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1 Introduction
In the 1780s, Lagrange invented a function that we now refer to as the arithmetic-geometric mean. Here is the defini-
tion:

Definition 1. Fix two nonnegative real numbers a0 and b0. Consider the sequences {an} and {bn}, defined by the rule{
an+1 = an+bn

2 ,
bn+1 =

√
anbn.

(1)

If {an} and {bn} converge to a common limit, then we call this limit the arithmetic-geometric mean of a and b and
denote it by M(a,b).

It is an exercise to show that the sequences {an} and {bn} are convergent to the same limit, so that the arithmetic-
geometric mean is well-defined. This will be proven in the next section as Theorem 3.

A few years later, apparently independently, the mathematician Gauss, then 14 years old, re-invented the arithmetic-
geometric mean (“AGM”). Gauss apparently then stopped work on the AGM for nearly a decade, until he began
experimenting with it in the 1790s. He soon discovered, by numerical experiment, that

1

M
(

1,
√

2
) = G def=

2
π

Z 1

0

dx√
1− x4

. (2)

The number G, referred to as Gauss’ constant, is closely related to the arc length of the lemniscate, a figure-8 curve
that is, in turn, closely related to the arc length of the ellipse. Calculating the arc length of the ellipse was an enduring
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thread of study in mathematics throughout the late 1700s and the first half of the 1800s, largely because the motion of
celestial bodies is elliptic. Gauss found this connection so striking as to write that the AGM “would surely open up
a whole new field of analysis,” and many of the entries in Gauss’ well-known diary during the years 1799 and 1800
concerned the AGM [14]. Gauss eventually managed to prove the equation

1
M2 (a,b)

=
2
π

Z π

2

0

dθ√
a2 sin2

θ+b2 cos2 θ

, (3)

relating the AGM with a complete elliptic integral of the first kind. (By modern standards, Gauss never proved this
rigorously, though a rigorous proof of (3) was produced by Landen only a few years after Gauss’ conjectured formula,
by a trigonometric substitution known as the Landen transformation.) Though Gauss completed in roughly 1800 a
long paper containing many results on the AGM, this paper was not published until 1866, when a large number of
Gauss’ unpublished works were published posthumously [13]. A much more detailed exposition of the history behind
the AGM is given in [1].

For more than one and a half centuries, AGM theory lay dormant. However, interest in the arithmetic-geometric
mean has been rejuvenated: in the early 1980s, a number of numerical analysts, including Jonathan and Peter Borwein
[8] [7], Eugene Salamin [16], Richard Brent [9], David Bailey [2], and Yasumasa Kanada [18], introduced the AGM
as an extremely effective method for numerically computing elementary functions and constants, such as sinx, cosx,
ex, logx, and π. The fast computation of elementary functions and constants is at the heart of numerical analysis, and
AGM-like iterations are emerging as one of the most powerful tools in this field.

The first goal of this thesis is to introduce two methods of studying iterative means that have come to prominence
in the last three decades. In §2, we introduce the theta-function approach, in which carefully-chosen compositions
of special functions are introduced to normalize an iterative mean — that is, to reduce the mean to a much simpler
iteration. In §3, we note the fundamental connection between the arithmetic-geometric mean and isogenies of elliptic
curves that was first proposed by Jean-Benoı̂t Bost and Jean-François Mestre in [15], and which is developed in greater
generality by Eleanor Farrington in [12]. This connection suggests an approach to iterative means from the point of
view of algebraic geometry, not analysis; for evidence of this, the reader is directed to [11].

A number of generalizations of the AGM and means related to it have been proposed. Examples include the
Schlömilch mean, described in [17], a quadratically-convergent Gaussian iteration defined as the common limit of the
sequences {an}, {bn}, and {cn} defined by

an+1 = an+bn+cn
3 ,

bn+1 =
√

anbn+ancn+bncn
3 ,

cn+1 = 3
√

anbncn,

(4)

which is the m = 3 case of the generalized AGM (“gAGM”) that will be presented in the next section and which, as
is claimed in [8], “does not appear to have a closed form;” and another cubic analogue of the AGM, proposed in [6],
defined as the limit of the sequences {an} and {bn} defined by an+1 = an+2bn

3 ,

bn+1 = 3

√
bn

(
a2

n+anbn+b2
n

3

)
.

(5)

In [4], Jonathan and Peter Borwein note that it is precisely because the AGM is a quadratically convergent algebraic
iteration with an identifiable nonelementary limit that it occupies such a central role in the computation of elementary
functions and constants, so any new iteration related to the AGM is potentially of interest. In the next sections, we
will define a family of compound means, indexed by m ∈ N, in which the m = 2 case is the AGM and the m = 3 case
is the Schlömilch mean. A different type of generalization is formulated in [10], in which the AGM is extended to be
meromorphic on the entire complex plane.

2 The theta-function approach
The foremost problem in studying iterative means is the lack of a unified method for characterizing an iteration in
terms of known special functions — or even of determining whether such a characterization exists. One promising
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avenue is the so-called theta-function approach, which Jonathan and Peter Borwein apply in [8], to give another proof
of (3), and in [5], to characterize a certain specialization of the Borchardt mean. The method is, in principle, simple:

• Uniformize the iteration — i.e., make a simplifying change of variable in terms of theta functions (or, more
generally, in terms of some known special functions). The difficulty in this step is cobbling together theta-
function identities to yield a workable uniformization.

• Produce a functional equation involving the iterative mean by applying this uniformization.

• Characterize the iterative mean in terms of the theta functions used in the first step by applying the inverse
function theorem.

This procedure will likely seem vague and murky to the reader, so after deriving the necessary theta-function identi-
ties, we illustrate the applications of the theta-function approach mentioned above. Finally, we illustrate an unusual
application of the method, in which the first step is reversed: instead of beginning with an iteration and finding the
correct identity to produce an appropriate uniformization, Borwein and Borwein begin with an identity and construct
an iteration that yields to this identity!

2.1 Some theta-function identities
For a complex variable z ∈ C and a real variable q ∈ (0,1), define three theta functions by

θ1 (z,q) def= −ı
∞

∑
n=−∞

(−1)nq(n+ 1
2 )

2
e(2n+1)ız, θ2 (z,q) def=

∞

∑
n=−∞

q(n+ 1
2 )

2
e(2n+1)ız, (6)

θ3 (z,q) def=
∞

∑
n=−∞

qn2
e2nız, θ4 (z,q) def=

∞

∑
n=−∞

(−1)nqn2
e2nız.

With one exception, we work only with θ1 (0,q), θ2 (0,q), θ3 (0,q), and θ4 (0,q); for convenience, these quantities will
be denoted by θ1(q), θ2(q), θ3(q), and θ4(q), respectively. By the usual complex-analytic arguments, these functions
are complex-analytic when treated as functions of z, and real-analytic when treated as functions of q. We now prove
some theta-function identities that we will need for the analysis of a number of iterative means.

Identity 1. For all q ∈ (0,1), θ3(q)+θ4(q) = 2θ3
(
q4
)
.

Proof. This is nearly immediate:

θ3(q)+θ4(q) =
∞

∑
n=−∞

(
qn2

+(−1)nqn2
)

= 2
∞

∑
n=−∞

q(2n)2
= 2θ3

(
q4) . (7)

W

Identity 2. For all q ∈ (0,1), θ3(q)2 +θ4(q)2 = 2θ3
(
q2
)2.

Proof. To prove this identity, we use a small amount of number theory. Let r2(n) denote the number of ways to write a
nonnegative integer n as a sum of squares, where we distinguish both sign and permutation (so there are eight different
way to write 5 = (±2)2 +(±1)2 = (±1)2 +(±2)2 as a sum of squares). Then

θ3(q)2 =
∞

∑
m,n=−∞

qm2+n2
=

∞

∑
n=0

r2(n)qn, θ4(q)2 =
∞

∑
m,n=−∞

(−1)m+nqm2+n2
=

∞

∑
n=0

(−1)nr2(n)qn. (8)

It follows that

θ3(q)2 +θ4(q)2 =
∞

∑
n=−∞

(r2(n)qn +(−1)nr2(n)qn) = 2
∞

∑
n=−∞

r2(2n)q2n. (9)

To finish the proof, we need an invariance property of r2.
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Lemma 1. For all nonnegative integers n, r2(n) = r2(2n).

Proof of lemma. Fix some n≥ 0. Define A to be the set of all integer pairs (a,b) with a2 +b2 = n, and B to be the set
of all integer pairs (c,d) with c2 +d2 = 2n. We define two functions Θ,Φ from A to B and from B to A, respectively.
Let Θ send (a,b) to (a+b,a−b); since (a+b)2 +(a−b)2 = 2

(
a2 +b2

)
, the image of Θ really does lie in B. Let Φ

send (c,d) to
( c+d

2 , c−d
2

)
. The equation c2 +d2 = 2n gives c≡ d mod 2, and

( c+d
2

)2
+
( c−d

2

)2
= c2+d2

2 , so the image
of Φ really does lie in A. Finally,

(Φ◦Θ)(a,b) = Φ(a+b,a−b) =
(

(a+b)+(a−b)
2

,
(a+b)− (a−b)

2

)
= (a,b) , (10)

(Θ◦Φ)(c,d) = Θ

(
c+d

2
,

c−d
2

)
=
(

c+d
2

+
c−d

2
,

c+d
2
− c−d

2

)
= (c,d) , (11)

so A and B are in bijective correspondence. This proves that r2(n) = |A| is equal to r2(2n) = |B|. W

By this lemma and the work above,

θ3(q)2 +θ4(q)2 = 2
∞

∑
n=−∞

r2(2n)q2n = 2
∞

∑
n=−∞

r2(n)q2n = 2θ3
(
q2)2

. (12)

W

Identity 3. For all q ∈ (0,1), θ3(q)θ4(q) = θ4
(
q2
)2.

Proof. This is a result of Identities 1 and 2:

θ3(q)θ4(q) =
1
2

(θ3(q)+θ4(q))2− 1
2
(
θ3(q)2 +θ4(q)2) 1,2

= 2θ3
(
q4)2−θ3

(
q2)2 2= θ4

(
q2)2

. (13)

W

Identity 4 (“Jacobi’s identity”). For all q ∈ (0,1), θ4(q)4 +θ2(q)4 = θ3(q)4.

Proof. As in the proof of Identity 2,

θ3(q)2−θ3
(
q2)2

=
∞

∑
n=−∞

r2(n)qn−
∞

∑
n=−∞

r2(n)q2n

=
∞

∑
n=−∞

r2(n)qn−
∞

∑
n=−∞

r2(2n)q2n

=
∞

∑
n=−∞

r2(2n+1)q2n+1

= ∑
k+l≡1 mod 2

qk2+l2
. (14)

By setting i def= l+k−1
2 and j def= l−k−1

2 , we can write k and l as i− j and i+ j+1, respectively. Moreover, if (i, j) 6= (i′, j′),
then (i− j, i+ j +1) 6= (i′− j′, i′+ j′+1), so by the above work,

θ3(q)2−θ3
(
q2)2

= ∑
k+l≡1 mod 2

qk2+l2
=

∞

∑
i, j=−∞

q(i− j)2+(i+ j+1)2
=

∞

∑
i, j=−∞

(
q2)(i+ 1

2 )
2
+( j+ 1

2 )
2

= θ2
(
q2)2

. (15)

Upon rearranging, we have
θ3
(
q2)2

+θ2
(
q2)2

= θ3(q)2. (16)

4



Multiplying this equation by−1 and replacing the right-hand side via Identity 2 yields−θ3
(
q2
)2−θ2

(
q2
)2 = θ4(q)2−

2θ3
(
q2
)2; rearranging, we have

θ3
(
q2)2−θ2

(
q2)2

= θ4(q)2. (17)

Multiplying these last two displayed equations together and replacing q by q
1
2 gives θ3(q)4−θ2(q)4 = θ3

(
q

1
2

)2
θ3

(
q

1
2

)2
;

applying Identity 3 to the right-hand side and rearranging terms finally yields

θ4(q)4 +θ2(q)4 = θ3(q)4. (18)

W

Identity 5 (“The cubic modular equation”). For all q ∈ (0,1), θ4(q)θ4
(
q3
)
+θ2(q)θ2

(
q3
)

= θ3(q)θ3
(
q3
)
.

Proof. We begin by separating even and odd powers in a certain difference of theta functions:

θ3(q)θ3
(
q3)−θ4(q)θ4

(
q3)=

(
∑

k+l≡0 mod 2
qk2+3l2

+ ∑
k+l≡1 mod 2

qk2+3l2

)
−

(
∑

k+l≡0 mod 2
qk2+3l2 − ∑

k+l≡1 mod 2
qk2+3l2

)

= 2
∞

∑
i, j=−∞

q(i+ j+1)2+3(i− j)2
. (19)

Note that (i+ j +1)2 +3(i− j)2 =
(
2i− j + 1

2

)2 +3
(

j + 1
2

)2
. Every integer pair (m,n) with m+n≡ 0 mod 2 can be

written in exactly one way as (2i− j, j), and the equivalence (2i− j)+ j ≡ 0 mod 2 is always satisfied, so in fact

θ3(q)θ3
(
q3)−θ4(q)θ4

(
q3)= 2

∞

∑
i, j=−∞

q(i+ j+1)2+3(i− j)2
= 2 ∑

m+n≡0 mod 2
q(m+ 1

2 )
2
+(n+ 1

2 )
2
. (20)

Since

θ2(q)θ2
(
q3)=

∞

∑
m,n=−∞

q(m+ 1
2 )

2
+3(n+ 1

2 )
2

= ∑
m+n≡0 mod 2

q(m+ 1
2 )

2
+3(n+ 1

2 )
2
+ ∑

m+n≡1 mod 2
q(m+ 1

2 )
2
+3(n+ 1

2 )
2

= ∑
m+n≡0 mod 2

q(m+ 1
2 )

2
+3(n+ 1

2 )
2
+ ∑

m+n≡1 mod 2
q((m−1)+ 1

2 )
2
+3(n+ 1

2 )
2

= 2 ∑
m+n≡0 mod 2

q(m+ 1
2 )

2
+3(n+ 1

2 )
2
, (21)

we have θ3(q)θ3
(
q3
)
−θ4(q)θ4

(
q3
)

= θ2(q)θ2
(
q3
)
; rearranging, we may conclude that

θ4(q)θ4
(
q3)+θ2(q)θ2

(
q3)= θ3(q)θ3

(
q3) . (22)

W

Identity 6 (“The septic modular equation”). For all q ∈ (0,1),√
θ4(q)θ4 (q7)+

√
θ2(q)θ2 (q7) =

√
θ3(q)θ3 (q7). (23)

Proof. W
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Identity 7. Define K(k) for k ∈ [0,1) by

K(k) =
Z π

2

0

dθ√
1− k2 sin2

θ

. (24)

Then
2
π

K
(

θ2(q)2

θ3(q)2

)
= θ3(q)2 (25)

for all q ∈ (0,1).

To prove this identity, we will need to consider the functions θ1 (z,q), θ2 (z,q), θ3 (z,q), and θ4 (z,q), which are
dependent on both the argument z and the nome q. For the rest of the section, the dependence of the theta functions
on the nome will often be suppressed. From now on, we will let τ, a complex number lying on the ray [0,+ı∞), be
defined by the equation q = eπıτ. The four theta functions behave nicely when the argument is translated by one of the
periods π and πτ, and for this reason they are referred to as quasi doubly periodic functions. For instance,

θ3 (z+π,q) =
∞

∑
n=−∞

qn2
e2nı(z+π) =

∞

∑
n=−∞

qn2
e2nız = θ3 (z,q) , (26)

θ3 (z+πτ,q) =
∞

∑
n=−∞

en2πıτe2nı(z+πτ) = e−πıτe−2ız
∞

∑
n=−∞

e(n+1)2ıτe2(n+1)ız = q−1e−2ız
θ3 (z,q) .

We refer to the quantities 1 and q−1e−2ız as the two multipliers of θ3, corresponding to the periods π and πτ. Similar
calculations produce the following table of multipliers.

θ1 θ2 θ3 θ4

π −1 −1 1 1

πτ −q−1e−2ız q−1e−2ız q−1e−2ız −q−1e−2ız

Using these quasiperiodicity properties, we prove a lemma about the relationship between the theta functions and their
derivatives.

Lemma 2. If θ is any one of the four theta functions, then for all z ∈ C,

θ′(z+π)
θ(z+π)

=
θ′(z)
θ(z)

,
θ′(z+πτ)
θ(z+πτ)

=
θ′(z)
θ(z)

−2ı. (27)

Proof. We prove the claim for θ1; the proofs for the other functions are nearly identical. For any z ∈ C,

θ′1(z+π)
θ1(z+π)

=
−θ′1(z)
−θ1(z)

=
θ′1(z)
θ1(z)

, (28)

θ′1(z+πτ)
θ1(z+πτ)

=

(
−q−1e−2ızθ1(z)

)′
−q−1e−2ızθ1(z)

=
2ıq−1e−2ızθ1(z)−q−1e−2ızθ′1(z)

−q−1e−2ızθ1(z)
=

θ′1(z)
θ1(z)

−2ı.

W
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Rational compositions of theta functions can be formed that have multipliers 1 and 1, in which case these com-
positions are doubly periodic meromorphic endomorphisms of C, or elliptic functions. Elliptic functions have many
special properties; we collect some of these properties here. Given an elliptic function with periods 2ω1 and 2ω2, the
cells of this function are those parallelograms with vertices z (“the base point”), z +2ω1, z +2ω1 +2ω2, and z +2ω2
for z ∈ C and n,m ∈ Z, with the restriction that poles of f must not lie on the boundary of a cell. Note that every
elliptic function has at least one cell, since the period parallelogram with base point 0 can always be perturbed to yield
a cell, using the fact that the singularities of a meromorphic function have no accumulation point.

Lemma 3. Each of the four theta functions has exactly one zero inside each cell.

Proof. Let θ be one of the theta functions and U be a cell with base point z. It follows from Lemma 2 and the residue
calculus that the number of zeroes of f inside U is equal to

1
2πı

Z
∂U

f ′(z)
f (z)

dz =
1

2πı

(Z z+π

z
+

Z z+π+πτ

z+π

+
Z z+πτ

z+π+πτ

+
Z z

z+πτ

)
f ′(z)
f (z)

dz (29)

=
1

2πı

Z z+π

z

(
f ′(z)
f (z)
− f ′(z+πτ)

f (z+πτ)

)
dz− 1

2πı

Z z+πτ

z

(
f ′(z)
f (z)
− f ′(z+π)

f (z+π)

)
dz

=
1

2πı

Z z+π

z
2ı = 1.

W

In fact, we can be more explicit about the zeroes of the four theta functions. Note that

θ1 (0,q) =−ı
∞

∑
n=−∞

(−1)nq(n+ 1
2 )

2
(30)

=−ı
−1

∑
n=−∞

(−1)nq(n+ 1
2 )

2
− ı

∞

∑
n=0

(−1)nq(n+ 1
2 )

2

=−ı
∞

∑
m=0

(−1)−m−1q((−m−1)+ 1
2 )

2
− ı

∞

∑
n=0

(−1)nq(n+ 1
2 )

2
= 0,

and that, as an easy computation shows,

θ1(z) =−θ2

(
z+

1
2

π

)
=−ıq

1
4 eız

θ3

(
z+

1
2

π+
1
2

πτ

)
=−ıq

1
4 eız

θ4

(
z+

1
2

πτ

)
. (31)

It follows from the last lemma that the zeroes of θ1, θ2, θ3, and θ4 are, respectively, those points congruent to 0, 1
2 π,

1
2 π+ 1

2 πτ, and 1
2 πτ modulo the periods π and πτ.

Corollary 1. On the real line, the zeros of θ1 (u,q) are the points nπ,n ∈ Z and the zeros of θ2 (u,q) are the points(
n+ 1

2

)
π,n∈Z. The theta functions θ3 (u,q) and θ4 (u,q) have no real zeros. For every q∈ (0,1), θ1(q) is zero, while

θ2(q), θ3(q), and θ4(q) are strictly positive.

Proof of corollary. The characterization of the zeroes of the theta functions is an immediate consequence of the pre-
vious paragraph. To see that θ1(q) = 0, simply note that

θ1 (z,q) =−ı
∞

∑
n=−∞

(−1)nq(n+ 1
2 )

2
e(2n+1)ız (32)

=−ı
∞

∑
n=0

(−1)nq(n+ 1
2 )

2
e(2n+1)ız− ı

−1

∑
n=−∞

(−1)nq(n+ 1
2 )

2
e(2n+1)ız

=−ı
∞

∑
n=0

(−1)nq(n+ 1
2 )

2
e(2n+1)ız + ı

∞

∑
n=0

(−1)nq(n+ 1
2 )

2
e−(2n+1)ız

= 2
∞

∑
n=0

(−1)nq(n+ 1
2 )

2
sin((2n+1)z).
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That θ2(q) and θ3(q) are strictly positive is obvious. Since θ4(q) has no zeros, is continuous on [0,1), and satisfies
θ4(0) = 1, θ4(q) is positive on (0,1). W

Lemma 4. The sum of the resides of an elliptic function f (z) at its poles in any one cell is zero.

Proof of lemma. Fix a cell with base point z; call its boundary C, and assign to C the usual orientation. By Cauchy’s
theorem, the sum of the residues of f inside C is equal to

1
2πı

Z
C

f (z)dz =
1

2πı

(Z z+2ω1

z
+

Z z+2ω1+2ω2

z+2ω1

+
Z z+2ω2

z+2ω1+2ω2

+
Z z

z+2ω2

)
f (z)dz (33)

=
1

2πı

Z z+2ω1

z
( f (z)− f (z+2ω2)) dz− 1

2πı

Z z+2ω2

z
( f (z)− f (z+2ω1))

= 0.

W

Lemma 5. If f (z) is an elliptic function with the property that for some cell U, f is bounded in modulus on U, then f
is constant on C.

Proof. This is an immediate (but useful!) consequence of Liouville’s theorem. W

Corollary 2. Say that f (z) is an elliptic function with the property that for some cell U has at most one pole within
∂U, counting multiplicity. Then f (z) is constant.

Our first application of these general properties of elliptic functions is the derivation of several relations among
the squares of the four theta functions. The functions θ1(z)2, θ2(z)2, θ3(z)2, and θ4(z)2 are quasi doubly periodic
functions with periods π and πτ and corresponding multipliers 1 and q−2e−4ız, so for all a,b,c,d ∈ C, the quotients

aθ1(z)2 +bθ4(z)2

θ2(z)2 ,
cθ1(z)2 +dθ4(z)2

θ3(z)2 (34)

are elliptic functions. Moreover, by Lemma 3, in every cell the denominators have exactly two zeros, counting mul-
tiplicity. It follows that for the correct choice of a,b,c,d, with at least one of a,b and and least one of c,d nonzero,
these quotients will be elliptic functions with at most one zero in each cell, thus, by Corollary 2, constant.

The multipliers of θ1(z) and of θ4(z) are different, so these two theta functions are not linearly dependent over
C. It follows that aθ1(z)2 + bθ4(z)2 and cθ1(z)2 + dθ4(z)2, for (a,b) ,(c,d) nonzero, are not identically zero, so the
quotients displayed above are each equal to a nonzero constant. It follows that there exist relations of the form

θ2(z)2 = aθ1(z)2 +bθ4(z)2, θ3(z)2 = cθ1(z)2 +dθ4(z)2. (35)

Straightforward manipulations yield the identities

θ1

(
1
2

πτ

)
= ıq−

1
4 θ4(0), θ2

(
1
2

πτ

)
= q−

1
4 θ3(0), θ3

(
1
2

πτ

)
= q−

1
4 θ2(0), θ4

(
1
2

πτ

)
= 0. (36)

Setting z = 1
2 πτ in (35) and applying these formulas yields

a =−θ3(0)2

θ4(0)2 , c =−θ2(0)2

θ4(0)2 . (37)

Setting z = 0 (35) and noting that θ1(0) = 0 yields

b =
θ2(0)2

θ4(0)2 , d =
θ3(0)2

θ4(0)2 . (38)
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We have now derived the equations

θ4(0)2
θ2(z)2 = θ2(0)2

θ4(z)2−θ3(0)2
θ1(z)2, θ4(0)2

θ3(z)2 = θ3(0)2
θ4(z)2−θ2(0)2

θ1(z)2. (39)

Next, we use these relations to construct a solution of a differential equation that is intimately related to the elliptic
integral K. It follows from the table of multipliers recorded above that the function θ1(z)/θ4(z) has multipliers −1
and 1 with respect to the periods π and πτ; the derivative of this quotient must, therefore, have the same periodicity
factors. The quotient θ2(z)θ3(z)/θ4(z)2 has the same multipliers, so if

φ(z) def=
θ′1(z)θ4(z)−θ1(z)θ′4(z)

θ2(z)θ3(z)
, (40)

then φ(z) is an elliptic function. Moreover applying the identities

θ1

(
z+

1
2

πτ

)
= ıq−

1
4 e−ız

θ4(z), θ2

(
z+

1
2

πτ

)
= q−

1
4 e−ız

θ3(z), (41)

θ3

(
z+

1
2

πτ

)
= q−

1
4 e−ız

θ2(z), θ4

(
z+

1
2

πτ

)
= ıq−

1
4 e−ız

θ1(z)

and the consequent identities

θ
′
1

(
z+

1
2

πτ

)
= q−

1
4 e−ız (

θ4(z)+ ıθ′4(z)
)
, θ

′
2

(
z+

1
2

πτ

)
= q−

1
4 e−ız (−ıθ3(z)+θ

′
3(z)

)
, (42)

θ
′
3

(
z+

1
2

πτ

)
= q−

1
4 e−ız (−ıθ2(z)+θ

′
2(z)

)
, θ

′
4

(
z+

1
2

πτ

)
= q−

1
4 e−ız (

θ1(z)+ ıθ′1(z)
)

yields

φ

(
z+

1
2

πτ

)
= φ(z). (43)

On the other hand, we know from the work immediately following Lemma 3 that the only possible poles of φ(z)
are simple poles at points congruent to 1

2 π and 1
2 π + 1

2 πτ modulo π and πτ. It follows that φ(z) is periodic with
periods π and 1

2 πτ, and that the only possible poles of φ(z) are simple poles at points congruent to 1
2 π modulo

1
2 π. We may conclude from Lemma 2 that φ(z) is constant. Since θ1(0) = 0, this constant must be equal to
θ′1 (0,q)θ4 (0,q)/θ2 (0,q)θ3 (0,q). We prove another identity, another remarkable result of Jacobi, in order to work
this constant into a simple form.

Identity 8. The equation
θ
′
1 (0,q) = θ2 (0,q)θ3 (0,q)θ4 (0,q) (44)

holds.

Proof. Soon to come! W

It follows that φ(z) is identically equal to θ4 (0,q)2. We may conclude that

d
dz

(
θ1(z)
θ4(z)

)
= θ4 (0,q)2 θ2 (z,q)

θ4 (z,q)
θ3 (z,q)
θ4 (z,q)

. (45)

An application of (39) yields the differential equation(
d
dz

θ1 (z,q)
θ4 (z,q)

)2

=

(
θ2(0)2−θ3(0)2

(
θ1(z)
θ4(z)

)2
)(

θ3(0)2−θ2(0)2
(

θ1(z)
θ4(z)

)2
)

. (46)

9



This equation can be put into a cleaner form by the obvious change of variables. Indeed, we see that if we define

sn(u,q) def=
θ3 (0,q)
θ2 (0,q)

θ1

(
u

θ3(0,q)2 ,q
)

θ4

(
u

θ3(0,q)2 ,q
) , (47)

then (
d
du

sn(u,q)
)2

=
(

1− sn(u,q)2
)(

1− θ2 (0,q)4

θ3 (0,q)4 · sn(u,q)2

)
. (48)

Our notation here is not entirely standard: most authors write the Jacobi sine function sn(u,k) as a function with

parameter k def= θ2 (0,q)2 /θ3 (0,q)2. For explicitness, we regard sn(u,q) as a function with the nome q as its parameter.
As the last step in our preparation for the proof of Identity 7, we prove that the Jacobi sine function inverts the

incomplete elliptic integral of the first kind.

Proposition 1. For all 0≤ u < 1
2 πθ3(q)2,

u =
Z sn(u,q)

0

dt(
(1− t2)

(
1− θ2(q)4

θ3(q)4 t2
)) 1

2
. (49)

Proof. This is a direct consequence of (48). We begin by proving that sn(u,q) maps
[
0, 1

2 πθ3(q)2
]

onto [0,1], and that
d
du sn(u,q) does not vanish on the first interval, except at the right endpoint. By (45),

d
du

sn(u,q) =
d
du

θ3(q)
θ2(q)

θ1

(
u

θ3(q)2 ,q
)

θ4

(
u

θ3(q)2 ,q
)
=

θ2

(
u

θ3(q)2 ,q
)

θ3

(
u

θ3(q)2 ,q
)

θ4(q)2

θ2(q)θ3(q)θ4

(
u

θ3(q)2 ,q
)2 . (50)

It follows from Corollary 1 that d
du sn(u,q) is continuous and nonzero on

[
0, 1

2 πθ3(q)2
)
. Moreover, d

du sn(u,q) is
obviously equal to 1 at 0, so by the intermediate value theorem, d

du sn(u,q) is strictly positive on
[
0, 1

2 πθ3(q)2
)
.

Similarly to (36), the identities

θ1

(
z+

1
2

π,q
)

= θ2 (z,q) , θ2

(
z+

1
2

π,q
)

=−θ1 (z,q) , (51)

θ3

(
z+

1
2

π,q
)

= θ4 (z,q) , θ4

(
z+

1
2

π,q
)

= θ3 (z,q)

follow from a short computation, so sn
( 1

2 πθ3(q)2,q
)

= 1. Since θ1 (0,q) = 0, sn(0,q) = 0. This shows that on the
interval

[
0, 1

2 πθ3(q)2
]
, sn(u,q) increases from 0 to 1, and has positive derivative everywhere on this interval but at the

right endpoint.
It follows from this work, along with (48), that

d
du

sn(u,q) =
((

1− sn(u,q)2
)(

1− θ2(q)4

θ3(q)4 t2
)) 1

2

(52)

for all u ∈
[
0, 1

2 θ3(q)2
)
, where the right-hand side is, by (48), the square root of a nonnegative quantity, and is, by the

previous paragraph, to be interpreted as a nonnegative quantity. It follows that

d
du

Z sn(u,q)

0

dt(
(1− t2)

(
1− θ2(q)4

θ3(q)4 t2
)) 1

2
=
(

d
du

sn(u,q)
) 1((

1− sn(u,q)2
)(

1− θ2(q)4

θ3(q)4 sn(u,q)2
)) 1

2

= 1. (53)

10



Since sn(u,q) = 1, we may conclude that for all u ∈
[
0, 1

2 πθ3(q)2
)
,

u =
Z sn(u,q)

0

dt(
(1− t2)

(
1− θ2(q)4

θ3(q)4 t2
)) 1

2
. (54)

W

By Proposition 1,

1
2

πθ3(q)2 = lim
u→ 1

2 πθ3(q)2−
u (55)

= lim
u→ 1

2 πθ3(q)2−

Z sn(u,q)2

0

dt(
(1− t2)

(
1− θ2(q)4

θ3(q)4 t2
)) 1

2

= lim
y→1−

Z y

0

dt(
(1− t2)

(
1− θ2(q)4

θ3(q)4 t2
)) 1

2

=
Z 1

0

dt(
(1− t2)

(
1− θ2(q)4

θ3(q)4 t2
)) 1

2
.

A change of variables shows thatZ 1

0

dt(
(1− t2)

(
1− θ2(q)4

θ3(q)4 t2
)) 1

2
=

Z π

2

0

dθ(
1− θ2(q)4

θ3(q)4 sin2
θ

) 1
2
, (56)

so we have now proven Identity 7.

2.2 The arithmetic-geometric mean
Recall that the AGM iteration is defined by {

an+1 = an+bn
2 ,

bn+1 =
√

anbn.
(57)

Denote the limit of the AGM iteration with initial inputs a,b > 0 by M(a,b). It follows from Identities 2 and 3 that

θ3(q)2 +θ4(q)2

2
= θ3

(
q2)2

,
√

θ3(q)2θ4(q)2 = θ4
(
q2)2

(58)

for all q ∈ (0,1), so for all such q, M
(
θ3(q)2,θ4(q)2

)
= M

(
θ3
(
q2
)2

,θ4
(
q2
)2
)

. Applying this rule n times, it follows

that M
(
θ3(q)2,θ4(q)2

)
= M

(
θ3
(
q2n)2

,θ4
(
q2n)2

)
. Since θ3(0) = θ4(0) = 1, it follows from the homogeneity of M

that for all q ∈ [0,1),

M
(

1,
θ4(q)2

θ3(q)2

)
=

1
θ3(q)2 . (59)

By Corollary 1, θ2(q), θ3(q), and θ4(q) are positive, so it follows from this equation, along with Identity 4, that

M
(

1,
θ4(q)2

θ3(q)2

)
=

1
θ3(q)2 =

π

2K
(√

1− θ4(q)4

θ3(q)4

) . (60)
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I claim that as q ranges from 0 to 1, θ4(q)2

θ3(q)2 parameterizes the interval (0,1]. To see this, first note that by Corollary 1,

0≤ θ4(q)≤ θ3(q), so θ4(q)2

θ3(q)2 ([0,1))⊂ (0,1]. Since θ4(0) = θ3(0) = 1, to prove equality in this containment it suffices

to show that as q tends to 1, θ4(q)2

θ3(q)2 tends to 0. It is apparent that limq→1− θ3(q) = limq→1−∑n∈Z qn2
= +∞, so it suffices

to prove that θ4(q) is bounded on [0,1). This follows from the inequality

θ4(q) = ∑
n∈Z

(−1)nqn2
= 1+2 ∑

n∈N
q(2n)2 −2 ∑

n∈N
q(2n−1)2 ≤ 1. (61)

We may conclude that for all x ∈ [0,1],
M(1,x) =

π

2K
(√

1− x2
) . (62)

This is the fundamental integral formula of Gauss.

2.3 Another specialization of the Borchardt mean
In [3], Carl Borchardt proposed the four-term iteration defined by the rule

an+1 = an+bn+cn+dn
4 ,

bn+1 =
√

anbn+
√

cndn
2 ,

cn+1 =
√

ancn+
√

bndn
2 ,

dn+1 =
√

andn+
√

bncn
2 .

(63)

This mean can be characterized in terms of a hyperelliptic integral, and we will proceed with the analysis in the next
subsection. To motivate the study of this mean, note that when a0 = b0 and c0 = d0, the Borchardt iteration reduces to
the AGM iteration. When, on the other hand, b0 = c0 = d0, the Borchardt iteration reduces to the iteration{

an+1 = an+3bn
4 ,

bn+1 =
√

anbn+bn
2 .

(64)

Following the notation of [5], we denote the limit of (64) by B(a0,b0) and, abusing notation, define B(x) to be B(1,x).
Because of its asymptotic behavior, (64) is not a convenient iteration to uniformize. Instead, we begin with the iteration an+1 =

(
a2

n+3b2
n

4

) 1
2
,

bn+1 =
(

anbn+b2
n

2

) 1
2
,

(65)

the limit of which we denote by B2 (a0,b0). As for B(a0,b0), we define B2(x) to be B2 (1,x). Observe that B2(x) =

B
(
x2
) 1

2 : we have modified the asymptotic behavior of B(x) for small x while preserving homogeneity.
We now characterize B(x).

Theorem 1. For 0 < h≤ 1,

B(h) =
π2

16
(

1+
√

h
)2

K
( √

1−h

(1+
√

h)2

(√
1+3h+2

√
h
))

K
( √

1−h

(1+
√

h)2

(√
1+3h−2

√
h
)) . (66)

Proof. We begin by using the results of Subsection 2.1 to prove that

L(q) def= θ3(q)θ3
(
q3)+θ2(q)θ2

(
q3) , M def= θ3(q)θ3

(
q3)−θ2(q)θ2

(
q3) , (67)
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for q ∈ [0,1), really do uniformize (65). By Identities 3 and 5,

(
L(q)M(q)+M(q)2

2

) 1
2

=
(

L(q)+M(q)
2

) 1
2

M(q)
1
2 (68)

5=
(
θ3(q)θ3

(
q3)

θ4(q)θ4
(
q3))

3= θ4
(
q2)

θ4

(
q6
)

5= M
(
q2) .

Next, note that by (16), (17), and Identity 4,

4θ2
(
q2)2

θ3
(
q2)2

=
(

θ3
(
q2)2

+θ2
(
q2)2

)2
−
(

θ3
(
q2)2−θ2

(
q2)2

)2 (16),(17)
= θ3(q)4−θ4(q)4 4= θ2(q)4, (69)

so

L
(
q2)2−M

(
q2)2

= 4θ3
(
q2)

θ3

(
q6
)

θ2
(
q2)

θ2

(
q6
)

= θ2(q)2
θ2
(
q3)2

=
(

L(q)−M(q)
2

)2

. (70)

It follows from the last displayed equation along with (68) that

(
L(q)2 +3M(q)2

4

)2

=

(
(L(q)−M(q))2 +2L(q)M(q)+2M(q)2

4

) 1
2

(68)=

((
L(q)−M(q)

2

)2

+M
(
q2)2

) 1
2

(70)= L
(
q2) .

(71)
To sum up, we have now proven that(

L(q)2 +3M(q)2

4

) 1
2

,

(
L(q)M(q)+M(q)2

2

) 1
2

, (72)

which yields the uniformization
B2 (L(q),M(q)) = B2

(
L
(
q2) ,M (q2)) . (73)

Since θ3 and θ4 are continuous on [0,1) and since θ2(0) = 0 and θ3(0) = 1, applying (73) recursively and using the
homogeneity of B2 yields

B2

(
M(q)
L(q)

)
=

1
L(q)

. (74)

We may conclude that

B
(

M(q)2

L(q)2

)
=

1
L(q)2 . (75)

Define

a =
θ2(q)2

θ3(q)2 , b =
θ2
(
q3
)2

θ3 (q3)2 , (76)

and note that by Identities 4 and 5,

(a2b2)
1
4 +
((

1−a2)(1−b2)) 1
4 =

θ2(q)θ2
(
q3
)

θ3(q)θ3 (q3)
+

((
θ3(q)4−θ2(q)4

θ3(q)4

)(
θ3
(
q3
)4−θ2

(
q3
)4

θ3 (q3)4

)) 1
4

(77)

4=
θ2(q)θ2

(
q3
)

θ3(q)θ3 (q3)
+

θ4(q)θ4
(
q3
)

θ3(q)θ3 (q3)
5= 1.
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The formulas L(q) = θ3(q)θ3
(
q3
)(

1+(ab)
1
2

)
and M(q) = θ3(q)θ3

(
q3
)(

1− (ab)
1
2

)
yield the equation

B

(1− (ab)
1
2

1+(ab)
1
2

)2
= B

(
M(q)2

L(q)2

)
=

1
L(q)2 =

1

θ3(q)2θ3 (q3)2
(

1+(ab)
1
2

)2 =
π2

4
(

1+(ab)
1
2

)2
K(a)K(b)

. (78)

Denote
(

1− (ab)
1
2

)2
/
(

1+(ab)
1
2

)2
by h. Since 0≤ θ4(q)≤ θ3(q), it follows from Jacobi’s identity that 0≤ θ2(q)≤

θ3(q), so a and b lie in the interval [0,1]. Using this observation, it follows from (77) and (78) that

{a,b}=


√

1−h(
1+
√

h
)2

(√
1+3h+2

√
h
)

,

√
1−h(

1+
√

h
)2

(√
1+3h−2

√
h
) , (79)

where the specific bijection between these two sets depends on whether a ≤ b or b ≤ a. (I can see numerically that
b ≤ a for all q, but I am not sure how to prove it.) Since (78) is symmetric and a and b, the explicit bijection is
unnecessary, and (66) follows for every h that can be expressed in the form

h =

1− θ2(q)θ2(q3)
θ3(q)θ3(q3)

1+
θ2(q)θ2(q3)
θ3(q)θ3(q3)


2

. (80)

I claim that every h ∈ (0,1] can be expressed in this form. For this it suffices to show that θ2(q)
θ3(q) maps [0,1) to [0,1).

This follows from the earlier observation that 0≤ θ2(q)≤ θ3(q), from the fact that θ2(0)
θ3(0) = 0, and from the equation

lim
q→1−

θ2(q)
θ3(q)

4= lim
q→1−

4

√
1− θ4(q)4

θ3(q)4 = 1. (81)

Here we have used the fact, proven earlier, that limq→1− θ4(q)θ3(q) = 0. We may conclude that (66) holds for all
h ∈ (0,1].

W

2.4 A mean generated by an identity

2.5 The Borchardt mean
Denote the limit of the four-term Borchardt iteration mentioned two sections previously by G(a0,b0,c0,d0). As
Borchardt proves in [3], and as is briefly discussed by the Borweins in [5], the Borchardt mean can be characterized
by the theta-function method as follows.

Theorem 2. For all a0,b0,c0,d0 > 0,

π2

G(a0,b0,c0,d0)
=

Z
α3

0

Z
α1

α2

x− y√
R(x)R(y)

dxdy, (82)

where R(x)
def
= x(x−α0)(x−α1)(x−α2)(x−α3) and where α0,α1,α2,α3 are determined by the following procedure.

Let

A
def
= a) +b0 + c0 +d0, B

def
= a0 +b0− c0−d0, C

def
= a0−b0 + c0−d0, D

def
= a0−b0− c0 +d0, (83)
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and define B1,C1,D1,B2,C2,D2 by the equations

2B1
def
=
√

AB+
√

CD, 2C1
def
=
√

AC +
√

BD, 2D1
def
=
√

AD+
√

BC, (84)

2B2
def
=
√

AB−
√

CD, 2C2
def
=
√

AC−
√

BD, 2D2
def
=
√

AD−
√

BC

and let ∆
def
= 4
√

ABCDB1C1D1B2C2D2. Then

α0
def
=

ACB1

∆
, α1

def
=

CC1D1

∆
, α2

def
=

AC2D1

∆
, α3

def
=

B1C1C2

∆
. (85)

The uniformizing functions for the Borchardt mean are not theta-functions but multidimensional theta functions;
specifically, they are the four functions

∑
n,m∈Z

(±1)n(±1)mqsm2+tmn+un2
. (86)

3 Iterative means and elliptic curves

4 The generalized arithmetic-geometric mean

4.1 Definition
First, we show that the 2-dimensional AGM, given by Definition 1 and denoted from now on by M2, is well-defined.

Theorem 3. The 2-dimensional AGM is well-defined.

Proof. Fix a0,b0 ≥ 0 and assume without loss of generality that a0 ≥ b0. By the arithmetic mean-geometric mean
inequality, an ≥ bn for all n ≥ 1. Since the arithmetic and the geometric means are, in fact, means, it follows that the
elements of the sequences {an} and {bn} are nested:

b0 ≤ b1 ≤ b2 ≤ b3 ≤ ·· · ≤ a3 ≤ a2 ≤ a1 ≤ a0. (87)

That is, {an} is a decreasing sequence bounded from below by b0, and {bn} is an increasing sequence bounded from
above by a0. By the monotone convergence theorem, {an} and {bn} are convergent, say to the limits N1 and N2,
respectively.

Letting n tend to infinity in the first line of (1), N1 = N1
2 + N2

2 . It follows that L = M, so the sequences {an} and
{bn} converge to a common limit. W

It turns out that there is a geometric interpretation of M2:

Consider a rectangle R with side lengths a and b. Two quantities are often thought of as “characteris-
tic” of the rectangle: area and perimeter. To each of these quantities correspond a way of “combining” a
and b. Namely, we can draw a square S with the same area (resp. perimeter) as R, and take the side length
of S to be the mean of a and b with respect to area (resp. perimeter). We leave it to the reader to show
that the mean of a and b with respect to area (resp. perimeter) is equal to the arithmetic (resp. geometric)
mean of a and b, that is, equal to a+b

2 (resp.
√

ab).
This formulation of the arithmetic and geometric means suggests a compromise between the two:

given R, draw a rectangle R1, with side lengths a+b
2 and

√
ab. By Theorem 3, iterating this process results

in a square with side length M2 (a,b).

This interpretation gives a geometrically-motivated way of generalizing the 2-dimensional arithmetic-geometric
mean to m dimensions, by beginning with an m-dimensional rectangular hyperprism and conserving the m “character-
istic” quantities. For instance, in the m = 3 case — the Schlömilch mean, defined by the rule (4) — we conserve edge
length, surface area, and volume.

When defining Mm

(
a(1), . . . ,a(m)

)
for m ≥ 4, we symbolically extrapolate from the m = 2 and m = 3 cases to

arrive at the following definition:
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Definition 2. For m ≥ 1, fix m nonnegative real numbers a(1)
0 , . . . ,a(m)

0 . Consider the sequences
{

a(1)
n

}
, . . . ,

{
a(m)

n

}
,

defined by the rule 
a(1)

n+1 = L1

(
a(1)

n , . . . ,a(m)
n

)
,

...

a(m)
n+1 = Lm

(
a(1)

n , . . . ,a(m)
n

)
,

(88)

where

Lk

(
a(1)

n , . . . ,a(m)
n

)
def=

(
1(m
k

) ∑
0≤i1<...<ik≤m

a(i1)
n · . . . ·a(ik)

n

) 1
k

. (89)

If
{

a(1)
n

}
, . . . ,

{
a(m)

n

}
converge to a common limit, then we call this limit the m-dimensional arithmetic-geometric

mean of a(1)
0 , . . . ,a(m)

0 and denote it as Mm

(
a(1)

0 , . . . ,a(m)
0

)
.

Theorem 4. The m-dimensional arithmetic-geometric mean is well-defined.

Proof. Fix a(1), . . . ,a(m) ≥ 0 and assume without loss of generality that a(1) ≥ . . .≥ a(m). Maclaurin’s inequality states
that L1 ≥ . . .≥ Lm for all nonnegative real inputs, so for all n≥ 0,

a(1)
n ≥ a(2)

n ≥ a(3)
n ≥ . . .≥ a(m−2)

n ≥ a(m−1)
n ≥ a(m)

n . (90)

That is, the iterates a(2)
n , . . . ,a(m−1)

n are bounded from above and below by a(1)
n and a(m)

n , respectively.
By the inequality L1 ≥ Lm and the fact that L1 and Lm are means, we also have the nested inequality

a(1)
0 ≥ a(1)

1 ≥ a(1)
2 ≥ . . .≥ a(m)

2 ≥ a(m)
1 ≥ a(m)

0 . (91)

That is,
{

a(1)
n

}
is a decreasing sequence bounded from below from am

0 , and
{

a(m)
n

}
is an increasing sequence bounded

from above by a(1)
0 . By the monotone convergence theorem,

{
a(1)

n

}
and

{
a(m)

n

}
is convergent, say to the limit N.

Subtracting a(1)
n from both sides of the first line of (88) and letting n tend to infinity yields

m−1
m

N = lim
n→∞

1
m

m−1

∑
i=1

a(i)
n . (92)

With (90), this implies that the sequences
{

a(2)
n

}
, . . . ,

{
a(m)

n

}
each converge to N. W

4.2 Basic properties of the gAGM
A number of the properties of the classical AGM also hold for the gAGM, including the digit-doubling property of M2
that leads to its usefulness in numerical computation.

Definition 3. If limn→∞ an = L, then we say that the sequence {an} exhibits p-th order convergence if there exists
some positive constant C such that for all n≥ 0, ∣∣∣∣ an+1−L

(an−L)p

∣∣∣∣≤C. (93)

By Theorem 8.8.c in [8], each of the sequences
{

a(1)
n

}
, . . . ,

{
a(m)

n

}
exhibit second-order convergence. Specifically,

Theorem 8.8.c states that if L1, . . . ,Lm are twice continuously differentiable m-dimensional means, then convergence
in the Gaussian iteration is quadratic, and uniformly so on compact subsets of the domain.
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Theorem 5. On Rm
+, Mm is real-analytic.

Proof. To prove this theorem, we extend the domain of the means L1, . . . ,Lm used in the definition of Mm to an open
subset of Cm, where k

√
· is defined to map the slit plane C \ (−∞,0] onto the sector

{
z : z 6= 0, |argz|< π

k

}
. Consider

the following lemma.

Lemma 6. For fixed R > 0, let DR =
{

z ∈ C : 0 < |z|< R, |argz|< π

2m

}
. If z1, . . . ,zm ∈ DR, then Lk (z1, . . . ,zm) ∈ DR

for all 1≤ k ≤ m.

Proof. Take z1, . . . ,zm ∈ D. First, note that

|Lk (z1, . . . ,zm)|=

∣∣∣∣∣∣
(

1(m
k

) ∑
1≤i1<...<ik≤m

zi1 · . . . · zik

) 1
k
∣∣∣∣∣∣ (94)

=

∣∣∣∣∣ 1(m
k

) ∑
1≤i1<...<ik≤m

zi1 · . . . · zik

∣∣∣∣∣
1
k

≤

(
1(m
k

) ∑
1≤i1<...<ik≤m

∣∣zi1 · . . . · zik

∣∣) 1
k

= R.

Second, note that for 1≤ i1 < .. . < ik ≤ m,∣∣arg
(
zi1 · . . . · zik

)∣∣≤ |argzi1 |+ . . .+
∣∣argzik

∣∣
<

kπ

2m

≤ π

2
.

This implies that ∣∣∣∣∣arg

(
1(m
k

) ∑
1≤i1<...<ik≤m

zi1 · . . . · zik

)∣∣∣∣∣< kπ

2m
, (95)

so |arg(Lk (z1, . . . ,zk))|< π

2m .
W

By Lemma 6, for any fixed 1 ≤ j ≤ m, the sequence
{

a( j)
n

}
is a family of uniformly bounded analytic functions

on any bounded subset of D. Recall the first formulation of Montel’s theorem:

Theorem 6 (Montel). Let F be a uniformly-bounded family of complex-analytic functions from some open subset D
of Cn into C. Then there exists a subsequence { fn} ⊂ F that converges uniformly on compact subsets of D.

By Montel’s theorem, for any compact D0 ⊂ D,
{

a( j)
n

}
contains a sequence that converges uniformly on D0, and

since the limit of uniformly convergent analytic functions on connected open sets is analytic, this subsequence must
converge to a complex-analytic function. Since

{
a( j)

n

}
is convergent on Rm

+, it follows that on any interval of the form

(0,R),
{

a( j)
n

}
converges to an analytic function. The theorem follows. W

It follows from Theorem 5 that Mm can be expanded as a locally-convergent power series about any (b,b, . . . ,b) ∈
Rm

+. Furthermore, the coefficients of the power series of a( j)
1 ,a( j)

2 ,a( j)
3 , . . . exhibit exponential stabilization:
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Theorem 7. Let a(0)
j = b + x j for some b ∈ R+, for all 1 ≤ j ≤ m. (For instance, b = 1 might be a natural choice.)

Then for x1, . . . ,xm sufficiently small in modulus, a(k)
n and Mm

(
a(0)

1 , . . . ,a(0)
m

)
can be written as power series in x def

=

(x1, . . . ,xm), and the first term of disagreement between the power series representations of a(k)
n and Mm

(
a(0)

1 , . . . ,a(0)
m

)
is of order at least 2n.

Proof. By induction on n. The claim follows trivially in the base case n = 0. Assume that the claim holds for some
n≥ 0, and write

Mm

(
a(0)

1 , . . . ,a(0)
m

)
=

2n+1−1

∑
s=0

∑
|σ|=s

λσxσ +O
(
2n+1) . (96)

Then, for all 1≤ j ≤ k and for some coefficients κ
( j)
σ ,

a( j)
n =

2n−1

∑
s=0

∑
|σ|=s

λ
( j)
σ xσ +

2n+1−1

∑
s=2n

∑
|σ|=s

κ
( j)
σ xσ +O

(
2n+1) . (97)

It follows that for all 1≤ k ≤ m,

a(k)
n+1 = Lk

(
a(1)

n , . . . ,a(m)
n

)
(98)

=

(
1(m
k

) ∑
1≤i1<...<ik≤m

k

∏
t=1

(
2n−1

∑
s=0

∑
|σ|=s

λ
(it )
σ xσ +

2n+1−1

∑
s=2n

∑
|σ|=s

κ
(it )
σ xσ +O

(
2n+1))) 1

k

=

 1(m
k

)
(m

k

)(2n−1

∑
s=0

∑
|σ|=s

λ
(it )
σ xσ

)k

+

+
k
m

(
m
k

)(2n−1

∑
s=0

∑
|σ|=s

λ
(it )
σ xσ

)k−1 m

∑
t=1

2n+1−1

∑
s=2n

∑
|σ|=s

κ
(t)
σ xσ +O (2n (k +1)− k)

 1
k

=

(2n−1

∑
s=0

∑
|σ|=s

λ
(it )
σ xσ

)k

+

+
k
m

(
2n−1

∑
s=0

∑
|σ|=s

λ
(it )
σ xσ

)k−1 m

∑
t=1

2n+1−1

∑
s=2n

∑
|σ|=s

κ
(t)
σ xσ +O (2n (k +1)− k)

 1
k

=

(
2n−1

∑
s=0

∑
|σ|=s

λ
(it )
σ xσ

)1+
k
m

(
2n−1

∑
s=0

∑
|σ|=s

λ
(it )
σ xσ

)−1 m

∑
t=1

2n+1−1

∑
s=2n

∑
|σ|=s

κ
(t)
σ xσ +O (2n +1)

 1
k

=

(
2n−1

∑
s=0

∑
|σ|=s

λ
(it )
σ xσ

)1+
1
m

(
2n−1

∑
s=0

∑
|σ|=s

λ
(it )
σ xσ

)−1 m

∑
t=1

2n+1−1

∑
s=2n

∑
|σ|=s

κ
(t)
σ xσ +O (2n +1)

 .

=
2n−1

∑
s=0

∑
|σ|=s

λ
(it )
σ xσ +

1
m

m

∑
t=1

2n+1−1

∑
s=2n

∑
|σ|=s

κ
(t)
σ xσ +O

(
2n+1)

=
2n−1

∑
s=0

∑
|σ|=s

λ
(it )
σ xσ +

2n+1−1

∑
s=2n

∑
|σ|=s

κ
(1)
σ + . . .+κ

(m)
σ

m
xσ +O

(
2n+1) .
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This calculation shows that the coefficients of the power series representation of a(k)
n+1, up to order 2n+1 − 1, are

independent of k. By induction, the claim follows. W

4.3 The univariate gAGM
Whether a closed-form representation for Mm exists, by analogy with (3), is an open question. Gauss was led to the
integral representation of the classical AGM by first deriving the formula

1
M2 (1+ x,1− x)

=
2
π

Z π

2

0

dθ√
1− x2 sin2

θ

, (99)

and in fact, though there are a number of proofs of (3), by far the simplest proof uses (99) as a stepping-stone [1]. This
suggests that finding a univariate version of the gAGM could lead us to an integral representation analogous to (99),
and then to an integral representation analogous to (3). Symbolically extrapolating from the univariate classical AGM
M2 (1+ x,1− x), we could consider

Mm

(
1+ x,1+ e

2πı
m x, . . . ,1+ e

2(m−1)πı
m x

)
. (100)

This function at first appears to be ill-defined: we have not defined the gAGM for complex inputs! But this is not a
problem, for iterating once, we see that

Mm

(
1+ x,1+ e

2πı
m x, . . . ,1+ e

2(m−1)πı
m x

)
= Mm

(
1,1, . . . ,1,

√
1− (−x)m

)
. (101)

See Figure 4.3 for plots of the univariate generalized AGM.
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