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Goals

1 Describe the classical embedding G(k ,n) ↪→ PN .
2 Characterize the image of the embedding

quadratic relations.
vanishing polynomials.

3 Reinterpret in terms of varieties and ideals.
4 Application: classify representations over GLn(C).



What is a Grassmannian?

A Grassmannian G(k ,n) is the set of all k -dimensional subspaces of
Cn.

For example,

G(1,3) = P2

where we identify all lines.

G(k ,n) can be given a topology by embedding it as a subspace of PN .



The Embedding

Fix n, k and fix a basis for Cn.
Let Sk ∈ G(k ,n) be k -dimensional subspace.

Goal: Map Sk to a point in P(n
k)−1.



Sk 7→ pI ⊆ P(
n
k)−1

Let α1, . . . , αk ∈ Cn be a basis for Sk , and let A =

α1 · · ·
...
αk · · ·

 be

the corresponding k × n matrix.
Let I = i1 . . . ik with each 1 ≤ ij ≤ n and i1 < i2 < · · · < ik .
Let AI denote the k × k submatrix obtained by selecting the
columns with suffixes i1, . . . , ik .

We define coordinate functions ΦI(AI) = det AI := pI .

This gives a map Φ : G(n, k)→ P(n
k)−1

Sk 7→ (. . . ,pI , . . .)︸ ︷︷ ︸
(n

k)-tuple

, ∀I.
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Details About Embedding

Proposition
Φ is injective.

Messy argument with coordinates.

Proposition
Φ is not surjective.
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The Plücker Relations

G(k ,n) ↪→ P(n
k)−1.

Goal: Characterize the image of G(k ,n). Let X = Φ(G(k ,n)).

The points in X satisfy certain quadratic relations.

Proposition
The points in X do not satisfy any linear relations.
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The Plücker Relations

Theorem (Plücker Relations)
Fix p ∈ X. For all 1 ≤ s ≤ n and any coordinates pI ,pJ with I = i1 . . . ik
and J = j1 . . . jk it holds that

pIpJ =
k∑

λ=1

pi1...is−1jλis+1...ik pj1···jλ−1is jλ+1...jk .

Theorem (Surjectivity Theorem)

If p ∈ PN satisfies the Plücker relations then there is a k-space
Sk ⊆ Pn with coordinate p.
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Basis Theorem I

Definition
Let 1 ≤ i1, . . . , ik−1 ≤ n and let 1 ≤ j1, . . . , jk+1 ≤ n be distinct numbers.
Denote these two choices by I and J. We define a quadratic basis
polynomial

FIJ(P) =
k+1∑
λ=1

(−1)λPi1...ik−1jλPj1...jλ−1jλ+1···jk+1

with the PL inderminates.



Basis Theorem I

Proposition
For all p ∈ X and all I, J it holds that FIJ(p) = 0.

But what if G(p) = 0? For arbitrary homogeneuos G.
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Basis Theorem

Theorem (Basis Theorem I)
If G(P) is a homogeneous polynomial in the indeterminates . . . ,PL, . . .
with L = l1 . . . lk such that

G(p) = 0, ∀p ∈ X

then

G(P) =
∑
I,J

AIJ(P)FIJ(P), I = i1 . . . ik−1, J = j1 . . . jk+1 (1)

with the FIJ quadratic basis polynomials and AIJ homogeneous
polynomials in the PL.



Summary

We can embed G(k ,n) into P(n
k)−1.

The image consists of points satisfying certain quadratic (Plücker)
relations.
The set of polynomials which vanish on the image is generated by
a set of quadratic polynomials.

Up Next: This can all be reformulated and proven in terms of varieties
and ideals in a coordinate free way.
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Coordinate-Free Version

Let E be a C-vector space, recall that

d∧
E =

(
d⊗
1

E

)
/T

with T = {v1 ⊗ · · · ⊗ vd − sign (σ)vσ(1) ⊗ · · · ⊗ vσ(d)}.

1
∧d E is multilinear.

2
∧d E is anticommutative.



Coordinate-Free Embedding

Fix Sn−d ∈ G(n − d ,n). Will map G(n − d ,n)→ P∗
(∧d E

)
via

Sn−d 7→ HSn−d .

The kernel of the map
∧d E →

∧d (E/Sn−d ) is a hyperplane

HSn−d ⊆
d∧

E .

Recall that P∗(E) is the quotient of E in which we identify all
hyperplanes.
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Polynomials on P∗(
∧d E)

For any v1, . . . vd ∈ E we can define a linear form on H ∈ P∗(
∧d E).

∧d E π // //
(∧d E

)
/H := L

(∧d E
)∗

L∗? _π∗oo

For f ∈ L∗.

(v1 ∧ · · · ∧ vd )(H) := (v1 ∧ · · · ∧ vd )(L∗)
∼ (π∗f )(v1 ∧ · · · ∧ vd ){
≡ 0
6≡ 0

Products of the v1 ∧ · · · ∧ vd live in Sym
q(∧d E

)
.



Plücker Relations

Theorem (The Plücker Relations/Surjectivity)
The Plücker embedding is a bijection from G(n − d ,n) to the
subvariety of P∗(

∧d E) defined by the quadratic equations

(v1 ∧ · · · ∧ vd ) q(w1 ∧ · · · ∧ wd ) =∑
i1<i2<···<ik

(v1∧· · ·∧w1∧· · ·∧wk ∧· · ·∧vd ) q(vi1∧· · ·∧vik ∧wk+1∧· · ·∧wd )



The Basis Theorem II

Theorem (The Basis Theorem II)

Let Q̃ be the ideal generated by the Plücker Relations. It holds that

I(Z(Q̃)) = Q̃.

Proof.

We will prove that Q̃ is prime.
The Nullstellensatz immediately implies the result.



Proving Primality of Q̃.

Short-Story:

Goal is to show that Sym
q(∧d E

)
/Q̃ is an integral domain.

Will prove it embeds as a subring of a polynomial ring.
Obtain a classification of polynomial representations over GLn(C).

First we need to introduce the tableaux:
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Tableaux

Let E be a C-module. For fixed n, we let λ denote a weakly decreasing
partition of n, i.e. for n = 16 a partition λ could be λ = (6,4,4,2)

6 + 4 + 4 + 2 = 16.

The associated tableau (also denoted λ) is



Constructing the Schur Module: Step 1/4

From each λ we can construct a particular C-module Eλ.

Start with cartesian product E×λ

Instead of n-tuples - put elements in boxes.

If n = 5 and λ = (2,2,1) we have an element v ∈ E×λ is written

v1 v4
v2 v5
v3
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Constructing the Schur Module: Step 2/4

Let λ have s columns and let di , i = 1, . . . , s denote the length of the i th

column.

E×λ →
s⊗

i=1

di∧
1

E : v 7→ ∧v

For example,
v1 v4
v2 v5
v3 7→ (v1 ∧ v2 ∧ v3)⊗ (v4 ∧ v5)



The Quadratic Relations: Step 3/4

Let Qλ be the submodule generated by

∧v−
∑
∧w

The sum is over all w obtained from v with an exchange between two
given columns with a given subset of boxes in the right chosen column.

1 6 1115
2 7 12 6
3 8 13
4 9 14
5 10︸ ︷︷ ︸

∧v

11 6 1 15
2 7 12 6

13 8 3
4 9 5

1410︸ ︷︷ ︸
∧w



The Schur Module: Step 4/4

Eλ :=

 s⊗
i=1

di∧
1

E

 /Qλ.

1 λ = · · ·︸ ︷︷ ︸
n times

then Eλ = Symn(E).

2 λ = then Eλ =
∧n E .



Eλ in Coordinates

Let e1, . . . ,en be a basis for E .
Fill λ with the ei .

Weakly increasing across rows.
Strictly increasing down columns.

Each such arrangement, T , is called a standard filling.

The image of this element in Eλ will be denoted by eT .

e1 e2 e2
e3 e4 e5
e5 e5 7−→ eT ∈ Eλ

Theorem
Eλ is free on the eT .
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A New Polynomial Ring

C[Z ] := C[. . . ,Zi,j , . . .], i = 1, . . . ,m j = 1, . . . ,n

For d ≤ m choose 0 ≤ i1 ≤ · · · ≤ id ≤ n. Define the polynomial

Di1...id = det

Z1,i1 · Z1,id
· · ·

Zd ,i1 · Zd ,id



For an arbitrary filling T of λ with the numbers {1, . . . ,n},

DT =
s∏

i=1

DT (1,i),T (2,i),...,T (di ,i),

Corollary
The map eT 7→ DT is an injective homomorphism Eλ → C[Z ] and its
image Dλ is free on the polynomials DT .
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Tying it Together

λ with s columns with lengths di each occurring with multiplicity ai .

Eλ ' Syma1(
∧d1

E)⊗ · · · ⊗ Symas (
∧ds

E)/Qλ.

Define

S
q
(E ; d1, . . . ,ds) :=

⊕
(a1,...,as)

Eλ, Q :=
⊕

(a1,...,as)

Qλ.

R :=
⊕

(a1,...,as)

Syma1(
∧d1

E)⊗ · · · ⊗ Symas (
∧ds

E)

R/Q =
⊕

(a1,...,as)

Eλ



Putting it Together.

We now have
1 R/Q =

⊕
(a1,...,as)

Eλ.

2 Eλ ' Dλ ⊆ C[Z ] under the map eT 7→ DT

Proposition
Q is a prime ideal.

Proof.
R/Q '

⊕
Dλ ⊆ C[Z ] via eT 7→ DT .⊕

Dλ remains direct (requires proof) and thus is a subring.
A subring of a polynomial ring is an integral domain.

∴ Q is prime.



What about Q̃?

Back to G(n − d ,n) and Q̃. Corresponds to λ has columns of length d .

⊕
a

Eλ =
⊕

a

Syma

(
d∧

E

)
/Qλ = Sym

q( d∧
E

)
/Q̃.

Which we just proved embeds as a subring of a polynomial ring.

Hence Q̃ is prime as a special case.

Last item of business (time pending): Why is
⊕

Dλ direct?



Some Representation Theory

A representation of GL(n,C) on C is a homomorphism
V : GL(n,C)→ GL(m,C) for some m.

Let Xi,j : GL(n,C)→ C be the coordinate function with 1 ≤ i , j ≤ n.

We say that a representation, V , is polynomial if there is a basis
v1, . . . , vm of V such that for g ∈ GL(n,C) we have

gvb =
∑

a

fab(g)va, 1 ≤ a,b ≤ n.

With fab ∈ C[Xij ] (i.e. fab is a polynomial).



Eλ as a Polynomial Representation

Let |λ| = n, eT ∈ Eλ acts on a matrix g ∈ GL(m,C) via the formula

g · eT =
∑

gi1,j1 · · · gim,jmeT ′

where the sum is taken over the nm fillings of T ′ of obtained from T by
replacing the entries (j1, . . . , jm) by (i1, . . . , im).

Theorem
As λ varies over all tableaux the Eλ classify uniquely all irreducible
polynomial representations of GL(n,C).

Proposition
Any sum of irreducible pairwise distinct representations is direct.

⊕
Dλ remains direct.
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Conclusion

1 G(k ,n) ↪→ PN in coordinates and G(n − d ,n) ↪→ P∗(
∧d E) via a

coordinate free way.
2 Can classify the vanishing polynomials on the respective images.
3 All polynomial representations of GL(m, k) have the form Eλ.

A N Y
Q U E S T I O N S
?
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