# Grassmann Coordinates and tableaux

Matthew Junge

Autumn 2012

### Goals

- **①** Describe the classical embedding  $G(k, n) \hookrightarrow \mathbb{P}^N$ .
- Characterize the image of the embedding
  - quadratic relations.
  - vanishing polynomials.
- Reinterpret in terms of varieties and ideals.
- **a** Application: classify representations over  $GL_n(\mathbb{C})$ .

### What is a Grassmannian?

A **Grassmannian** G(k, n) is the set of all k-dimensional subspaces of  $\mathbb{C}^n$ .

For example,

$$G(1,3) = \mathbb{P}^2$$

where we identify all lines.

G(k, n) can be given a topology by embedding it as a subspace of  $\mathbb{P}^N$ .

# The Embedding

- Fix n, k and fix a basis for  $\mathbb{C}^n$ .
- Let  $S_k \in G(k, n)$  be k-dimensional subspace.

Goal: Map  $S_k$  to a point in  $\mathbb{P}^{\binom{n}{k}-1}$ .

$$S_k \mapsto p_l \subseteq \mathbb{P}^{\binom{n}{k}-1}$$

- Let  $\alpha_1, \ldots, \alpha_k \in \mathbb{C}^n$  be a basis for  $S_k$ , and let  $A = \begin{bmatrix} \alpha_1 & \cdots \\ \vdots & & \\ \alpha_k & \cdots \end{bmatrix}$  be the corresponding  $k \times n$  matrix.
- Let  $I = i_1 \dots i_k$  with each  $1 \le i_j \le n$  and  $i_1 < i_2 < \dots < i_k$ .
- Let  $A_i$  denote the  $k \times k$  submatrix obtained by selecting the columns with suffixes  $i_1, \ldots, i_k$ .

$$S_k \mapsto p_l \subseteq \mathbb{P}^{\binom{n}{k}-1}$$

- Let  $\alpha_1, \ldots, \alpha_k \in \mathbb{C}^n$  be a basis for  $S_k$ , and let  $A = \begin{bmatrix} \alpha_1 & \cdots \\ \vdots & & \\ \alpha_k & \cdots \end{bmatrix}$  be the corresponding  $k \times n$  matrix.
- Let  $I = i_1 \dots i_k$  with each  $1 \le i_j \le n$  and  $i_1 < i_2 < \dots < i_k$ .
- Let  $A_i$  denote the  $k \times k$  submatrix obtained by selecting the columns with suffixes  $i_1, \ldots, i_k$ .
- We define coordinate functions  $\Phi_I(A_I) = \det A_I := p_I$ .
- This gives a map  $\Phi: G(n,k) \to \mathbb{P}^{\binom{n}{k}-1}$

$$S_k \mapsto \underbrace{(\ldots, p_I, \ldots)}_{\binom{n}{k}\text{-tuple}}, \quad \forall I.$$

# **Details About Embedding**

### Proposition

 $\Phi$  is injective.

Messy argument with coordinates.

# **Details About Embedding**

### Proposition

Φ is injective.

Messy argument with coordinates.

### Proposition

Φ is not surjective.

$$G(k,n)\hookrightarrow \mathbb{P}^{\binom{n}{k}-1}.$$

Goal: Characterize the image of G(k, n). Let  $X = \Phi(G(k, n))$ .

The points in *X* satisfy certain quadratic relations.

$$G(k,n)\hookrightarrow \mathbb{P}^{\binom{n}{k}-1}.$$

Goal: Characterize the image of G(k, n). Let  $X = \Phi(G(k, n))$ .

The points in X satisfy certain quadratic relations.

### Proposition

The points in X do not satisfy any linear relations.

### Theorem (Plücker Relations)

Fix  ${m p}\in X$ . For all  $1\le s\le n$  and any coordinates  $p_I,p_J$  with  $I=i_1\dots i_k$  and  $J=j_1\dots j_k$  it holds that

$$p_{l}p_{J} = \sum_{\lambda=1}^{K} p_{i_{1}...i_{s-1}j_{\lambda}i_{s+1}...i_{k}} p_{j_{1}...j_{\lambda-1}i_{s}j_{\lambda+1}...j_{k}}.$$

### Theorem (Plücker Relations)

Fix  ${m p}\in X$ . For all  $1\le s\le n$  and any coordinates  $p_I,p_J$  with  $I=i_1\dots i_k$  and  $J=j_1\dots j_k$  it holds that

$$p_{l}p_{J} = \sum_{\lambda=1}^{K} p_{i_{1}...i_{s-1}j_{\lambda}i_{s+1}...i_{k}} p_{j_{1}...j_{\lambda-1}i_{s}j_{\lambda+1}...j_{k}}.$$

### Theorem (Surjectivity Theorem)

If  $\mathbf{p} \in \mathbb{P}^N$  satisfies the Plücker relations then there is a k-space  $S_k \subseteq \mathbb{P}^n$  with coordinate  $\mathbf{p}$ .

### Basis Theorem I

### **Definition**

Let  $1 \le i_1, \ldots, i_{k-1} \le n$  and let  $1 \le j_1, \ldots, j_{k+1} \le n$  be distinct numbers. Denote these two choices by I and J. We define a **quadratic basis polynomial** 

$$F_{IJ}(P) = \sum_{\lambda=1}^{k+1} (-1)^{\lambda} P_{i_1...i_{k-1}j_{\lambda}} P_{j_1...j_{\lambda-1}j_{\lambda+1}...j_{k+1}}$$

with the  $P_L$  inderminates.

## Basis Theorem I

### **Proposition**

For all  $\mathbf{p} \in X$  and all I, J it holds that  $F_{IJ}(p) = 0$ .

### Basis Theorem I

### Proposition

For all  $\mathbf{p} \in X$  and all I, J it holds that  $F_{IJ}(p) = 0$ .

But what if G(p) = 0? For arbitrary homogeneuos G.

### **Basis Theorem**

### Theorem (Basis Theorem I)

If G(P) is a homogeneous polynomial in the indeterminates ...,  $P_L$ , ... with  $L = I_1 ... I_k$  such that

$$G(\mathbf{p})=0, \forall \mathbf{p}\in X$$

then

$$G(P) = \sum_{I,J} A_{IJ}(P) F_{IJ}(P), \qquad I = i_1 \dots i_{k-1}, J = j_1 \dots j_{k+1}$$
 (1)

with the  $F_{IJ}$  quadratic basis polynomials and  $A_{IJ}$  homogeneous polynomials in the  $P_L$ .

## Summary

- We can embed G(k, n) into  $\mathbb{P}^{\binom{n}{k}-1}$ .
- The image consists of points satisfying certain quadratic (Plücker) relations.
- The set of polynomials which vanish on the image is generated by a set of quadratic polynomials.

# Summary

- We can embed G(k, n) into  $\mathbb{P}^{\binom{n}{k}-1}$ .
- The image consists of points satisfying certain quadratic (Plücker) relations.
- The set of polynomials which vanish on the image is generated by a set of quadratic polynomials.

Up Next: This can all be reformulated and proven in terms of varieties and ideals in a coordinate free way.

### Coordinate-Free Version

Let E be a  $\mathbb{C}$ -vector space, recall that

$$\bigwedge^d E = \left(\bigotimes_1^d E\right) / T$$

with 
$$T = \{v_1 \otimes \cdots \otimes v_d - \text{sign}(\sigma)v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(d)}\}.$$

- $\bigcirc$   $\bigwedge^d E$  is anticommutative.

# Coordinate-Free Embedding

Fix 
$$S_{n-d}\in G(n-d,n)$$
. Will map  $G(n-d,n)\to \mathbb{P}^*\left(\bigwedge^d E\right)$  via  $S_{n-d}\mapsto H_{S_{n-d}}.$ 

# Coordinate-Free Embedding

Fix 
$$S_{n-d}\in G(n-d,n)$$
. Will map  $G(n-d,n) o \mathbb{P}^*\left(\bigwedge^d E\right)$  via  $S_{n-d}\mapsto H_{S_{n-d}}.$ 

The kernel of the map  $\bigwedge^d E \to \bigwedge^d (E/S_{n-d})$  is a hyperplane

$$H_{S_{n-d}}\subseteq \bigwedge^d E.$$

Recall that  $\mathbb{P}^*(E)$  is the quotient of E in which we identify all hyperplanes.

# Polynomials on $\mathbb{P}^*(\bigwedge^d E)$

For any  $v_1, \ldots v_d \in E$  we can define a linear form on  $H \in \mathbb{P}^*(\bigwedge^d E)$ .

$$\bigwedge^d E \xrightarrow{\pi} \left( \bigwedge^d E \right) / H := L$$

$$\left(\bigwedge^{d}E\right)^{*} \leftarrow \pi^{*}$$

For  $f \in L^*$ .

$$(v_1 \wedge \cdots \wedge v_d)(H) := (v_1 \wedge \cdots \wedge v_d)(L^*)$$

$$\sim (\pi^* f)(v_1 \wedge \cdots \wedge v_d)$$

$$\begin{cases} \equiv 0 \\ \not\equiv 0 \end{cases}$$

Products of the  $v_1 \wedge \cdots \wedge v_d$  live in Sym<sup>\*</sup>  $(\bigwedge^d E)$ .

### Plücker Relations

### Theorem (The Plücker Relations/Surjectivity)

The Plücker embedding is a bijection from G(n-d,n) to the subvariety of  $\mathbb{P}^*(\bigwedge^d E)$  defined by the quadratic equations

$$(v_1 \wedge \cdots \wedge v_d) \cdot (w_1 \wedge \cdots \wedge w_d) = \sum_{i_1 < i_2 < \cdots < i_k} (v_1 \wedge \cdots \wedge w_1 \wedge \cdots \wedge w_k \wedge \cdots \wedge v_d) \cdot (v_{i_1} \wedge \cdots \wedge v_{i_k} \wedge w_{k+1} \wedge \cdots \wedge w_d)$$

### The Basis Theorem II

### Theorem (The Basis Theorem II)

Let  $\tilde{Q}$  be the ideal generated by the Plücker Relations. It holds that

$$\mathcal{I}(\mathcal{Z}(\tilde{Q})) = \tilde{Q}.$$

### Proof.

- We will prove that  $\tilde{Q}$  is prime.
- The Nullstellensatz immediately implies the result.



# Proving Primality of $\tilde{Q}$ .

### Short-Story:

- $\bullet$  Goal is to show that  $\operatorname{Sym}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}\left(\bigwedge^d E\right)/\tilde{Q}$  is an integral domain.
- Will prove it embeds as a subring of a polynomial ring.
- Obtain a classification of polynomial representations over  $GL_n(\mathbb{C})$ .

# Proving Primality of $\tilde{Q}$ .

### Short-Story:

- $\bullet$  Goal is to show that  $\operatorname{Sym}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}\left(\bigwedge^d E\right)/\tilde{Q}$  is an integral domain.
- Will prove it embeds as a subring of a polynomial ring.
- Obtain a classification of polynomial representations over  $GL_n(\mathbb{C})$ .

#### First we need to introduce the tableaux:



### **Tableaux**

Let *E* be a  $\mathbb{C}$ -module. For fixed *n*, we let  $\lambda$  denote a weakly decreasing **partition of** *n*, i.e. for n = 16 a partition  $\lambda$  could be  $\lambda = (6, 4, 4, 2)$ 

$$6+4+4+2=16.$$

The associated **tableau** (also denoted  $\lambda$ ) is



# Constructing the Schur Module: Step 1/4

From each  $\lambda$  we can construct a particular  $\mathbb{C}$ -module  $E^{\lambda}$ .

Start with cartesian product  $E^{\times \lambda}$ 

Instead of *n*-tuples - put elements in boxes.

# Constructing the Schur Module: Step 1/4

From each  $\lambda$  we can construct a particular  $\mathbb{C}$ -module  $E^{\lambda}$ .

Start with cartesian product  $E^{\times \lambda}$ 

Instead of *n*-tuples - put elements in boxes.

If n = 5 and  $\lambda = (2, 2, 1)$  we have an element  $\mathbf{v} \in E^{\times \lambda}$  is written

# Constructing the Schur Module: Step 2/4

Let  $\lambda$  have s columns and let  $d_i$ , i = 1, ..., s denote the length of the  $i^{th}$  column.

$$E^{\times \lambda} \to \bigotimes_{i=1}^{s} \bigwedge_{1}^{d_i} E : \mathbf{V} \mapsto \wedge \mathbf{V}$$

For example,

$$\begin{array}{c|c}
\hline
v_1 & v_4 \\
\hline
v_2 & v_5 \\
\hline
v_3 & \mapsto (v_1 \wedge v_2 \wedge v_3) \otimes (v_4 \wedge v_5)
\end{array}$$

### The Quadratic Relations: Step 3/4

Let  $Q^{\lambda}$  be the submodule generated by

$$\wedge \mathbf{v} - \sum \wedge \mathbf{w}$$

The sum is over all  ${\bf w}$  obtained from  ${\bf v}$  with an exchange between two given columns with a given subset of boxes in the right chosen column.





# The Schur Module: Step 4/4

$$E^{\lambda} := \left(\bigotimes_{i=1}^s \bigwedge_1^{d_i} E\right)/Q^{\lambda}.$$

### $E^{\lambda}$ in Coordinates

- Let  $e_1, \ldots, e_n$  be a basis for E.
- Fill  $\lambda$  with the  $e_i$ .
  - Weakly increasing across rows.
  - Strictly increasing down columns.
- Each such arrangement, *T*, is called a **standard filling**.

The image of this element in  $E^{\lambda}$  will be denoted by  $e_T$ .

$$egin{array}{c|c} e_1 & e_2 & e_2 \ e_3 & e_4 & e_5 \ \hline e_5 & e_5 & & \longmapsto e_T \in E^\lambda \end{array}$$

### $E^{\lambda}$ in Coordinates

- Let  $e_1, \ldots, e_n$  be a basis for E.
- Fill  $\lambda$  with the  $e_i$ .
  - Weakly increasing across rows.
  - Strictly increasing down columns.
- Each such arrangement, T, is called a standard filling.

The image of this element in  $E^{\lambda}$  will be denoted by  $e_{T}$ .

$$\begin{array}{c|c} e_1 & e_2 & e_2 \\ e_3 & e_4 & e_5 \end{array}$$

$$\begin{array}{c|c} e_5 & e_5 & & & & \\ \hline \end{array}$$

$$\begin{array}{c|c} e_7 \in E^{\lambda} \end{array}$$

### **Theorem**

 $E^{\lambda}$  is free on the  $e_T$ .

# A New Polynomial Ring

$$\mathbb{C}[Z] := \mathbb{C}[\ldots, Z_{i,j}, \ldots], \qquad i = 1, \ldots, m \quad j = 1, \ldots, n$$

For  $d \le m$  choose  $0 \le i_1 \le \cdots \le i_d \le n$ . Define the polynomial

$$D_{i_1...i_d} = \det \begin{bmatrix} Z_{1,i_1} & \cdot & Z_{1,i_d} \\ \cdot & \cdot & \cdot \\ Z_{d,i_1} & \cdot & Z_{d,i_d} \end{bmatrix}$$

# A New Polynomial Ring

$$\mathbb{C}[Z] := \mathbb{C}[\ldots, Z_{i,j}, \ldots], \qquad i = 1, \ldots, m \quad j = 1, \ldots, n$$

For  $d \le m$  choose  $0 \le i_1 \le \cdots \le i_d \le n$ . Define the polynomial

$$D_{i_1...i_d} = \det \begin{bmatrix} Z_{1,i_1} & \cdot & Z_{1,i_d} \\ \cdot & \cdot & \cdot \\ Z_{d,i_1} & \cdot & Z_{d,i_d} \end{bmatrix}$$

For an arbitrary filling T of  $\lambda$  with the numbers  $\{1, \ldots, n\}$ ,

$$D_T = \prod_{i=1}^s D_{T(1,i),T(2,i),...,T(d_i,i)},$$

### Corollary

The map  $e_T \mapsto D_T$  is an injective homomorphism  $E^{\lambda} \to \mathbb{C}[Z]$  and its image  $D^{\lambda}$  is free on the polynomials  $D_T$ .

# Tying it Together

 $\lambda$  with s columns with lengths  $d_i$  each occurring with multiplicity  $a_i$ .

$$E^{\lambda} \simeq \operatorname{\mathsf{Sym}}^{a_1}(\bigwedge^{d_1} E) \otimes \cdots \otimes \operatorname{\mathsf{Sym}}^{a_s}(\bigwedge^{d_s} E)/Q^{\lambda}.$$

Define

$$S^{ullet}(E;d_1,\ldots,d_s) := \bigoplus_{(a_1,\ldots,a_s)} E^{\lambda}, \qquad Q := \bigoplus_{(a_1,\ldots,a_s)} Q^{\lambda}.$$
  $R := \bigoplus_{(a_1,\ldots,a_s)} \operatorname{Sym}^{a_1}(\bigwedge^{d_1} E) \otimes \cdots \otimes \operatorname{Sym}^{a_s}(\bigwedge^{d_s} E)$ 

$$R/Q = \bigoplus_{(a_1,...,a_s)} E^{\lambda}$$

# Putting it Together.

We now have

- ②  $E^{\lambda} \simeq D^{\lambda} \subseteq \mathbb{C}[Z]$  under the map  $e_T \mapsto D_T$

### Proposition

Q is a prime ideal.

### Proof.

- $R/Q \simeq \bigoplus D^{\lambda} \subseteq \mathbb{C}[Z]$  via  $e_T \mapsto D_T$ .
- ullet  $D^{\lambda}$  remains direct (requires proof) and thus is a subring.
- A subring of a polynomial ring is an integral domain.
- $\therefore$  Q is prime.

# What about $\tilde{Q}$ ?

Back to G(n-d,n) and  $\tilde{Q}$ . Corresponds to  $\lambda$  has columns of length d.

$$\bigoplus_a E^\lambda = \bigoplus_a \operatorname{Sym}^a \left(\bigwedge^d E\right)/Q^\lambda = \operatorname{Sym}^\bullet \left(\bigwedge^d E\right)/\tilde{Q}.$$

Which we just proved embeds as a subring of a polynomial ring.

Hence  $\tilde{Q}$  is prime as a special case.

Last item of business (time pending): Why is  $\bigoplus D^{\lambda}$  direct?

# Some Representation Theory

A **representation** of  $GL(n,\mathbb{C})$  on  $\mathbb{C}$  is a homomorphism  $V:GL(n,\mathbb{C})\to GL(m,\mathbb{C})$  for some m.

Let  $X_{i,j}: GL(n,\mathbb{C}) \to \mathbb{C}$  be the coordinate function with  $1 \le i,j \le n$ .

We say that a representation, V, is **polynomial** if there is a basis  $v_1, \ldots, v_m$  of V such that for  $g \in GL(n, \mathbb{C})$  we have

$$gv_b = \sum_a f_{ab}(g)v_a, \qquad 1 \leq a, b \leq n.$$

With  $f_{ab} \in \mathbb{C}[X_{ij}]$  (i.e.  $f_{ab}$  is a polynomial).

# $E^{\lambda}$ as a Polynomial Representation

Let  $|\lambda|=n,\ e_T\in E^\lambda$  acts on a matrix  $g\in GL(m,\mathbb{C})$  via the formula

$$g \cdot e_T = \sum g_{i_1,j_1} \cdots g_{i_m,j_m} e_{T'}$$

where the sum is taken over the  $n^m$  fillings of T' of obtained from T by replacing the entries  $(j_1, \ldots, j_m)$  by  $(i_1, \ldots, i_m)$ .

# $E^{\lambda}$ as a Polynomial Representation

Let  $|\lambda| = n$ ,  $e_T \in E^{\lambda}$  acts on a matrix  $g \in GL(m, \mathbb{C})$  via the formula

$$g \cdot e_T = \sum g_{i_1,j_1} \cdots g_{i_m,j_m} e_{T'}$$

where the sum is taken over the  $n^m$  fillings of T' of obtained from T by replacing the entries  $(j_1, \ldots, j_m)$  by  $(i_1, \ldots, i_m)$ .

### Theorem

As  $\lambda$  varies over all tableaux the  $E^{\lambda}$  classify uniquely all irreducible polynomial representations of  $GL(n,\mathbb{C})$ .

# $E^{\lambda}$ as a Polynomial Representation

Let  $|\lambda| = n$ ,  $e_T \in E^{\lambda}$  acts on a matrix  $g \in GL(m, \mathbb{C})$  via the formula

$$g \cdot e_T = \sum g_{i_1,j_1} \cdots g_{i_m,j_m} e_{T'}$$

where the sum is taken over the  $n^m$  fillings of T' of obtained from T by replacing the entries  $(j_1, \ldots, j_m)$  by  $(i_1, \ldots, i_m)$ .

#### **Theorem**

As  $\lambda$  varies over all tableaux the  $E^{\lambda}$  classify uniquely all irreducible polynomial representations of  $GL(n,\mathbb{C})$ .

### Proposition

Any sum of irreducible pairwise distinct representations is direct.



### Conclusion

- $G(k,n) \hookrightarrow \mathbb{P}^N$  in coordinates and  $G(n-d,n) \hookrightarrow \mathbb{P}^*(\bigwedge^d E)$  via a coordinate free way.
- Can classify the vanishing polynomials on the respective images.
- **3** All polynomial representations of GL(m, k) have the form  $E^{\lambda}$ .

### Conclusion

- $G(k,n) \hookrightarrow \mathbb{P}^N$  in coordinates and  $G(n-d,n) \hookrightarrow \mathbb{P}^*(\bigwedge^d E)$  via a coordinate free way.
- Can classify the vanishing polynomials on the respective images.
- **3** All polynomial representations of GL(m, k) have the form  $E^{\lambda}$ .

