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1. INTRODUCTION

The following paper discusses several results about solvability of partial differ-
ential equations (PDE). It begins with with a statement and proof of the Cauchy-
Kowalevski Theorem. Next, using Lewy’s example, I show that the theorem does
not generalize from the analytic case to the smooth case. Conditions for solvability
of more general PDE are given, with a characterization of solvable PDE in a specific
case. Finally, I give an overview of more recent work developing the theory further.

I am gratefully indebted to Professor James Morrow for his numerous suggestions
and corrections, and for the time he dedicated to discussion of the paper. His help
was invaluable.

2. CAUCHY-KOWALEVSKI THEOREM

The Cauchy-Kowalevski Theorem, 2.3, asserts that under certain conditions,
we have existence and uniqueness for solutions of partial differential equations.
However, the theorem is somewhat restrictive as its hypotheses make certain as-
sumptions about analyticity. The following proof follows the discussion in [5].

In the following discussion we shall order the set of multi-indices by decreeing
that o < g if |a| < |f] or if |a| = |5] and «; < (;, where 4 is the largest number
with a; # ;. We shall also use the following elementary result.
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2 NICK REICHERT

Proposition 2.1. Suppose f(x) = > aa(x — x0)* is convergent near x = xg €
R™. Also assume g(§) = > 5bs(€ — €98 where £ € R™, bg € R™, and g(&o) = by =
zo. Then f(g(§)) = >_, cy(§ — &)Y is analytic at &, where ¢y = Py({aa},{bs})
and P, is a polynomial such that

(i) Py is independent of f and g.

(%) Py is a polynomial in the aq and bg for which o; <~y and B; <~;, all

7.

(#3) Py has only non-negative coefficients.
Proof. Exercise. O
Theorem 2.2. Suppose B is an analytic RN -valued function, Ay, -+, A,_1 are

analytic N x N -real-matriz-valued functions, and ®(z) is analytic RN -valued func-
tion, each analytic an a neighborhood of the origin of their respective domains.
Then there is a neighborhood of the origin in R™ on which there exists a unique
analytic function Y : R™ — RN which solves the Cauchy problem

n—1
(1) 0Y =3 Ai(x,t,Y)0,,Y + B(x,1,Y)
i=1
Y (z,0) = ®(x)
Proof. First consider the case when the A; and B are independent of t and ®(z) = 0.
n—1
(2) 0Y = Ai(z,Y)0:,Y + B(x,Y)
i=1
Y (z,0)=0
Let Y = (y1,--,yn), B = (b1, -+ ,bn), Ai = (a),;)0 —. We wish to find
(3) Ym = Z It
a.j

for 1 < m < N, satisfying (2). The initial condition forces that ¢ = 0 for all a, m.
We have

(4) atym = Z aiml(xa Y1, ayN)amlyl + bm({E, Y1, ayN)

il
Now, we can use the series for the yj in place of the variables y; as parameters for
al ., and by,. By Proposition 2.1, and using (3) in (4), we rewrite (4) as

> G+ DI et =N Pi(() )iy, di)a
a,] o,
where d; is the coefficient of A; and B, and P2/ is a polynomial with non-negative
coefficients. So by uniqueness of power series expansions
_ 1 _
1) _ el
et = mpﬁj((ck Ji<i» di)
Thus if ¢! is known for all [ < j, then c%/ can be determined. In particular, we
find that ¢ = Q%I (d;), where Q% is a polynomial with non-negative coefficients.
This establishes uniqueness.
It remains to show that the series (3) for y,, is valid on a neighborhood of the
origin. Suppose that in equations (2) A; and B are replaced with A; and B, and it
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is known that an analytic solution Y exists on a neighborhood of the origin. Also
assume that the series for /L- and B majorize those of A; and B. The above formula
(3) gives gm = 3, ; Enfat!, where &) = Qp/ (d;) and Q%J is the same polynomial
as above. As Q,; has non-negative coefficients, |c%J| < ¢2/. So the series for Y
majorizes the series for Y, and thus the series for Y is valid on some neighborhood
of the origin. Hence it suffices to find such an A; and B.

Suppose Y, aax® converges on the hypercube {z : max{|z;|} < R}. Then let
0<r<R,and = (r,---,7). Then }__ anr'®l converges, so there is a constant
M such that |aar|0‘|| < M for all @. Thus |as| < TMQ < iﬁfﬂ“ As the n-dimensional
geometric series expansion is given by '

M (@ 4P |a]!
_—— — M -—_—— — M xa
R R T >,

we have found a geometric series which majorizes ), aqr!®l. More specifically, if
M > 0 is large and r > 0 is small, then the series for A; and B are both majorized
by the series for
Mr
r—(@1+- o) =+ yn)
So consider the Cauchy problem

Mr
(5) OYm = ( Or;y; +1)
T T )Y ;; ’
Ym (2,0) =0
First we find a solution wug in the simple case
Mr
u(s,0) =

where u is a scalar unknown in the two variables s and ¢. This can be rewritten as
(r—s— Nu)du— MrN(n—1)0,u = Mr
Using elementary PDE theory (see [5]), we obtain

r—s—+/(r—s)2—2MrNnt
Mn
In the more general case of (5), let ym (z,t) = u(r1+ - -+ zp_1,t), 1 <m < N.
Then the system (5) is satisfied.
Now consider the case of (1) where the A; and B may depend on ¢ and & may
be nonzero. If U(x,t) = Y(x,t) — ®(z), then Y satisfies (1) if and only if U satisfies
the system

u(s, t) =

n—1
U = A, t.U)0;,U + B(a. 1.U)
i=1
U(z,0)=0

So we can assume ¢ = 0. Next, let

Viz,t) = (uo(z,t),U(x,t)) = (uo(x,t),ur(x, t), - ,un(z,t))
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where Oyug(x,t) = 1 and wug(z,0) = 0. Hence ug = t, so in equations (1) we can
replace t by ug in A; and B by adding the extra equation and the extra initial
condition. Thus the proof of existence in the general case (1) is complete. As
analytic functions are completely determined by the values of their derivatives at a
single point, an analytic solution to (1) is necessarily unique. O

We are now prepared to prove the classical result.

Corollary 2.3. (Cauchy-Kowalevski Theorem) Suppose F, o, -+, dr—1 are an-
alytic near the origin, and S is an analytic hypersurface containing the origin.
Assume that the equation F = 0 can be solved for Ofu to obtain OF as a function
G of the remaining variables. Then there is a neighborhood of the origin on which
the Cauchy problem

(6) 0= F(z, (0%)al<k)
8£u:¢j on S,0<j <k
has a unique analytic solution.

Proof. We can make an analytic change of coordinates so that some neighborhood
of the origin in S is mapped to the hyperplane ¢ = 0. So we can assume the system
(6) is of the form

(7) Ofu = G(x,t, (050 w) ) +j<h.j<k)
Hu(x,0) = ¢j(x),0<j <k

Now consider the system of equations and initial conditions

(8) OtYaj = Ya(j+1), o] + 7 <k
(9) aty(lj = 8xiy(0¢*1i)(j+1)’ |a| +J= ka] <k
oG oG
(10) Oeyor = N + Z . el
X aj
lal+i<k
(11) yaj(xao):a?¢j($)aj<k
(12) Yok (7,0) = G(,0, (9505 ())|a|+i<k,j<k)

IfY = (y1, -, yx), then by Theorem 2.2 the system (8)-(12) has a unique analytic
solution near zero. Hence it suffices to show that u = ygo satisfies (7). Now,
equation (8) implies
(13) Ya(i+1) = OtYay, JHI<E
Combining this with equation (9) gives
atyaj - atamiy(afli)j
and so
Yaj (‘Ta t) = amiy(afli)j (‘Ta t) + Caj (‘T)
for some c,;. However, by equation (11),
Yaj (‘Ta 0) = 3?@- (‘T) = 8xi8371i¢j($) = 8miy(a71i)j(xa 0)
and co; = 0. Hence

(14) Yoj = amiy((lfli)ja |OZ| +] = ka] <k
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Now, by (10), (13), and (14),

e 9G Oyo; O _
Qwoe =g+ D, G = (Gt (vay))
ool 45 <k,j<k

Thus
Yok (2, 1) = G(2,t, (yaj(2, 1)) + cor(x)
for some co. However, equations (11), (12) imply
Yok (2,0) = G(,0, (97 (¢5(2))) = G(x,0, (Ya;(x,0)))

so that cgr = 0 and

(15) Yor = G(2,t, (Yag)jal+j<h,j<k)

Next we show by induction on k — j — || that

Oaj = O, Y(a—1,)j, ¢ # 0
The base case k = j + |« is shown in (14). By (8) and (13),

3tyaj = Ya(j+1) = amiy(afli)(qul) = 8tamiy(a71i)j
and so
Yaj (‘Ta t) = amiy(afli)j (‘Ta t) + Caj (‘T)
Equation (11) gives
aaj(xa 0) = 83¢J(IE> = 8xi8371i¢j($) = 8miy(a71i)j(xa 0)

so that c,; = 0 and the induction is complete.
Finally, (13) and (14) give

(16) Yaj = 050 yoo
By (11), (15), and (16), u = yoo is a solution to (7). O

Note that in the above discussion, it was assumed that all functions were real-
valued. By considering C"-valued functions as R2V-valued functions, we need not
assume that the functions are real-valued.

3. LEwWY’S COUNTEREXAMPLE

One might naturally assume that the Cauchy-Kowalevski theorem would extend
to smooth partial differential equations. In 1957, Hans Lewy [9] showed that this
was not the case. The following exposition derives from and expands upon on
Lewy’s paper and the discussion of the result in [4], [5], and [6].

Let L be the differential operator defined on R* = {(z,y,t)} by

(17) L =0, +1i0y — 2i(z + iy) 0,

Lemma 3.1. Let f : R — R be continuous. If there exists a C* function u(z,y,t)
such that Lu = f(t 4+ 2yox — 2z0y) on a neighborhood U of (o, yo,to), then f is
analytic at t = tg.
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Proof. First assume that o = yo = 0. Let R > 0 be such that {(z,y,t) € R? :
22+ 9y < R,|t—ty| < R} CU. Let z = o+ iy = re?’, and let s = r2. Define
V(t,r) for 0 <r < R and |t — to| < R by the contour integral

27
V= u(z,y, t)dz = ir/ u(rcos @, rsin b, t)e?do
0

|z|=r

Then by Green’s Theorem,

V= z// (Ozu + i0yu)(z, y, t)dzdy
|z|<r

T 27
= z/ / (Ozu + i0yu)(pcos b, psin 0, t) pdbdp
o Jo
Thus

27
0,V = z/ (Ozu + i0yu)(rcos 0, rsind, t)rdf
0

= / (Ozu + i0yu)(x, y, t)r%
|z|=r

Since Lu = f, we have

1
o,V = Z(?TV
. dz
_/|z|_r (8mu+18yu)(x,y,t)£
. dz
=i ouayndst [ 0F
|z|=r |z|=r 2z

= i0,V + mif(t)

Let F(t) = [, f(a)da, and U(t,s) = V(t,s) + 7F(t). Then Q,U + id.U = 0, i.e.
U satisfies the Cauchy Riemann equations. Thus U is a holomorphic function of
w = t +is in the region 0 < s < R2, |t — to| < R, and U is continuous up to
the line s = 0. Since V' = 0 when s = 0, U(0,t) = wF(t) is real-valued. By the
reflection principle, U(t, —s) := U(t, s) defines an analytic continuation of U to a
neighborhood of the origin. Hence U(t,0) = nF(t) is analytic near ¢, and f = F’
is as well. This completes the argument in the case o9 = yo = 0.

Now suppose zg and yg are arbitrary, and u satisfies the hypotheses of the lemma.
In particular,

Lu(z,y,t) = f(t 4 2yox — 220Yy)
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near (o, Yo, to), and u € C* near (g, yo, to). Define i(x,y,t) = u(z +x0,y +yo,t —
2yox + 2xoy). Then @ € C* near (0,0, ty), and by the chain rule

Li(z,y,t) = L(u(z + xo,y + Yo, t — 2yox + 2x0Y))

= (Opu)(x + x0, Y + Yo, t — 2yox + 2xoy)—
2y0(Ou)(x + o, ¥ + Yo, t — 2yox + 220Yy)+
i(Oyu)(z + 0,y + Yo, t — 2y07 + 220y)+
2ix0(Opu)(x + xo, ¥ + Yo, t — 2yox + 2xoy)+
2i(x +iy) (Oru)(x 4+ 2o,y + Yo, t — 2yox + 2x0Y)

= (Ozu)(x + T0, Y + Yo, t — 2yoT + 2z0y)+
(Oyu)(z + xo, y + yo,t — 2yox + 2x0y)+
2i((x + o) +i(y + v0)) (Oru)( + o,y + Yo, t — 2yox + 220Y)

= f((t — 2yox + 2z0Y) + 2yoz — 2T0Y)

= f(t)

near (0,0,tg). Thus by the earlier argument, f(¢) is analytic at ¢o. O

Put another way, if f is not analytic at t = ¢g, there is no C* function u(x,y,t)
for which Lu = f on any neighborhood of (xg, yo, to)—even if f is smooth!

Next we prove the existence of smooth, periodic functions on R which are
nowhere analytic. The result can be shown in many ways. See [6] and [10] for
examples arising from trigonometric series. [3] uses a Baire category argument to
show that “most” smooth functions are nowhere analytic (in the same sense that
“most” continuous functions are nowhere differentiable). The exposition given here
is based on [§].

Lemma 3.2. There exists periodic ¥ € C*°(R) which is not analytic at any point.

0 ifx <0 . .
Proof. Let a(z) = . . Then it is well known that « is smooth. Let
e~Ve ifx >0
B(z) = a(r)a(l —z). Finally, let v;(x) = %5(2%: —[272]) and y(z) = Z(;il v; ().
Each «y; is smooth as all the derivatives of 3 vanish at 0 and 1. Moreover, v is
periodic. + is also smooth as Z;io ”yJ(-l)(x) converges uniformly for each i. Now
suppose that v is analytic at some point x. Since analyticity at a point implies
analyticity on a neighborhood of that point, v is analytic at some dyadic rational
r = p/2% with p odd. ~;(z) is analytic at 7 for 1 < j < k — 1, so J(z) =
> ok vj(x) is analytic at 7. However, 4@ (r) = 0 for alli > 0, and #(x) > 0 on any
small punctured neighborhood of x. This is a contradiction. Hence v is nowhere
analytic. O

We will now construct a function f for which Lu = f has no solutions at any
point.

Lemma 3.3. Let ¢ be as above, and suppose Q; = (xj,y;,t;) is an enumeration
of Q3. If pj = |z;| + |y;], let ¢; = 279ePi. Then for any € € I°°(R), the series
Z;’;l €;c;V(t — 2y;x + 2x,y) =: Fe(z,y,t) and all of its formal derivatives converge
uniformly. In particular, F. € C*(R3).
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Proof. ¢ is periodic, so that My := sup,cg [¢*)(¢)] is finite for all k. Thus for any
multi-index o = (1, g, a3),
D €je0(t — 295 + 259)| < [lelle; Mia 2!
— 27910 ]| Ml e

laf
< 2*J+|a|H6HM|a| (|a|>

e

(18)

since p'J.O‘le*PJ‘ < %'al for p; > 0, by elementary calculus. So we have shown that
|D%€jcip(t — 2y;jo + 2x5y)| < Ko277 for some K, € R. Hence the series for D*F,
converges uniformly, so that F, € C*°(R3). O

Next we provide a preliminary result for use in a Baire Category argument.

Lemma 3.4. Let Q; be as in the above lemma. For j,n € N, define T;, = {x €
R3 : |x — Q;| < n~Y/2}. Let Ej,, C 1™ be the collection of € for which a solution
ue(w,y,t) € CH(Yj ) of Luc = Fe(x,y,2) exists, with

(1) u(Qy) =0

(%) |D*ue(P)| <mn for|a| <1, PeY;,

(i) |D%uc(P) — DPu(Q) < nlP— QI for ol =1, P,Q € 1y

Then each Ej , is a closed, nowhere dense subset of [°°.

Proof. First I will show that Ej , is closed. Suppose € € [*® and €1,€2,--- € Fj,
with limy_, ||€ — €x|| = 0. Taking o = 0 in equation (18), |F. — F,, | = |Fe_¢, | <
My|le — €x]|. So F., — F. Let u, be a solution of Lu., = F,,(z,y,z) satisfying
the three properties given in the statement of the lemma. Note that the u., are
equi-bounded and equi-continuous in Y;,. By the Arzela-Ascoli Theorem, there
exists a subsequence of the uc, which converge uniformly to a function u (and
the derivatives converge uniformly). w must satisfy (i)-(iii) and also Lu = F¢, so
€ € B . Thus Ej,, is closed.

Let ¢; as in the statement of Lemma 3.3, and define 6 = (0,---,0,1/¢;,0,---,)
be the sequence which is zero except in the jth position. By definition, F5 =
U(t — 2yow + 2z0Y).

Now suppose € is an interior point of E; ,. Then there exists # > 0 such that
€ =¢e+0d € Ej . Let u,u’ be solutions of Lu = F, and Lu' = F/, respectively, and
satisfying properties (i)-(iii). If v = (v’ — u)/6, then v’ € C! and Lu" = Fs = 1
near ();. This contradicts Lemma 3.1, as v is nowhere analytic. O

We are now ready to prove the main result.

Theorem 3.5. Let L be as above as in equation (17). Then there exists F €
C*(R3) such that Lu = F has no solution u on any open set T C R3 with u €
CY(Y) and d,u, dyu, Oyu Holder continuous on Y.

Proof. Assume for the sake of contradiction that the theorem is false. Then for all
€ € [*°, there exists an open set Y. and a solution u of Lu = F, on T, with Holder
continuous first derivatives. For some j, @; € T.. So Y;, C T for n large. Also,
u will satisfy properties (ii) and (iii) of Lemma 3.4 if n is large enough. Replacing u
by u—u(Q;), we can also assume that u satisfies property (i) as well. Thus € € E; ,,,
and [*° = U, ,F; ,. Combining this with Lemma 3.4, we obtain a contradiction to
the Baire Category Theorem. O
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4. PoOISSON-BRACKET CONDITION

The development given in this section is based on [14] and [7].

4.1. Definitions and Background.

e For convenience, let \*(¢) = (1 + |¢]?)%/2, with € € R and s € R.

e We will often make the association T™*(R™) = R?". The variables z and &
will typically represent points in R™ and T, (R™), respectively. Moreover, if
f:R?" — Ror C, then by 9, f and d¢f we mean the x and ¢ gradients,
(O1f, - ,0nf) and (Ony1f, -, O2nf), respectively. If @ and S are multi-
indices, then 0 f and 8? f denote derivatives of f in the z and & variables,
respectively.

e Suppose m € R and a(z, &) € C°(R™ x R™) (in this paper, C*° functions
are complex-valued). Then a is said to be a symbol of order m, written
a € 8™, if each function A# l*magag a is bounded on R™ x R™ for all multi-
indices a, 3 € Z'. Note that | < m implies St c S™. Thus we define
57 =nN,, 8™ and S* = U,,S™. Note that fora € S™,bc S', a,3 € 77,
we have 838? a € S™ 18l and ab € S™*!. Occaisionally we will formally
substitute the differential operator D = —i(9y,--- ,0,) for the variable &
in the expression a(z, ). When a is of the form a(z,£) =3, <, da(@)€”
formally replacing £ by D makes sense. Lemma 4.4 makes the general
definition precise.

e Let m > 0. Then we say a € A™, or a is an amplitude of order m, if
a € C*(R™) and the functions (1 + |z|2)~™/20%a(z) are bounded on R"
for all @ € Z%. On the space A™, we define the norms

llalllr = maxja| <xll (1 + [2[*)~"/20%a| =

The following six lemmas are standard results about symbols and oscillatory inte-
grals. Their proofs appear in the appendix.

Lemma 4.1. Ifa € S° and F € C*°(C), then F(a) € S°.

Lemma 4.2. Let aj € S™J for j € Zy. Then there exists a symbol a € S™ such
that for any k € 7,

k
a — Z a; € Smik
Jj=1

Moreover, a is unique modulo S™°°. a can be chosen so that supp a C U; supp a;.

e If @ is as in the above lemma, then we write a ~ Zj aj, and say that the
{a;} are asymptotic to a.

Lemma 4.3. Let q be a nondegenerate real quadratic form on R™, a € A™, and

¢ € S such that $(0) = 1. Then the limit

(19) lim [ €@ a(z)p(ex)dx

e—0

exists and is independent of ¢. If in addition a € L', then the limit is equal
to [e®@a(zx)dx. Thus we denote the limit (19) as [ €@ a(x)dz, regardless of
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whether a € L*. [ e a(z)dz is said to be an oscillatory integral. Also,

| [ aa)dal < Coumllallminss
where Cy . depends only on q and m.

Lemma 4.4. Ifa € S and ¢ € S, then

a(z, D)é(z) == (2m) " / &9 o, €)p(€)de

defines a function a(x, D)p € S. Moreover, there exist constants N € Zy and Cy,
for k € Z depending on a such that |a(z, D)¢|r < Ckld|k+N-

o If a € S, then we say that the pseudodifferential operator of symbol a is
the operator a(z, D) : 8" — S’ defined by

(20) (a(z, D)u, ¢) = (u, a”(x, D)§)

forue S8, ¢e8. If ac S, then a(z, D) is said to have order m. We
define ¥ = {a(z,D) : a € S™}, ¥ = Upyp™, and ¥~ = N, 0.
Elements of U~ are called smoothing operators.

e Note that pseudo-differential operators generalize linear partial differential
operators. In particular, if (D) is simply a linear partial differential oper-
ator, a(D) = > aaD®, then equation (20) is a consequence of the Fourier
inversion formula.

Lemma 4.5. Oscillatory integrals are very similar to usual integrals. In particular,
they satisfy the following properties:

(i) Change of Variables: If A € GL,(R), then
/eiq(Ay)a(Ayﬂ det A|ldy = /eiq(m)a(x)dx
(ii) Integration by Parts: Ifa € A™, be A', and o € Z", then
/ 1) q(2)9%b(z)dx = / b(z)(—0)* (1@ a(z))dx

(i4i) Differentiation Under [: If a € A™(R"™ x RP), then [ e ®a(z,y)dr €
A™(RP). Moreover, for all o € Z7,

8;‘/elq(m)a(x,y)dx: /elq(m)(?;‘a(x,y)dx

(i) Fubini’s Theorem: If a € A™(R™ x RP) as in (iii) and if r is a nonde-
generate real quadratic form on RP, then

/ ¢ir(®)( / ¢4 g, y)d)dy — / (@) o (g y)dady
Lemma 4.6. Let a € S™ and b € S'. The oscillatory integrals
a*(x,8) = (2m) " / e WM a(z —y, & —n)dydy

a#tb(z, ) = (2m) " / e~ a(z, € — )b(x — y, €)dydy
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define symbols a* € S™ and a#b € S™F with the following asymptotic expansions:

* - 1 (6% o=
a* ~ Z aag DZa

|a|=0

b St 0ZaDZb

aftb~ Y e alz
|a|=0
e Note that when a(€),b(§) are polynomials in ¢ (alternatively, a(D), b(D)
are linear partial differential operator), then ax = @ and a#b = ab

Lemma 4.7. (Properties of * and #)
(9) (a*)"
(it) af#fl =1#a=a
(iii) aft(bfte) = (attb)de
(iv) (a#b)* = b*#a*
Also, if a,b € S and ¢ and iy € S, then

(v) (a*(x, D)¢,¥) = (¢, a(z, D))
(vi) (a#b(x, D)¢,¥) = (a(z, D)b(z, D)o, )

Consider a linear partial ifferential operator a(z, D) = >, <., @a(x) D with aq
smooth and complex-valued.

e Then a(z, D) is said to be locally solvable at xq if there exists a neighborhood
T of 2 such that a(z, D)u = f has a solution u € D'(T) for any f € C§°(Y)

® p(x,8) = X |0)=m Ga(x)€™ € C(T™(R™)) is said to be the principal symbol
of a(x, D)

e The Poisson bracket of two C' complex-valued functions on T*R" is given
by

{p, a} (@, &) = (Oep(x,€), 0xq(w, §)) — (Oup(x,§), Ocq(z, §))

In the case that p and ¢ are the principal symbols of linear partial differen-
tial operators a(z, D) and b(x, D), respectively, {p, ¢}(x, ) is the principal
symbol (modulo a factor of ¢) of the commutator

[a(z, D), b(z, D)] = (a#tb — b#a)(x, D) = (ab — ba)(z, D)

(see Lemma 4.13)

e a(x, D) is said to be of principal type at x if the &-gradient of its principal
symbol at x¢ vanishes only for £ = 0, that is, Jzp(xo, ) = 0 if and only if
£E=0.

e a(x, D) is said to be principally normal at zq if there exists a function
g € C®(T*R™ \ {0}) homogeneous of degree m — 1 in & such that the
principal symbol p satisfies

{p; p}(2, &) = 2iRe (q(z, E)p(x, €))
for £ € R™\ {0} and x near xg
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4.2. Solvability Theorem.

Lemma 4.8. (Garding’s Inequality) Let a € S*™ and assume that for some Co
and € > 0 and all x, & we have Re a(xz,&) + CoA?™ =1 > eA2™. Then for any N >0
there exists a constant C'y such that for all p € S

2Re (a(z, D)¢, ¢) = €ll¢ll7, — Cnlleln—n

Proof. Let b = A™™#a# ™™ € S° Then since b = A"2™a modulo S~!, the
hypotheses of the lemma imply that

Re b+ (CO + Cl))\il >e€

for some C; € R, so that b satisfies the hypotheses of the lemma with m = 0. If
the theorem is true in that case, then for ¢ € S,

2Re (a(z, D)¢, ¢) = 2Re (b(x, D)A™ (D)$, \™(D)¢)
> el A™(D)ellg — Cn IA™ (D)g||2 n
= e|lglls — Onllgllm—n

and we are finished.

Hence it suffices to assume that m = 0, so that a € S° with Re a + CoA™! > .
Choose F € C*°(C) such that F(z) = ((¢/2) + z)'/? for z € RT. Since 2(Re a +
CoA™t —€) € S° is nonnegative, Lemma 4.1 implies that b = (2Re a + 2CoA~! —
(3/2)€)'/2 = F(2(Re a + CoA~! —€)) € S°. Modulo S~', we have b*#b = 2Re a —
(3/2)e = a + a* — (3/2)e. In particular, for some ¢ € S™1, we have

a+a* =b"#b+ ge—kc
Soif ¢ €S,
2Re (a(z, D)9, ¢) = (a(x, D)¢, ¢) + (¢, a(z, D)¢)
=((a+a")(z,D)o,¢)
3
3
> [|b(x, D)g|[§ + §6||¢||3 = lle(z, D)dll1 2l -1/2
> el I3 + (G611~ Crr2llol% )
for some C; /2 € R because ¢ € S~!. So it suffices to prove
Cupalll2y 2 < 519115 + Onllgl®

where Cy := %(2071/2)21\7 This can be seen as follows. When C 227 (§) > €/2,
then A(§) < 2C/2/e, so that

Cr2A () = CrppAVHOAN ()
< C1y2(2C1)2/€)* N TIATHN(E)
= CnAT?N(9)
<e/24+CnA72N

The desired estimate is obtained after multiplication by |¢|? and integration. [
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Lemma 4.9. Let Vs = {x € R" : |z| < 0}. Then for all § > 0, m € Z,, we have

[@llm < 20[[¢llm+1

whenever ¢ € C§°(Ys). In addition, if Q and R are differential operators of orders
m and 2m, respectively, then there exists C € R such that for all ¢ € C3°(Ts), we
have
1Qiz;)llo < C6[|llm
|(izj, Rp)| < Cd|8]I7,
Proof. Recall that [[¢[2,, = ¢l + 3=, [|D;¢ll7. Thus the first inequality follows

immediately by induction once the case m = 0 is established. Since || D1¢|lo < |1,
we have

615 = (6. 9)

(D1(iz169), ¢) — (iz1(D19), )
(iz1¢, D1¢) + (D19, iz19)
l[iz1¢lol| D1¢llo
dll¢llollllx

For the second inequality, write Q(iz;¢) = [Q, iz;]¢piz;(Q¢) so that

1Qiz;9)llo < @, iz5]¢llo
< C[ollm—1 + C6||¢[lm

<2
<2

because [Q, iz;] has order m — 1, and the result follows from the first inequality.
For the third inequality, write R = ), Q@) for some mth order operators Qx
and Q.. By the second inequality, we have

|(iz;6, Ro)| = | Y _(Qr(iz;6), Qko)|
k

< D 1Qk(iz;9)lloll Qkllo
k

Lemma 4.10. Let a(x, D) be a linear differential operator of order m. Then

(i) If a(z, D) is principal type at 0, there exists a §o > 0 and a Cy such that
for all § < &g and ¢ € C§°(Ys),

16171 < Cod(lla(a, D)gII + lla* (x, D)IIF + ll6l7-1)

(i) If a(x, D) is principally normal at 0, there exists a § > 0 and a C € R
such that for all p € C3°(Ys),

la(z, D)§ < C(lla* (x, D)[I§ + l|#]17-1)

(ii1) If a(z, D) is both principally normal and of principal type at 0, there
exists a 6 > 0 such that for all ¢ € C§°(Ys5),

[6llm—1 < [la”(x, D)¢llo
Proof.
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(i) Let A = a(x,D), Q; = [A,ixj] = (0¢a)(z,D), B = Z?:l Q;Q; =
b(z,D). By Lemma 4.6, b = 37, [0¢;p|* modulo S*™~%. As A is of
principal type, homogeneity gives > 7_, |0¢,p(x, €)[* > 2€[¢]*™ 2 for some
€ >0 and all x € Tas5,. Hence the symbol b+ eA2" 24 (1 — 1)) satisfies the
hypothesis of Garding’s inequality, provided ¢ € C§°(Yas,) and ¢ < 1. If
also ) = 11in Y5, and 0 < dg is such that (1 —)¢ = 0 for all ¢ € C§°(Y5),
then (b(z, D) + eA*™=2(D)(1 —1))¢ = B¢. Thus we have

2> Q;df = 2Re(bg, ¢) > €l|¢||Z,_, — Cll¢7, o

j=1
for some C € R. However, for each operator (); we have
18115 = (Aliz;¢) — i;(A¢), Q;¢)
= (iz;$, A"Q;0) — (ix;(Ad), Q;9)
— (i, [A%, Q)]0) + (Q;(iz;0), A*9) — (iz;(A), Q;0)
If ¢ € C§°, Lemma 4.9 gives that
1Qj015 < Ci18l18llm—1 + Cj.20l19lm—1]1A"8llo + C;36(| Adllol| ¢l m—1
< C56(1 4913 + 141§ + I gll7—1)
We also have ||¢||2,_5 < 462||¢||2,_; by Lemma 4.9. Hence

2 & C
gl < - Z 1Q;0l15 + ;II¢II?§%2
j=1

< Cod(| 4] + 14715 + llél17-1)

as desired.

(ii) Modify the function ¢ near & = 0 so that ¢ € C* everywhere while
{P,p} = 2iRe (g@p) holds only for |{] > 1 and = in some Y35. Then for
¢ € C§°(Ta5) we define

b=¢aecSm
c=¢q+i{a, ¢} € S™!
7= b*#b — b#b* — bt — c#b* € 877
Indeed, we see that 7 € S$*”? via Lemma 4.6. More precisely, modulo
S52m=2 we have b* = b — ib, ¢y, so that
7= (b—ibrye) )b —i(be, by) — b(b — b, ¢y) + i(be, by) — be — cb
= —{b,b} — 2Re (b)
= —i({b,b} — 2iRe (b))
= —i¢*({a, a} — 2iRe (qa))
= —i¢’({p, p} — 2iRe (7, p))

which is zero when |£| > 1. Thus, if ¢ is chosen such that ¢» = 1 in Ty,
then B¢ = A¢p and B*¢ = A*¢ for all ¢ € C§°(Y5) because A has the local
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property. Hence we have
| 4613 = (B*Bo, )
= (R, ¢) + (BB ¢, ¢) + (BQ ¢, ¢) + (QB" ¢, )
= (R$,¢) + [|A"¢|§ + 2Re (Q" ¢, A"¢)
<R lli—mll@llm—1 + 2| A*II5 + Q%215
< 2] 4|5 + Cllollzs

since R € U?™~2 and Q* € U™~ 1,

(iii) Finally, if both hypotheses are valid, (i) and (ii) imply that for small
d > 0 and for ¢ € C§°(Ys),
6171 < Cré(lla*(z, D)IIE + lI8ll7-1)
for some C;. If § < 1/2C, then

Il -1 = 21611 = 11172
< 2C16([la* (2, D) [I§ + l1¢l7—1) — 1 6l7
< |la*(z, D)oll5
O

Theorem 4.11. Let a(x, D) be a principally normal operator of order m and of
principal type at xo. Then there exists a neighborhood T of xg such that the equation
a(z,D)u = f has a solution u € L*(Y) for any f € H'=™.

Proof. Using translation we can assume without loss of generality that zo = 0, and
take 6 > 0 as in Lemma 4.10(iii). Then a*(z, D) is injective on C§°(Y5), and so its
inverse (A*)~! is well defined on
E={y € C5°(Ys): 3¢ € C5°(Ys) with ¢ = a*(x, D)v}
For each f € H'™™ define the semilinear form Uy (y)) = (f, (A*)"'¢) on E. Using
Lemma 4.10.iii on ¢ = (A*) "1, we have
U@ = I(f, )

< flh=ml[@llm—1

< [Iflli-mlla”(z, D)o

= [flli=mll¥llo
Hence U is continuous in the L?-norm. By the Hahn-Banach theorem, U extends
continuously to L?(Ys), and by the Riesz Representation Theorem there exists

u € L?(Ys) such that (u, ¢) = U(¢) for ¢ € E. In particular, (u, a*(z, D)¢) = (f, ¢)
for all ¢ € C§°(Ys), so that a(x, D)u = f in Ts. O

4.3. Converse to Solvability Theorem. Let T C R", and consider the differen-
tial operator

a(z, D) = Z aq(x) D™

la]<m
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of order m with coefficients in C*°(Y'), and let p be its principal symbol (note that
here D is a differential operator on z, not £). Also, let p be the corresponding
symbol with conjugate coefficients a,. That is,

p(@,§) = aa(2)E”

|a]=m
pa,§) = Ga(2)E”
|a]=m
We also define
(1) Com-a(@,€) = 3 (0, p(@, €)0u,p(w, ) = Or,p(w, )0, B(w, )

Jj=1
= {p,p}
Then Cy,,—1 is a polynomial in £ of degree 2m — 1 with real coeflicients, and is the

principal symbol of the commutator [a, a).

Theorem 4.12. (Due to Hormander, [7]) Suppose a(xz, D)u = f has a solution
u € D'(Y) for every f € C§°(Y). If x € T,§ € R™ are such that p(x,&) = 0, then
Com—1(x,£) =0 also.

The proof will require some preliminary results.

Lemma 4.13. Let
C(z,D) = a(z, D)a(x, D) — a(x, D)a(x, D) = [a,
Then C(x, D) is of order at most 2m —1 and Cam—1(x, D) is the sum of the terms
in C(x, D) of order 2m — 1. That is,
C(z,D) = Com—1(x, D) + terms of order <2m —1

Proof. Recall Leibniz’s rule, Proposition A.5. Namely, given u € D', b € C*°, and
a(D) a polynomial in the variables &1, - - -, &,, with &; replaced by D, then

a(D)(bu) =Y (D*b)((9¢ a)(D)u) /!

[e3

Thus we obtain

a(z, D)a ZZ DYV (z)/a))a'™ (z, D)DP

and a similar formula holds for a(z, D)a(x, D). Thus

C(.I, 5) = Z (8?&($, {)Daa(x, 5) - 8?0,($, {)Da&(x, 5))/04'
a#0
where D acts on . Here the terms where o = 0 cancel and thus can be omitted
from the sum. Moreover, the a = 0 terms are the only terms of order 2m. Thus
C(z,€) is of order at most 2m — 1 and the terms of order 2m — 1 are given by
C2m71- g

Lemma 4.14. Assume the hypotheses of Theorem 4.12, and let v CC Y be an
open set. Then there exist constants C,k,N such that

(22) |/fvda:| <C Y sup D] Y sup|Dﬁ tav]

o<k *€Y IBI<N ©
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when f,v € C§°(v).

Proof. We consider [ fvdz as a bilinear form for f € C§°(0) and v € C§°(v). Here
C§° is the Frechet space with the topology from the semi-norms sup,,, |D f(z)]
and C§°(v) with the (metrizable) topology from the semi-norms sup,,, |D” tav|.
This bilinear form is clearly continuous in f for fixed v. When f is fixed, we can
by hypothesis take u € D'(T) such that P(z, D)u = f. Thus

/ foda = / (au)(v) = / u(tav)

so that the form is continuous in v for fixed f. A bilinear form on a product of
a Frechet space and a metrizable space is continuous if provided it is seperately
continuous, so we are finished. (I

Lemma 4.15. Given (a1, -, an), (f1, -+, fn) € C", where some a; # 0, there
exists a symmetric matric A = (o) with positive definite imaginary part satisfying

(23) Aa:Zajkaj:fk,lngn
j=1
if and only if

(24) Im kafbk >0

k=1

Proof. First, we show that condition (23) implies (24). If b; = Re a; and ¢; =Im a;
then the symmetry of aj; and condition (23) give that

n n n n
(f, CL) = kafbk = Z Qgja;jar = Z akjbjbk + Z QU CiCk
k=1

7,k=1 7,k=1 7,k=1

The real vectors (bi,---,b,) and (c1,---,¢,) do not both vanish and (Im ag;) is
positive definite, thus (24) is established.
Second, we show show that (24) implies (23). There are two cases to consider.

(1) Assume ca € R™ for some constant ¢ € C. Replacing a and f with ca and
cf, respectively, we may assume that a € R". Writing o = 8 + iy and
f =g+ ih, then (23) can be rewritten as

pa=g,va=h

Certainly we can find a real symmetric matrix $ with Sa = g. To see this,
we will use a simple induction on n.

e Base case: Let n = 1. Then since a is nonzero, a; is nonzero, and so
if we take 8 = g1/a1 we are finished.

e Induction step: Assume that the result holds for all n < k, and now
take n = k + 1. Since a is nonzero, one of a1, - ,a, is nonzero. If
ai is the only nonzero component of a, then the result is trivial. So
assume that one of asg, - - -, a, is nonzero. Thus we must find a sym-
metric matrix § = (f3;;) such that the following system of equations is
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satisfied:
Briar + Br2az + - - + Pinan = g1
Br2a1 + Bazaz + - - - + Ponan = g2
6171@1 + 6271@2 + -+ 61171@71 = Jdn
Clearly we can choose 11, - -, f1n so that the first equation is satis-

fied. Thus we are reduced to solving the system

Bazaa + -+ Bontn = g2 — Pr2an
Bazaz + - - + Banan = g3 — Bizar

6271@2 + -+ 61171@71 =gn — 6171@1

where one of as, - - ,a, is nonzero, and (9, -, $1, have been fixed
(8 is symmetric). This is the problem in the case n = k, and the
induction is complete.

Next, let hy = h—a<22 Then (hy,a) = (h,a)/2 > 0. Thus if we define

2(a,a)
by vz = %x + gz’]iﬁghl, ~ will be positive definite. From the definition
of h1 we see that ya = h.
(2) Assume ca ¢ R™ for any ¢ € C. It suffices to show that

Im (f,a)
)
(a,a)
satisfies (23) for some real symmetric 5. So we must have

(f; )
(a,a)

I+3

(25) Ba = f — ailm = fi

with
(26) Im (f1,a) =0

So it remains to find a 8. To prove that such a § exists, notice that {z €
C™ : 3 symmetric v such that z = ya} is a linear subspace with respect to
real scalars. The equation of a plane containing this set can be written as
Im (z,9) = 0 for some g € C™. Let 8 be defined by Sz = £(x,£). Then
is real and symmetric for every £ € R", and fa = £(a,§). Thus

Im (5) g)(&, g) =0

By assumption, a is not proportional to any real vector. Thus g must be

a real multiple of a, and Im (z,g) = 0 follows from the requirement that

Im (z,a) = 0. Thus by (26) there is a real symmetric matrix § satisfying
(25).

O

If we can show that when the conclusion of Theorem 4.12 is not satisfied, the

conclusion of Lemma 4.14 is not valid for any C, k, n, we will have proved Theorem
4.12. Assume without loss of generality that 0 € T and the conclusion of Theorem
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4.12 is not valid when z = 0. Since Co,,-1(0,&) is real valued and odd for £ € R,
we can find a £ such that

(27) § e R"/{0}, p(0,£) =0, Cam-1(0,£) <0

Lemma 4.16. Assume condition (27), and let ¢ € Zt. Then there exists w €
C>(7T), depending on q, such that

(28) p(z, grad w) = O(|z]?), asx — 0
1 n
(29) w(z) = (2.6) + 5 > ajrzjzg+ O(|zf*), asx — 0
k=1

where the matriz oy, is symmetric and has a positive definite imaginary part.

Proof. (28) holds when ¢ = 1 if w(z) = (z,£) since w(x) then satisfies (29),
grad w(z) = (&1, -+ ,&n), and p(0,€) = 0 so that (28) is satisfied as well. In
order for (28) to hold when g = 2, we have to choose «a;j such that the first order
derivatives of p(z, grad w) are zero at 0, i.e.

(30) 02,p(0,€) + Y 0,p(0,)ajx =0,1<j<n
k=1

By Lemma 4.15, equation (21), and equation (27), there exists a symmetric matrix
o with positive definite imaginary part which satisfies (30). Thus we can prove
(28) for an arbitrary ¢ as follows. First, assume the coefficients of p are analytic,
as (28) and (29) do not change if the coefficients of p are replaced by their Taylor
expansions of order ¢. Since Ca,,—1 < 0 we have J¢;p(0,£) # 0 for some j, say
j = n. By Theorem 1.8.2 of [7] and the ensuing discussion we can thus find a
solution W of p(z,grad W) = 0 near 0, so that grad W(0) = £ and W(x) =
(, &) + %Z;kzl ajkxjxy when x, = 0. Since

(31) Oz, p+ Y 0e,p(0,£)0,0,, W(0) =0,1< j <n
k=1

and 0, 0., W(0) = aj if j, k < n, (30) and (31) with j < n give that 0,,0,, W(0) =
ajp if j < n. Applying the same formulas with j = n gives that 8§HW(O) = Qinn-
Hence W satisfies (29). If ¢ € C3° is 1 in a neighborhood of the origin and
supported in the set where W is defined, then w = ¢W satisfies the requirements
of the lemma. O

Now we are prepared to prove the main theorem.

Proof. (of Theorem 4.12) As mentioned above, we argue by contradiction. In par-
ticular, assume that the hypotheses of Theorem 4.12 are true but the conclusion is
false. We will show this implies that for all C', k, N, the conclusion of Lemma 4.14
does not hold when v is a neighborhood of zero, a contradiction. Choose w via
Lemma 4.16, with

(32) g=2r,r=n+m+k+N+1
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Let ¢g,- -+, ¢r—1 € C§°(v) and F € C§°(R™) be functions (yet to be determined),
and set

r—1
v, = Tn+1+kem'w E ¢UT7U
v=0

fr(x) = 77 F(rz)

T is a parameter which will tend to oco. The idea is to choose the ¢, and F' so that
the right side of equation (22) is bounded independent of 7 while the left side of
the equation can be made arbitrarily large.

When 7 is large, fr € C5°(v) (as v is a neighborhood of zero) and v, € C§°(v)
for each 7. Through change of variables, we see that

r—1

Tﬁl/ffvrdx - /F(x)eim(m/t)(z Ov(@/T)T™")dx

v=0

Since supp F' is compact and the right-side integrand is uniformly convergent on
supp F to the limit F(z)e(®€ ¢o(0), the right side integral has limit F'(—¢)¢o(0)
when 7 — co. If F and ¢ chosen so that F(—€) # 0 and ¢0(0) = 1, we get

/ffvfdx — 00,7 — 00

We also have that when |a| < k and 7 > 1,

sup | D f-| < sup [D*F|
R™ R™

Thus to prove that the conclusion of Lemma 4.14 is false it remains to show that

we can choose ¢q, -+, ¢,—1 and C such that
(33) sup |D® 'Pv.| < C,7>1,]a| < N
xrev

Now, when ¢ € C* we have by Leibniz’s rule, Proposition A.5, that
(34) tP(1/)€iTw) _ ch,rjeifw
§=0

where the ¢; € C* are independent of 7.

Next, note that the principal part ¢(z, D) of ta(z, D) is q(x, D) = p(z, —D).
This can be seen as follows. First note that if R(z, D) is a differential operator of
order k, then repeated integration by parts gives that *R(z, D) is also of order k.
Hence it suffices to show that 'p(z, D) = p(z, —D). This also follows by repeated
integration by parts, together when an induction on the order of p.

Thus by Leibniz’s formula, Proposition A.5, we have

(35) Cm = AV, cm1 = Y A;Djtp + By
j=1
where A = p(x, —grad w) and A; = —0¢,;p(x, —grad w). The specific choice of

B € C*° is not of concern, however, it is independent of 1. By equations (28) and
(32), we have that for z near 0,

A(z) = O(J=[*")
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Also, equation (27) says that for some j # 0, A;(0) # 0. If we take ¢ = ¢, and
notice that n+ 14+ k +m = r — N, equations (34), (35) show that

m—+r—1
(36) tav, = 77 Neimw E a, T H
1=0

where

ag = Ao, a1 = Apy + ZA;'D;'% + By

j=1

The general form of the coefficients a, is given by

(37) a, = A¢, + Z AjDj¢y—1+ Bopu—1+ L,

j=1

provided ¢, is interpreted as 0 when v > r. Here L, is a linear combination of
functions ¢, with v < 4 — 1 and their derivatives.

Next we choose the functions ¢, € C§°(v). In particular, we show that the ¢,
can be choosen so that ¢o(0) = 1 and

(38) au(@) = O(|z[*"~)), p < vy — 0

When p = 0, the above equation (38) is a consequence of (4.3). Equation (4.3) also
gives that the first term in (37) does not affect (38). So we must find ¢, such
that

(39) ZAijqb#,l + By 1+ L, = O(|z[>0—H)

Jj=1

Suppose all ¢, have been chosen when v < p—1and 1 < g < r. To choose
¢u—1 we can assume A;, B, and L, are analytic, as (39) still holds if the infinitely
differentiable functions are replaced with Taylor expansions of order 2r about 0.
By the Cauchy-Kowalevsky Theorem, we can find a solution ®,,_; to

> AD;®, + B, 1+ L, =0

j=1
in a neighborhood V of 0. Indeed, we can even choose the values of ®,_; on
a noncharacteristic plane through 0. Note that such planes exist as A4;(0) # 0
for some j. Let n € C§°(v N V) be 1 near 0. Then ¢,_1 := ®,_1n € C§° and
satisfies equation (39). Note that when p = 1 we can easily satisfy the requirement

¢o(0) = 1.
We will have satisfied (33) once we use the following lemma with equations (36)
and (38). O

Lemma 4.17. If v is a sufficiently small neighborhood of 0, 0 < s € R then

sup D% ((a)e' ™) = O(71%17%), 7 — oo

for every ¢ € C§°(v) such that
U(w) = O(a), 2 — 0



22 NICK REICHERT

Proof. By construction, the Taylor expansion of Im w at 0 begins with a positive
definite quadratic form. Thus when v is small, we have

Im w(z) > alz]*,z € v

for some positive number a.
By Leibniz’s formula, Proposition A.5, it suffices to show

sup e @ DBy (z)| = O(71F17)

as 7 — oo. Since Im w(z) > 0 in v, this holds when |3] > s. When § < s, we see
that

D g() = O(Ja 1) = O(af*e~17)
for x € v. Thus we have
7.sf|ﬁ||emuDﬁ¢| < C(7.|35|2)sf|ﬁ|eﬂwlﬂvl2

Here the right hand side is bounded in 7|z|?, and so we are done. O

In particular, we have

Corollary 4.18. Let a(z, D) be a linear differential operator with principal symbol p
such that the real and imaginary parts of the £-gradient of p are linearly independent
at (xo, &) for all solutions €& # 0 of p(xg,&) = 0. Then a(x, D) is of principal type
at xg, and the following are equivalent:

(4) a(z, D) is principally normal at x
(i) a(z, D) is locally solvable at xq
(#i) a(z, D) satisfies {p,p} =0 on p =0 in a neighborhood of x

Proof. Since p is homogeneous of order m in £, Euler’s Theorem gives p(x, &) =
(1/m)(Oep(x0,§),§). Thus to show that a is of principal type at o, it suffices to see
that O¢p(xo, &) # 0 when p(zo, &) = 0 and £ # 0. This is guaranteed by hypothesis.

The implication (i)=-(ii) follows from Theorem 4.11 and the implication (ii)=>(iii)
follows from Theorem 4.12. The implication (iii)=-(i) is as follows. To show that
a is principally normal at x, it suffices to check that a satisfies the defnition of
principally normal near the zeroes of p. For if p(xq,&y) # 0, we can take g = %
and we have {p,p} = 2iRe (gp). Hence if we can write {p, p} = 2iRe (gp) near any
zero of p, the compact set K = {(z,£) € R*" : x = x¢,|¢| = 1} can be covered
by finitely many open sets where {p,p} = 2iRe (g;p). Employing a partition of
unity, we find a function gg such that {p, p} = 2iRe (o, p} in a neighborhood of K.
Setting q(z, &) = [§]™ 'qo(z, §/|&)) we have {p,p} = 2iRe (gp) for £ € R" and x
near xo, by homogeneity.

Now, for (x,£’) near (xo,&), the hypotheses of the corollary give that Re p and
Im p can be taken as local coordinates in R?". By Taylor’s formula,

1 1
E{p,p} = E{p,p}lp:o + q1Re p+ goIm p

for some q1,q2 € C*°(R?*"). Taking ¢ = q1 + g2, condition (iii) gives {p,p} =
2iRe (qp). O
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5. OTHER RESULTS

5.1. More General Linear PDE. Charles Fefferman and Richard Beals proved
the following general result in [1]. The following discussion is based on their paper.

Let a be a linear partial differential operator of order m, defined on a neighbor-
hood T of £y € R™*!. Assume that a is of principal type. Define the bicharacteristic
curves of Re p to be the of the Hamilton Jacobi equations,

dx
=, = %(Re p)
¢

on T x (R"*1/{0}). Rep is constant on bicharacteristics. We define the null
bicharacteristics to be the bicharacteristics on which Re p is zero. An important
condition used in the theorem is condition (P) given by Nirenberg and Treves,
namely, that Im p does not change sign along the null bicharacteristics of Re p.

Theorem 5.1. Let a be a linear partial differential operator or order m with smooth
coefficients defined on Y. If a is of principal type and satisfies condition (P), then
for each real s > 0 there is a neighborhood Y5 of x¢ such that au = f has a solution
u € H5tm=L(T,) for every f € H5(Y).

5.2. Nirenberg-Treves Conjecture. In 1970, Nirenberg and Treves, [11], [12],
made the following conjecture similar to Theorem 5.1:

Theorem 5.2. (Nirenberg-Treves Conjecture) Let a be a pseudo-differential oper-
ator of principal type, and xg € R™ be fized. Also, let p denote the principal symbol
of a (one can make sense of principal symbols for pseudo-differential operators in
addition to linear partial differential operators). Then the following two statements
are equivalent:

(3) For any f € C, there is some neighborhood of Vi of xo and some
distribution w € D' (V) such that au = f

(4) (Condition (V) If Im p is negative at a point on any null bicharacteristic
T" of Re p, then Im p remains nonpositive along .

(Note that the pseudo-differential operators in this Theorem are slightly different
than the ones used in this paper) In their papers, Nirenberg and Treves proved that
condition (¥) was necessary for local solvability.

Recently, Nils Dencker [2] has proven that condition (V) is also sufficient for
local solvability, thus resolving the Nirenberg-Treves conjecture.

APPENDIX A. BACKGROUND RESULTS

Proof. (of Lemma 4.1) Write a = b + ic, where b and ¢ are real valued. Since
a€S®c %N L>, we have F(a) is such that

(40) [F™ ()] < O
for all n € Z (since a is bounded). To show that F(a) € S°, we must show that
(41) (8202 F (a(x, €))] < Cap(1 + [¢]3) 19D/

for all multi-indices o, 3 € Z7}.
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For notational convenience, let 7™, m € R, denote the space of all C>°(R™ x R™)
functions b(zx, §) such that

bz, &)] < C(1+[¢)*)™?
for some constant C'.

By definition of S™, to prove the result it suffices to show that 838? F(a(z,8)) €
T8 for all o, 3 € Z%. First note that each S™ (respectively T),) is a vector
space, so a linear combination of terms in S™ (respectively T,,,) is again in S™
(respectively T,,). Thus it suffices to show that 838? F(a) is a linear combination
of terms in T8, To do so, we will use induction.

Claim: Let n = |a|+ |5]. Then 838?F(a) is a linear combination of terms of
the form

k
(42) F®(a(2,€) [ (05 8¢ a)(x,€)
i=1
for some £ > 0 and multi-indices a1, 81, -+, @n—g41, Bn—kr1 € Z7} satisfying

Z?;lkﬂ a;=aand | k“ B; = B (all empty products are interpreted as 1).
e Base Case: First suppose n = 0. Then the result is trivial. For notational

simplicity we will also prove the case n = 1 directly. In this case, we have
by the chain rule

(0509 )(F(a(x, &) = (FW(a(x,£))(95 0 alx, )
which is of the desired form.

e Induction Step: Assume that the claim holds for all n < j > 1. First we
consider z derivatives. Consider a term of the form (42) in the expression
for (9207 )(F(a(,€))). Let &, € Z% be multi-indices with |&| + |3] = 1.
Then by the chain and product rules,

k
(ageaﬁ) (k) H 9% 8& )
=1
k
=(F*D (a(w, €))) (0200 alw, €) [ (02702 ) (v, €)+
k m—1 = ~ - k
(F® (a2, €)Y ([] 00 a)(x, &) @229 a)(w,€) [[ (85°0Fa)(x,€))
m=1 =1 1=m-+1

which is a linear combination of terms of the form (42), as desired.
It remains to show that terms of the form (42) are in T~1°l. By (40), F*)(a(x, €)))
is bounded. Moreover, since a € S°, we have that (831'8?"@)(33,{) € S~1%1. Thus,

Hle (831'8?"@)(33,{) € §-181 c T-181 and so terms of the form (42) are in 7~!7!
as well. Thus (41) has been established. O

Proof. (of Lemma 4.2) We will define a sequence b; which approximates a; and
is such that > b; converges. Let ¢ € CG°(R") be satisfy on ¢p,() = 1 and
P(Bs(0)e) = 0. Let ¢; € (0, 1) be sequences with lim; . ¢; = 0, and define b;(x, {) =
(1 — ¢(cj&))a;(x,&). As b; — a; has compact support, b; — a; € S™°, and so
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bj € smi,
Now, if |¢] < 2/c;, then by definition of A we have A(¢)c; < v/5. Hence
020001 < 3 Che 029 ay| < Ch AT
IvI<B

for some constants Ci 5 A similar result holds for £ > 2/c; since b; = a; there.
Since 1 < ¢;[¢| in supp (1 — ¢) C supp bj, the estimate can be improved:

1020, b;] < ¢;M0207b;| < ¢ C A= 1A]

Thus if ¢; < min {1/CY A" 1737181} then [API=m9297b;| < A1~ when |a+/] <
j. Since ¢; — 0, we have

a(x,§) == ij(x,f) < 00
Jj=0

near any fixed £ and so the sum defines a function a € C*. If k € Z, and
a, 3 € Z7 are fixed, and we take N = max (Ja+ |,k + 1), then we can write

CL—ZCLJ':Z(()J'—&J‘)—F Z bj‘Fij

i<k i<k k<j<N j>N

The sums ., and . are in S™F as finite sums of terms in S™*. So
j<k kE<j<N
consider the sum /- v, then

NI D090 37 by < 37 NIz,
Jj=N Jj=N
< Z )\k+1—j
J>k+1
V2
V2 -1
since |a + ] < j and A(€) > /2 on supp b;. Thus we have a — D i<k @i € Sm=k,

which for £ = 0 implies that a € S™. The property of the supports follows by
construction. O

<

Lemma A.1. Suppose q is a nondegenerate real quadratic form on R™ and x € C§°
with x = 0 near 0. Then for all N € Z,

| / P 1 b(uy)x (y)dy| < Cnp™N sup 1(0°D) (1)

Y€ supp X,|a| <N

where C is independent of > 1 and b € C*°.

Proof. There is a linear change of variables so that q(y) = |v/|? — |¢/|* with y =
(v/,y"). Then the operator L = (1/2|y|*)((v/,d') — (y”,d")) is well defined on
supp x with C*° coeflicients and satisfies Lqg = 1. Integrating by parts involves the
transpose of L, 'L, which is given by 'L = (9", y" /2|y|?) — (&', ¥/ /2|y|?). Note that
'L is also a first-order differential operator with C* coefficients. Integrating by
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parts N times gives
[ ey = ity [ @by
= (i) [ e LYY b))y

= (ip*)™N / e a0y, (y)dy

where ¢, v is a linear combination with C'°° coefficients of terms of the form
pll((0%D) (uy)) (0% x(y)) for |o + B3| < N. As supp x is compact, the result fol-
lows. O

Proof. (of Lemma 4.3) If @ € L' this follows immediately from the Lebesgue Dom-
inated Convergence Theorem.

For the general case, take ¢ € C§°(R™) such that ¢ = 1 on By and supp % C Bs.
Define I; = [ €' @a(z)¢(ex)h(277 x)dz. First I will show that lim;_. I; exists and
is equal to lim,_o ™) a(z)¢(ex)dz, and that these limits exist for any ¢ € S and
is independent of choice of ¢. Now, since

/eiq(m)a(x)qﬁ(ex)daz = Jlggo 1) g (z)p(ex) (27 z)dx
for any fixed € > 0 by dominated donvergence, we define
50 = [ ¢ a(a)(1 - oea)ii2 T a)do
and show that lim; . I; exists and that lim; . I;(€) = 0(€) (look into this). First
take y = 2772. Then
LI = [ @) ((zTe) - 62 0)ds

= [ e a@iy) i) - v)2ndy
and similarly
50 = 1m0 = [ €2 10a(iy)(1 - g(e2ly))(wly) — v(20))2" dy

Now let x(y) = ¥(y) — ¢¥(2y). Then x € C§° and supp x C {y:1/2 <[yl <2}. In
addition, y € supp x implies

1(0%a)(27y)| < [llall]ja (L + 2% |y|?)™/

< |llafl|ja2™0*
and similarly |1 — ¢(e27y)| < |e27y| supgn |¢'| < €C27 implies
(07D (27y)| < eC20mH1I

where b.(z) = (1 — ¢(ex))a(z) and C does not depend on € or j. Taking p = 27
and N=m+n+1 (and N = M + n + 2, respectively) in Lemma A.1, we have

L= 1] < Com27[llalllminta
[ (e) = Ij—1(e)| < eC277
and the result follows. O
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Proof. (of Lemma 4.4) Since S C S™ when [ < m, we assume without loss of
generality that a € S?™ for some m € Z,. Then since ¢ € S we have ¢ € S, and
SO

|a(z, D)p(x)] < (27T)’"/||>\’2ma||oo||>\2m+2"<23lloo>\’2"(§)d§

Thus a(z, D)¢ is bounded and ||a(z, D)¢||lso < C|@|2m42n. Moreover, ||la(z, D)¢|| <
Co|é|n with N = 2m+4m be the continuity of the Fourier Transform. In addition,
differentiating under the integral gives

9;(a(z, D)p(x)) = a(x, D)(0;9)(x) + (02;a)(x, D)o(x)
Integrating by parts, we see

zj(a(z, D)¢(x)) = a(z, D)(z;9)(x) +i(9¢; a)(x, D)o(x)
Hence

29 (a(x, D)¢(x))
can be written as a linear combination of terms
(070¢a)(z, D)(x*~°0" 7 ¢)(x)

and so a(z, D)¢ € S with |a(z, D)d|r < Ck|d|k+nN- |
Proof. (of Lemma 4.5) This proof essentially consists of checking that the integrals

in the statement of the lemma are indeed oscillatory integrals, and then letting
€ — 0 as in the definition (when they are actual integrals).

(i) This follows from the change of variables x = Ay in the integral

/ 1) g (x)(ex)dx

since ¥(y) = ¢(Ay) € S satisfies ¥(0) = ¢(0) = 1 and since b(y) =
| det Ala(Ay) is an amplitude of order m.
(ii) Integrations by parts in the right side of the given equation with the
added factor ¢(ex) give a factor

0 (p(ex)b(x)) = Y (© )07 ) (ex)0*Pb(x)
> (5)

and for 3 # 0, the €/®l gives zero as € — 0, while for 8 = 0 we get the left
hand side.
(iii) Recall the proof of Lemma 4.3. We considered the integrals

5 = [ e ate )o@ I)ds
which satisfy 05 I; (y) = [ e“l(“)_(?;‘a(x, Y)W (279 x)dx because of the absolute
convergence of the factor )(277x). Since for |z| < 2
10203 a(nz,y)| < Cap(l+ |nzl? + [y*)™/
< Cagh™2u™ (1+ [y
Lemma A.1 gives the estimates

105 15(y) = 05 i1 (y)] < Ca277 (14 [y|*)™/?
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which imply uniform convergence on every compact set for the sequence
0y 1j(y). Hence the limit I(y) of the sequence [;(y) is in A™(RP) and
satisfies Oy I(y) = lim; . 95 1;(y)-
(iv) The estimates in the previous part show that
02 (I(y) — I; ()] < Ca2™7 (1y[*)™/?

so that the functions b;(y) = ¥(277y)({(y) — I;(y)) satisfy b; € A™(RP)
with [[|b;|[m4p+1 < Co277. So we can write

/ e / e"Wa(, y)dw)dy = lim [ O (y)p2 y)dy
and
/ eI (y) (27T y)dy = / "W Ii(y)p (27 y)dy + / "W (y)dy
Thus the property follows since

lim eir(y)Ij(y)1/)(2*jy)dy _ /ei(‘I(m)*’“(y))a(x,y)dazdy

j—00

and

| [ € ,0)ds] < Coml bl < CrinCa2™

Lemma A.2. (Peetre’s Inequality) For any s € R and all £,n € R™,
A(€) < 20 (g = m)as ()
Proof. From the triangle inequality,
(A+lE) <A+ IE=nl+n) <A +|E=n) +[n])

Hence

N(E) < L+ ) < A+ =)L+ |nf?)
We also have

L+ 1nD)? < @+ ) + (1 = [1])* = 2X%(n)

A+1E=n)? < (A +1€=n)* + (1 = | —nl)* = 2)*(§ - n)
Thus
N2 (6) < 22X%(& —mA*(m)

When s > 0 the result follows by taking the power s/2. When s < 0, switching &
and 7 gives

A7) <2750 (n = ATE(E)
or
AY(E) < 27°ATH(E —m)A° ()
as desired. O
Lemma A.3. We have the following.
(i) If a € A™(R™), then

(2m) / 1) a(y)dydn = (2m) " / &1 o) dydn = a(0)
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(#) If o, B € 27, we have

e o 0 ifa#p
(27‘r) /e (y n)aﬁdydn = {(—i)'O"/a! ifa=3

Proof. First note that (y,n) is nondegenerate as a quadratic form on R?" = R™ xR".
To see this, recall that a quadratic form g¢(x) is said to be nondegenerate if the
associated bilinear form b(z,y) defined by b(z,y) = (q(z +y) — q(z) — q(y)) is
nondegenerate. In the case when when ¢(z) = ¢(x1, xg) =11 -z for x = (z1,22) €
R2", we have

b(z,y) = s (q(z +y) —a(z) — q(y))

= (w1 4+y1) - (w2 +y2) — w1 - 22 — Y1 - Y2)

— N - N

= 5(351'3/2—332'3/1)

which is clearly nondegenerate.

(i) The first equality follows by symmetry and Fubini’s Theorem. For the
second equality, let ¢ € S with ¢(0) = 1. So by definition of oscillatory
integrals,

/ e a(y)dydn = lim / e~ "Wna(n)g(ey)d(en)dydn
Let z = ey, ( = n/¢, and integrate in z to get
[t Qateoo@sic = [ d(aleoods

When € < 1, [6(Q)a(eQ)é(2Q)| < [&(Q)lIllalllo(t + [¢[*)™2[¢lo. This is

integrable, so by dominated convergence,
n) [ e atnyn = 20) [ $Q)a0)dc = 60)a(o) = a(0)

(ii) When «, 3 € Z7, we have y*e =W = (=D,)*e """ Thus

. D& /b
(QW)fn/efNyn Y = n’ 1 dydn = (27)~ n/ez<ym)_ﬁ(77_> dydn
3 ol \ 31

The function a(n) = ¢ (%) = SH(%)n°~ satisfies a(0) = 0 when
B # a and a(0) = (—i)l*l/a! if B = a, so (ii) follows from (i).
O

Proof. (of Lemma 4.6) From the beginning of the proof of Lemma A.3, we see that
the quadratic form (y,n) is nondegenerate. Now, Peetre’s inequality gives that
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bee(y,n) :==a(x —y, & —n) is an amplitude when z, £ are fixed:

0005 a(z —y, & —n)| < CapA™ 1Pl(E —n)
< CapA™(E—1n)
< Cag2 ™A™ ) A™ (€)
< Cap2™N™ (€)1 + [y[? + [nf*)Im)/2

for all a, 3 € Z7, and so b, ¢ € A™(R?) with |||bg¢ll[jm|+2n41 < CoA™(€). By
Lemma 4.3, A™™(§)a*(z,€) is bounded. Also, since 8?8?(@*) = (8?8?@)* and
838?@ e sm-I8l Alﬁlfmagaga* is bounded for any «, # € Z! by the same argu-
ment. Hence a* € S™.

Next we consider a#b. The function ¢; ¢(y, 1) := a(z,{ —n)b(x —y, &) is also an
amplitude—if we fix (z, ), we have:

0905 a(x, & — n)b(x — y, &) = |05 a(z, & —n)||05b(z — y, &)
< Cp(1+ |6 —n]?) " Cal1 + €22
< CufA™1Bl(E — )

< Cap2 ™A™ (€)1 + [yl? + Inf?)!™1/?

where the last line follows from the calculation for a*. Thus ¢, ¢ € Al"™/(R?") and
|lca,ellljmi42nt1 < CoA™TH(E). Hence, as above, we see that A™™~!(&)a#b(x, &) is
bounded. By the product rule,

oo - X ({0 @otareror )
(v,0)€Z3” ’

Now, 8%82@ € ™10l and 83”’8?7517 € S'=18=91 for all v, 8. Hence
|(020¢a)#(07 70 b)) < CA™ I

and so AP1=m=1920] (a#tb)(x, €) is bounded for any a, 3 € Z7. So a#b € S™H.
The asymptotic expansions are proved using Taylor’s formula:

—) (—n)B
&(x—yaﬁ—n):| ﬁz| %%838?a($5§)+rk($a§ayan)
a+p3|<2k
—Ne (—n)B
Tk(xagayan): Z 2k%( 677') Taﬁ(xagayan)

|atBl=2k

1
res(, €, 1) = / (1 — )2 10000a(z — ty, £ — tn)dt
0

The terms with |a + 8] < 2k give after integration the terms of the expansion in
view of Lemma A.3(ii). Note that 71 (y,n) € A™I*2¥ so we can integrate by parts
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as in Lemma A.3(ii):

/671<yﬂ7)ﬂ(2 rag(z, &y, n)dydn

a!

1 [ (-n)P _
[ 2 raste v D gy

L [ s (j) (=D SN €, )y

| [~ _
_Z a';'ﬂy (v) (g) /671(“’)(—n)ﬁ*”(—fo’”Taﬁ(%&y,n)dydn

-y %';,'”Y' (‘j;) (f) / e~ i) (=D )P~ (= Dy)*r o, £, y, m)dydn

after a second integration by parts. By definition of 7.z,
(_Dy)ﬁ*’)’(_Dn)a*’yTaﬁ(x, ga Y, 77)

1
:/ (1 — )R~ (—it)2h =219t =798+ G (x — ty, & — tn)dt
0

y<aandy <p, 50 <kand|a+ -y >k Thus 9297087 7g € gk,
Hence the equations above can be summarized by

/e ) (x, €y, n)dydn = / W s (x, €, y,m)dydn

where the amplitude s, € A™ = with |||sp|]jm—r|+2n+1 < CeA™F(€). So
Ak’m(ﬁ)/e W (2, €y, m)dydn

is bounded. Then, arguing as above, [ e~V (z, &, y,n)dydn € S™* since 8“8ﬁrk

is the rest of index 2k in the Taylor expansion of 838[3 (x—y,&—mn), and 838[3
Ssm—I8l
The argument asymptotic expansion for a#b is the same as the argument for

the asymptotic expansion for a*, verbatim, except with a(x — ty, & — tn) replaced
by a(z, & — tn)b(x — ty, &) and S™ replaced with S™+. O

Proof. (of Lemma 4.7)
(i) We have

(a*)*(z,€)
—(2m)2n / i) / e~ alz — z — y,€ — ¢ — n)dydn)dzd

—(2m) 2 [ D -2 =y ¢~ mdydndzdg

Make the change of variables Y = —y, H =n+¢, Z = z+y, Z2 =
for which (y,n) — (z,n) = —(Y, H) — (Z, Z) and dydndzd¢ = dYdHdZdZ.
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£)
=(2m)"2" / e WHHZ2) o(x — 7,6 — H)dY dYdZdZ
/ e 122 ( / eV H) g(x — 7 € — HYAYdH)dZdZ

:(2#)7"/6%@’2)@(3: —Z,8)dZdZ
:CL(:E, g)

where the last two equalities are consequences of the fact that

43) @0 / ¢~ a(y)dydn = (27) " / e~ () dydn = a(0)

This can be seen as follows. First note that the quadratic form on R™ given
by (y,1) — (y,n) is nondegenerate (by the proof of Lemma A.3). Moreover,
the polynomial y*7n” is in Al**8l so that the integrals in equation (43) are
indeed osciallatory integrals. The first equality follows by switching y and
1. Next, take ¢ € S such that ¢(0) = 1. By definition, we have

/ e W a(n)dyds = lim / e 10 a(n) ¢ ey) élen)dydn

Making the change of variables ey = z, e = ¢ and then integrating in z we
get,

[t Qateoo@sic = [ d(aleoods
When € < 1, we have

|6(Qale)é(e* Q)] < S(Ollllalllo(t +1¢1*)™ |60
which is integral. Hence by dominated convergence,
r)y " [ atmdydn = (20" [ HOa(0)dc
= ¢(0)a(0)
= a(0)

and we are finished.
(ii) The proof of Lemma 4.6 with k = m + 1 gives

a#tb =Y (1/a)ogaDSb

|a]<m

for any b € S', and the result follows.
(iii) Write

a#t (ko) (x, &)
—(2m)2n / e~ oz, € — ) / (e — g, € — Q)ela —y — 7, £)dzd()dydy

=(2m) 7" / et EDa(e, € — (e -y, & = Oclw — y = 2, )dydndzd(
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Hence we have
(a#b)#c(x, €)
=(2m)~ 2" / e 122 ( / eV H) g(x 6 — Z — H)b(x — Y, & — Z)dydH)c(z — Z,£)dZdZ
=(2m)"2" / e W HZE) (.6 — Z— HYb(x — Y, € — Z)c(x — Z,6)dYdHdZdZ
These two quantities are equal through the change of variables y = Y,

n=H+Z z=7Z-Y,and ( = Z.
(iv) Next, we have

b*#a*(z,§)
=(2m) 73" / e HbT) (/ e 0 (z — 2,6 — 7 — Cdzd()(/ e WM a(x —t —y, & — n)dydn)dtdr

=(2m) %" / e WM EOFET g (p — ¢t —y, & — )bz — 2, € — 7 — ()dydndzd(dtdr

=(2m) 73" / eIV HZEFXE gy — 2,6 — Z — H)(x — Zy,& — 2)dY dHdZdZdX d=

=(2m) " / e 123 ( / emiWWH)g(x — 2,6 — Z—H)bo(x —Z ~Y,§ — ZdYdH)dZdZ
after a change of variables (Y = 2 —t—y, H=n—-7-§¢ Z =1t+y,

Z=74¢( X =2—1t, 2 =n—7) and the last equality follows from
integration in (X, Z) and Lemma A.3(i). Thus the result follows since

a#b(z—Z,6—2Z) = (2m)™" / e V) g(p —Z 6 —Z—Ho(x—Z—-Y,6— Z)dYdH
(v) (I = (a*(z, D)$, ) is equal to the oscillatory integral
I = (220 [ e [ 0mata — y, €~ n)dydn)o(€)i (o) dude
= (2m) 2 [ e D, (6 a)dadedzdg
Similarly, I = (a#b(x, D)$,v) is given by
I = (2m)*" / (O8N a2, O)b(z, ) $(€)d (x) dwdéd=d(

On the other hand, I* = (¢, a(x, D)¢) = (21)""(¢, a(a:,AD)qﬁ and [# =
(a(z, D)b(x, D), 1)) are given by

I = (2m) 2 / 3(6)( / £ ( / = a(z, 0 / ¢4:0) () ) AC) dz) e
I# = (2m)2n / ( / @) a(z, ¢)( / =0 / =9 b(z, €)(E)de)dz)dC) ()

Thus it suffices to show that I = I* and Ig# =I7.
First, we show that I§ = I*. Note that I is lim._.¢ I, where

I = (2m) 2" / x(ex)x(€)x(e2)x(€Q)e = =28=Dg(z, ()(€)) () dwdEdzdC
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where x € S can be chosen so that x =1 in B;. Then we have I* — I} =
I} + 1?2 + I3, where

— (2n) / 9 3(€)(1 - x(e€)x(2))alz, D)(z)dédz
— (2m)2" / 9= 3(e)alz (e n(ex) (1 — x(eQ))P(C)deddC
= (2m) 2" / e (=080 g(¢)a(z, () x(e€)x(e2)x(€€) (1 — x(ex))(x)dedzdd

The integral I! — 0 as ¢ — 0 by dominated convergence. The integrals I?
and I? also go to 0 as € — 0, by the following result, Lemma A.4. FIX
THIS

(vi) Finally, we show that Ig# = I*#. (similar to above, add)

O

Lemma A.4. Let a(z,y) € A™(R™xXRP), ¢ be a real valued function, and x, ¥, v €
S with x|, 0y = 1. Then

lim [ €Y a(z, y)v(er)(1 — x(ey)) (y)dady = 0

e—0

Proof. Let I be the integral in the above limit. Setting z = ex gives

I'= /ew(’z/é’y)a(Z/f,y)v(Z)(l = x(ey))d(y)e " dzdy

By definition of |||al||o, we have that

la(z/e,y)| < lllalllo(L+ [2/¢* + |y*)™2
< llallloe™™ (1 + [=[*)™2(1 + [y[*)™/?

When y € supp(1 — x(ey)), |y| > 1/e, and so

Lt |y|2> e

_ <
[U(y)| < |¢|2(m+n+:v)( 1+p
m+n+p

< Cye™ P+ Y1)

when y € supp(1 — x(ey)). Thus,

€901 Pa(z e, y)o(2) (1-x(en) D l)e ™| < € lalloCul1+]27)" 2 ()| (L)~

Integrating gives the desired result. O

Proposition A.5. (Leibniz’s rule) Let u € D'(Y), a € C*(Y), and P(&) be a
polynomial in the n variables &1, --,&,. If D; denotes —id,, (only 2 derivatives,
no ¢ derivatives), and P(D) is the differential operator obtained by replacing ¢;
with D;, then

(44) P(D)(au) = 3 (D°a)(P*)(D)u) /a!

[e3

where P()(¢) = 01*1P(¢) 0" &5 = il*ID*P(¢)
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Proof. If ¢ € C§°(T), recall the definitions
(Dru)(¢) := —u(Dro)
(au)(9) := u(ag)
The basic product rule generalizes easily, as follows:
((Dra)u)(9) + (a(Dxu))(9) = u((Dra)p) + (Dyu)(ag)
= u((Dra)p) — u(Di(ag))
(45) = u((Dra)p) — u((Dra)¢) — u(a(Dyxe))
—u(a(Dx9))
= (Dr(au))(9)
Repeatedly applying (45), we see that

P(D)(au) = 3 (D°a)Qa(D)u

[e3

(

for some polynomial Q, in Dy,---,D,.
It remams to show that Q. (D) = P*(D)/a!. Notice that P(D)e“m 5+”> =
P(&+n)el®€tn) | Thus if we take for the moment a(x) = €€ and u(x) =

we have

P(£ 4 n)e! @&t = p(D)et@&tm
= P(D)(&'®8 ¢
= Z (D)) Q, (D)elm)

= el Y 16Qa(n)

and hence P(£+1) =3, £¥Qa(n). By Taylor’s formula, Qa (1) = P (n)/al, and
we are finished. g

APPENDIX B. INDEX OF NOTATION

e Ifu € L', we define the Fourier transform @ of u by 4(¢) = [ e " @& u(z)dx
(recall that the Fourier Transform extends continuously to funct1ons v €
L?). Thus we have the following formulas for ¢ € S:

— For a € Z1}, we have Dgo(§) = £7¢(€) and z2¢(£) = (=De)*¢(¢)
— For all u € L, (i, ¢) = (1, ¢)
— (Inversion formula) ¢ = (27)"¢, i.e. ¢(x ) [ eiedg(€)de
— (Parseval’s formula) For any ¢ € S, (¢, ) = (27r) (¢,7)

e H? is the Sobolev space with exponent s, and

[ullf = (27)~ /(1+|§| )la(€)]*dg < oo

for u € H”.

S(R™) denotes the Schwarz space of rapidly decreasing functions
D'(T) denotes the space of distributions on T

X&) = (1+[¢[?)*/?

If uv € L', then by definition (u,v) = [u(z)v(z)dz
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e D; = —id; and D = (—i)l*lg>

e ACC B means A C B and A compact.

e 'P denotes the adjoint of P given by [ (Pu)(v) = [w(*Pv) whenever u or
v has compact support and both v and v are smooth. Notice this is not the
transpose with respect to the inner product (u,v) = [uvdz.
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