polynomial

$$
F_{I J}(P)=\sum_{\lambda=1}^{k+1}(-1)^{\lambda} P_{i_{1} \ldots i_{k-1} j_{\lambda}} P_{j_{1} \ldots j_{\lambda-1} j_{\lambda+1} \cdots j_{k+1}}
$$

with the $P_{L}$ inderminates.

## Basis Theorem I

## Proposition

For all $\boldsymbol{p} \in X$ and all $I, J$ it holds that $F_{I J}(p)=0$.

## Basis Theorem I

## Proposition

For all $\boldsymbol{p} \in X$ and all $I, J$ it holds that $F_{I J}(p)=0$.

But what if $G(p)=0$ ? For arbitrary homogeneuos $G$.

## Basis Theorem

## Theorem (Basis Theorem I)

If $G(P)$ is a homogeneous polynomial in the indeterminates $\ldots, P_{L}, \ldots$ with $L=I_{1} \ldots I_{k}$ such that

$$
G(\boldsymbol{p})=0, \quad \forall \boldsymbol{p} \in X
$$

then

$$
\begin{equation*}
G(P)=\sum_{I, J} A_{l J}(P) F_{I J}(P), \quad I=i_{1} \ldots i_{k-1}, J=j_{1} \ldots j_{k+1} \tag{1}
\end{equation*}
$$

with the $F_{I J}$ quadratic basis polynomials and $A_{I J}$ homogeneous polynomials in the $P_{L}$.

## Summary

- We can embed $G(k, n)$ into $\mathbb{P}^{\binom{n}{k}-1}$.
- The image consists of points satisfying certain quadratic (Plücker) relations.
- The set of polynomials which vanish on the image is generated by a set of quadratic polynomials.


## Summary

- We can embed $G(k, n)$ into $\mathbb{P}^{\binom{n}{k}-1}$.
- The image consists of points satisfying certain quadratic (Plücker) relations.
- The set of polynomials which vanish on the image is generated by a set of quadratic polynomials.

Up Next: This can all be reformulated and proven in terms of varieties and ideals in a coordinate free way.

## Coordinate-Free Version

Let $E$ be a $\mathbb{C}$-vector space, recall that

$$
\bigwedge^{d} E=\left(\bigotimes_{1}^{d} E\right) / T
$$

with $T=\left\{v_{1} \otimes \cdots \otimes v_{d}-\operatorname{sign}(\sigma) v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(d)}\right\}$.
(1) $\wedge^{d} E$ is multilinear.
(2) $\Lambda^{d} E$ is anticommutative.

## Coordinate-Free Embedding

Fix $S_{n-d} \in G(n-d, n)$. Will map $G(n-d, n) \rightarrow \mathbb{P}^{*}\left(\bigwedge^{d} E\right)$ via

$$
S_{n-d} \mapsto H_{S_{n-d}}
$$

## Coordinate-Free Embedding

Fix $S_{n-d} \in G(n-d, n)$. Will map $G(n-d, n) \rightarrow \mathbb{P}^{*}\left(\bigwedge^{d} E\right)$ via

$$
S_{n-d} \mapsto H_{S_{n-d}}
$$

The kernel of the map $\bigwedge^{d} E \rightarrow \bigwedge^{d}\left(E / S_{n-d}\right)$ is a hyperplane

$$
H_{S_{n-d}} \subseteq \bigwedge^{d} E
$$

Recall that $\mathbb{P}^{*}(E)$ is the quotient of $E$ in which we identify all hyperplanes.

## Polynomials on $\mathbb{P}^{*}\left(\bigwedge^{d} E\right)$

For any $v_{1}, \ldots v_{d} \in E$ we can define a linear form on $H \in \mathbb{P}^{*}\left(\bigwedge^{d} E\right)$.

$$
\begin{gathered}
\Lambda^{d} E \longrightarrow\left(\bigwedge^{d} E\right) / H:=L \\
\left(\Lambda^{d} E\right)^{*} \longleftrightarrow L^{*} \longleftrightarrow L^{*} \quad
\end{gathered}
$$

For $f \in L^{*}$.

$$
\begin{aligned}
&\left(v_{1} \wedge \cdots \wedge v_{d}\right)(H):=\left(v_{1} \wedge \cdots \wedge v_{d}\right)\left(L^{*}\right) \\
& \sim\left(\pi^{*} f\right)\left(v_{1} \wedge \cdots \wedge v_{d}\right) \\
&\{\equiv 0 \\
& \equiv 0
\end{aligned}
$$

Products of the $v_{1} \wedge \cdots \wedge v_{d}$ live in $\operatorname{Sym}^{\bullet}\left(\wedge^{d} E\right)$.

## Plücker Relations

## Theorem (The Plücker Relations/Surjectivity)

The Plücker embedding is a bijection from $G(n-d, n)$ to the subvariety of $\mathbb{P}^{*}\left(\bigwedge^{d} E\right)$ defined by the quadratic equations

$$
\begin{gathered}
\left(v_{1} \wedge \cdots \wedge v_{d}\right) \cdot\left(w_{1} \wedge \cdots \wedge w_{d}\right)= \\
\sum_{i_{1}<i_{2}<\cdots<i_{k}}\left(v_{1} \wedge \cdots \wedge w_{1} \wedge \cdots \wedge w_{k} \wedge \cdots \wedge v_{d}\right) \cdot\left(v_{i_{1}} \wedge \cdots \wedge v_{i_{k}} \wedge w_{k+1} \wedge \cdots \wedge w_{d}\right)
\end{gathered}
$$

## The Basis Theorem II

## Theorem (The Basis Theorem II)

Let $\tilde{Q}$ be the ideal generated by the Plücker Relations. It holds that

$$
\mathcal{I}(\mathcal{Z}(\tilde{Q}))=\tilde{Q} .
$$

## Proof.

- We will prove that $\tilde{Q}$ is prime.
- The Nullstellensatz immediately implies the result.


## Proving Primality of $\tilde{Q}$.

## Short-Story:

- Goal is to show that $\operatorname{Sym}^{\bullet}\left(\Lambda^{d} E\right) / \tilde{Q}$ is an integral domain.
- Will prove it embeds as a subring of a polynomial ring.
- Obtain a classification of polynomial representations over $G L_{n}(\mathbb{C})$.


## Proving Primality of $\tilde{Q}$.

Short-Story:

- Goal is to show that $\operatorname{Sym}^{\bullet}\left(\Lambda^{d} E\right) / \tilde{Q}$ is an integral domain.
- Will prove it embeds as a subring of a polynomial ring.
- Obtain a classification of polynomial representations over $G L_{n}(\mathbb{C})$.

First we need to introduce the tableaux:


## Tableaux

Let $E$ be a $\mathbb{C}$-module. For fixed $n$, we let $\lambda$ denote a weakly decreasing partition of $n$, i.e. for $n=16$ a partition $\lambda$ could be $\lambda=(6,4,4,2)$

$$
6+4+4+2=16
$$

The associated tableau (also denoted $\lambda$ ) is


## Constructing the Schur Module: Step 1/4

From each $\lambda$ we can construct a particular $\mathbb{C}$-module $E^{\lambda}$.
Start with cartesian product $E^{\times \lambda}$

Instead of $n$-tuples - put elements in boxes.

## Constructing the Schur Module: Step 1/4

From each $\lambda$ we can construct a particular $\mathbb{C}$-module $E^{\lambda}$.
Start with cartesian product $E^{\times \lambda}$
Instead of $n$-tuples - put elements in boxes.
If $n=5$ and $\lambda=(2,2,1)$ we have an element $\mathbf{v} \in E^{\times \lambda}$ is written

| $v_{1}$ | $v_{4}$ |
| :--- | :--- |
| $v_{2}$ | $v_{5}$ |
| $v_{3}$ |  |
|  |  |
|  |  |

## Constructing the Schur Module: Step 2/4

Let $\lambda$ have $s$ columns and let $d_{i}, i=1, \ldots, s$ denote the length of the $i^{\text {th }}$ column.

$$
E^{\times \lambda} \rightarrow \bigotimes_{i=1}^{s} \bigwedge_{1}^{d_{i}} E: \mathbf{v} \mapsto \wedge \mathbf{v}
$$

For example,

$$
\begin{array}{|l|l|}
\hline v_{1} & v_{4} \\
\hline v_{2} & v_{5} \\
\hline v_{3} & \mapsto\left(v_{1} \wedge v_{2} \wedge v_{3}\right) \otimes\left(v_{4} \wedge v_{5}\right) \\
\hline
\end{array}
$$

## The Quadratic Relations: Step $3 / 4$

Let $Q^{\lambda}$ be the submodule generated by

$$
\wedge \mathbf{v}-\sum \wedge \mathbf{w}
$$

The sum is over all w obtained from $\mathbf{v}$ with an exchange between two given columns with a given subset of boxes in the right chosen column.

| 1 | 6 | 11 | 15 |
| :---: | :---: | :---: | :---: |
| 2 | 7 | 12 | 6 |
| 3 | 8 | 13 |  |
| 4 | 9 | 14 |  |
| 5 | 10 |  |  |
| $\underbrace{}_{\wedge \mathbf{v}}$ |  |  |  |


| 11 | 6 | 1 | 15 |
| :---: | :---: | :---: | :---: |
| 2 | 7 | 12 | 6 |
| 13 | 8 | 3 |  |
| 4 | 9 | 5 |  |
| 14 | 10 |  |  |
|  |  |  |  |
| $\wedge \mathbf{w}$ |  |  |  |

## The Schur Module: Step 4/4

$$
E^{\lambda}:=\left(\bigotimes_{i=1}^{s} \bigwedge_{1}^{d_{i}} E\right) / Q^{\lambda} .
$$

- $\lambda=\underbrace{\square \square \ldots \square}_{n \text { times }}$ then $E^{\lambda}=\operatorname{Sym}^{n}(E)$.
(2) $\lambda=\square$ then $E^{\lambda}=\Lambda^{n} E$.


## $E^{\lambda}$ in Coordinates

- Let $e_{1}, \ldots, e_{n}$ be a basis for $E$.
- Fill $\lambda$ with the $e_{i}$.
- Weakly increasing across rows.
- Strictly increasing down columns.
- Each such arrangement, $T$, is called a standard filling.

The image of this element in $E^{\lambda}$ will be denoted by $e_{T}$.

$$
\begin{array}{|l|l|l|}
\hline e_{1} & e_{2} & e_{2} \\
\hline e_{3} & e_{4} & e_{5} \\
\hline e_{5} & e_{5} \\
\hline
\end{array}
$$

## $E^{\lambda}$ in Coordinates

- Let $e_{1}, \ldots, e_{n}$ be a basis for $E$.
- Fill $\lambda$ with the $e_{i}$.
- Weakly increasing across rows.
- Strictly increasing down columns.
- Each such arrangement, $T$, is called a standard filling.

The image of this element in $E^{\lambda}$ will be denoted by $e_{T}$.

$$
\begin{array}{|l|l|l|}
\hline e_{1} & e_{2} & e_{2} \\
\hline e_{3} & e_{4} & e_{5} \\
\hline e_{5} & e_{5} \\
\hline
\end{array} \longmapsto e_{T} \in E^{\lambda}
$$

## Theorem

$E^{\lambda}$ is free on the $e_{T}$.

## A New Polynomial Ring

$$
\mathbb{C}[Z]:=\mathbb{C}\left[\ldots, Z_{i, j}, \ldots\right], \quad i=1, \ldots, m \quad j=1, \ldots, n
$$

For $d \leq m$ choose $0 \leq i_{1} \leq \cdots \leq i_{d} \leq n$. Define the polynomial

$$
D_{i_{1} \ldots i_{d}}=\operatorname{det}\left[\begin{array}{ccc}
Z_{1, i_{1}} & \cdot & Z_{1, i_{d}} \\
\cdot & \cdot & \cdot \\
Z_{d, i_{1}} & \cdot & Z_{d, i_{d}}
\end{array}\right]
$$

## A New Polynomial Ring

$$
\mathbb{C}[Z]:=\mathbb{C}\left[\ldots, Z_{i, j}, \ldots\right], \quad i=1, \ldots, m \quad j=1, \ldots, n
$$

For $d \leq m$ choose $0 \leq i_{1} \leq \cdots \leq i_{d} \leq n$. Define the polynomial

$$
D_{i_{1} \ldots i_{d}}=\operatorname{det}\left[\begin{array}{ccc}
Z_{1, i_{1}} & \cdot & Z_{1, i_{d}} \\
\cdot & \cdot & \cdot \\
Z_{d, i_{1}} & \cdot & Z_{d, i_{d}}
\end{array}\right]
$$

For an arbitrary filling $T$ of $\lambda$ with the numbers $\{1, \ldots, n\}$,

$$
D_{T}=\prod_{i=1}^{s} D_{T(1, i), T(2, i), \ldots, T\left(d_{i}, i\right)}
$$

## Corollary

The map $e_{T} \mapsto D_{T}$ is an injective homomorphism $E^{\lambda} \rightarrow \mathbb{C}[Z]$ and its image $D^{\lambda}$ is free on the polynomials $D_{T}$.

## Tying it Together

$\lambda$ with $s$ columns with lengths $d_{i}$ each occurring with multiplicity $a_{i}$.

$$
E^{\lambda} \simeq \operatorname{Sym}^{a_{1}}\left(\bigwedge^{d_{1}} E\right) \otimes \cdots \otimes \operatorname{Sym}^{a_{s}}\left(\bigwedge^{d_{s}} E\right) / Q^{\lambda} .
$$

Define

$$
\begin{gathered}
S^{\bullet}\left(E ; d_{1}, \ldots, d_{s}\right):=\bigoplus_{\left(a_{1}, \ldots, a_{s}\right)} E^{\lambda}, \quad Q:=\bigoplus_{\left(a_{1}, \ldots, a_{s}\right)} Q^{\lambda} . \\
R:=\bigoplus_{\left(a_{1}, \ldots, a_{s}\right)} \operatorname{Sym}^{a_{1}}\left(\bigwedge^{d_{1}} E\right) \otimes \cdots \otimes \operatorname{Sym}^{a_{s}}\left(\bigwedge^{d_{s}} E\right)
\end{gathered}
$$

$$
R / Q=\bigoplus_{\left(a_{1}, \ldots, a_{s}\right)} E^{\lambda}
$$

## Putting it Together.

We now have
(1) $R / Q=\bigoplus_{\left(a_{1}, \ldots, a_{s}\right)} E^{\lambda}$.
(2) $E^{\lambda} \simeq D^{\lambda} \subseteq \mathbb{C}[Z]$ under the map $e_{T} \mapsto D_{T}$

## Proposition

$Q$ is a prime ideal.

## Proof.

- $R / Q \simeq \bigoplus D^{\lambda} \subseteq \mathbb{C}[Z]$ via $e_{T} \mapsto D_{T}$.
- $\bigoplus D^{\lambda}$ remains direct (requires proof) and thus is a subring.
- A subring of a polynomial ring is an integral domain.
$\therefore Q$ is prime.


## What about $\tilde{Q}$ ?

Back to $G(n-d, n)$ and $\tilde{Q}$. Corresponds to $\lambda$ has columns of length $d$.

$$
\bigoplus_{a} E^{\lambda}=\bigoplus_{a} \operatorname{Sym}^{a}\left(\bigwedge^{d} E\right) / Q^{\lambda}=\operatorname{Sym} \cdot\left(\bigwedge^{d} E\right) / \tilde{Q}
$$

Which we just proved embeds as a subring of a polynomial ring.

Hence $\tilde{Q}$ is prime as a special case.

Last item of business (time pending): Why is $\oplus D^{\lambda}$ direct?

## Some Representation Theory

A representation of $G L(n, \mathbb{C})$ on $\mathbb{C}$ is a homomorphism
$V: G L(n, \mathbb{C}) \rightarrow G L(m, \mathbb{C})$ for some $m$.
Let $X_{i, j}: G L(n, \mathbb{C}) \rightarrow \mathbb{C}$ be the coordinate function with $1 \leq i, j \leq n$.
We say that a representation, $V$, is polynomial if there is a basis $v_{1}, \ldots, v_{m}$ of $V$ such that for $g \in G L(n, \mathbb{C})$ we have

$$
g v_{b}=\sum_{a} f_{a b}(g) v_{a}, \quad 1 \leq a, b \leq n
$$

With $f_{a b} \in \mathbb{C}\left[X_{i j}\right]$ (i.e. $f_{a b}$ is a polynomial).

## $E^{\lambda}$ as a Polynomial Representation

Let $|\lambda|=n, e_{T} \in E^{\lambda}$ acts on a matrix $g \in G L(m, \mathbb{C})$ via the formula

$$
g \cdot e_{T}=\sum g_{i_{1}, j_{1}} \cdots g_{i_{m}, j_{m}} e_{T^{\prime}}
$$

where the sum is taken over the $n^{m}$ fillings of $T^{\prime}$ of obtained from $T$ by replacing the entries $\left(j_{1}, \ldots, j_{m}\right)$ by $\left(i_{1}, \ldots, i_{m}\right)$.

## $E^{\lambda}$ as a Polynomial Representation

Let $|\lambda|=n, e_{T} \in E^{\lambda}$ acts on a matrix $g \in G L(m, \mathbb{C})$ via the formula

$$
g \cdot e_{T}=\sum g_{i_{1}, j_{1}} \cdots g_{i_{m}, j_{m}} e_{T^{\prime}}
$$

where the sum is taken over the $n^{m}$ fillings of $T^{\prime}$ of obtained from $T$ by replacing the entries $\left(j_{1}, \ldots, j_{m}\right)$ by $\left(i_{1}, \ldots, i_{m}\right)$.

## Theorem

As $\lambda$ varies over all tableaux the $E^{\lambda}$ classify uniquely all irreducible polynomial representations of $G L(n, \mathbb{C})$.

## $E^{\lambda}$ as a Polynomial Representation

Let $|\lambda|=n, e_{T} \in E^{\lambda}$ acts on a matrix $g \in G L(m, \mathbb{C})$ via the formula

$$
g \cdot e_{T}=\sum g_{i_{1}, j_{1}} \cdots g_{i_{m}, j_{m}} e_{T^{\prime}}
$$

where the sum is taken over the $n^{m}$ fillings of $T^{\prime}$ of obtained from $T$ by replacing the entries $\left(j_{1}, \ldots, j_{m}\right)$ by $\left(i_{1}, \ldots, i_{m}\right)$.

## Theorem

As $\lambda$ varies over all tableaux the $E^{\lambda}$ classify uniquely all irreducible polynomial representations of $G L(n, \mathbb{C})$.

## Proposition

Any sum of irreducible pairwise distinct representations is direct.
$\bigoplus D^{\lambda}$ remains direct.

## Conclusion

(1) $G(k, n) \hookrightarrow \mathbb{P}^{N}$ in coordinates and $G(n-d, n) \hookrightarrow \mathbb{P}^{*}\left(\bigwedge^{d} E\right)$ via a coordinate free way.
(2) Can classify the vanishing polynomials on the respective images.
(3) All polynomial representations of $G L(m, k)$ have the form $E^{\lambda}$.

## Conclusion

(1) $G(k, n) \hookrightarrow \mathbb{P}^{N}$ in coordinates and $G(n-d, n) \hookrightarrow \mathbb{P}^{*}\left(\bigwedge^{d} E\right)$ via a coordinate free way.
(2) Can classify the vanishing polynomials on the respective images.
(3) All polynomial representations of $G L(m, k)$ have the form $E^{\lambda}$.

| A | N | Y |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q | U | E | S | T | I | O | N |

