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1. Introduction

The following paper discusses several results about solvability of partial differ-
ential equations (PDE). It begins with with a statement and proof of the Cauchy-
Kowalevski Theorem. Next, using Lewy’s example, I show that the theorem does
not generalize from the analytic case to the smooth case. Conditions for solvability
of more general PDE are given, with a characterization of solvable PDE in a specific
case. Finally, I give an overview of more recent work developing the theory further.

I am gratefully indebted to Professor James Morrow for his numerous suggestions
and corrections, and for the time he dedicated to discussion of the paper. His help
was invaluable.

2. Cauchy-Kowalevski Theorem

The Cauchy-Kowalevski Theorem, 2.3, asserts that under certain conditions,
we have existence and uniqueness for solutions of partial differential equations.
However, the theorem is somewhat restrictive as its hypotheses make certain as-
sumptions about analyticity. The following proof follows the discussion in [5].

In the following discussion we shall order the set of multi-indices by decreeing
that α < β if |α| < |β| or if |α| = |β| and αi < βi, where i is the largest number
with αi 6= βi. We shall also use the following elementary result.
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2 NICK REICHERT

Proposition 2.1. Suppose f(x) =
∑

α aα(x − x0)α is convergent near x = x0 ∈
Rn. Also assume g(ξ) =

∑
β bβ(ξ − ξ0)β where ξ ∈ Rm, bβ ∈ Rn, and g(ξ0) = b0 =

x0. Then f(g(ξ)) =
∑

γ cγ(ξ − ξ0)γ is analytic at ξ0, where cγ = Pγ({aα}, {bβ})
and Pγ is a polynomial such that

(i) Pγ is independent of f and g.
(ii) Pγ is a polynomial in the aα and bβ for which αj ≤ γj and βj ≤ γj , all
j.

(iii) Pγ has only non-negative coefficients.

Proof. Exercise. �

Theorem 2.2. Suppose B is an analytic RN -valued function, A1, · · · , An−1 are
analytic N ×N -real-matrix-valued functions, and Φ(x) is analytic RN -valued func-
tion, each analytic an a neighborhood of the origin of their respective domains.
Then there is a neighborhood of the origin in Rn on which there exists a unique
analytic function Y : Rn → RN which solves the Cauchy problem

∂tY =
n−1∑

i=1

Ai(x, t, Y )∂xiY + B(x, t, Y )(1)

Y (x, 0) = Φ(x)

Proof. First consider the case when the Ai andB are independent of t and Φ(x) = 0.

∂tY =
n−1∑

i=1

Ai(x, Y )∂xiY + B(x, Y )(2)

Y (x, 0) = 0

Let Y = (y1, · · · , yN ), B = (b1, · · · , bN), Ai = (aiml)
N
m,l=1. We wish to find

(3) ym =
∑

α,j

cαjm x
αtj

for 1 ≤ m ≤ N , satisfying (2). The initial condition forces that cα0
m = 0 for all α,m.

We have

(4) ∂tym =
∑

i,l

aiml(x, y1, · · · , yN )∂xiyl + bm(x, y1, · · · , yN )

Now, we can use the series for the yk in place of the variables yk as parameters for
aiml and bm. By Proposition 2.1, and using (3) in (4), we rewrite (4) as

∑

α,j

(j + 1)cα(j+1)
m xαtj =

∑

α,j

Pαjm ((cβlk )l≤j , di)xαtj

where di is the coefficient of Ai and B, and Pαjm is a polynomial with non-negative
coefficients. So by uniqueness of power series expansions

cα(j+1)
m =

1
j + 1

Pαjm ((cβlk )l≤j , di)

Thus if cαlm is known for all l < j, then cαjm can be determined. In particular, we
find that cαjm = Qαjm (di), where Qαjm is a polynomial with non-negative coefficients.
This establishes uniqueness.

It remains to show that the series (3) for ym is valid on a neighborhood of the
origin. Suppose that in equations (2) Ai and B are replaced with Ãi and B̃, and it
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is known that an analytic solution Ỹ exists on a neighborhood of the origin. Also
assume that the series for Ãi and B̃ majorize those of Ai and B. The above formula
(3) gives ỹm =

∑
α,j c̃

αj
m x

αtj, where c̃αjm = Qαjm (d̃i) and Qαjm is the same polynomial
as above. As Qαj has non-negative coefficients, |cαjm | ≤ c̃αjm . So the series for Ỹ
majorizes the series for Y , and thus the series for Y is valid on some neighborhood
of the origin. Hence it suffices to find such an Ãi and B̃.

Suppose
∑

α aαx
α converges on the hypercube {x : max{|xj|} < R}. Then let

0 < r < R, and x = (r, · · · , r). Then
∑

α aαr
|α| converges, so there is a constant

M such that |aαr|α|| ≤ M for all α. Thus |aα| ≤ M
rα ≤ M |α|!

α!r|α| . As the n-dimensional
geometric series expansion is given by

M

r − (x1 + · · ·xn)
= M

∞∑

k=0

(x1 + · · ·+ xn)k

rk
= M

∑

|α|≥0

|α|!
α!r|α|

xα

we have found a geometric series which majorizes
∑

α aαr
|α|. More specifically, if

M > 0 is large and r > 0 is small, then the series for Ai and B are both majorized
by the series for

Mr

r − (x1 + · · ·+ xn−1) − (y1 + · · ·+ yN )
So consider the Cauchy problem

∂tym =
Mr

r −
∑
j xj −

∑
j yj

(
∑

i

∑

j

∂xiyj + 1)(5)

ym(x, 0) = 0

First we find a solution u0 in the simple case

∂tu =
Mr

r − s − Nu
(N (n − 1)∂su+ 1)

u(s, 0) = 0

where u is a scalar unknown in the two variables s and t. This can be rewritten as

(r − s − Nu)∂tu−MrN (n− 1)∂su = Mr

Using elementary PDE theory (see [5]), we obtain

u(s, t) =
r − s −

√
(r − s)2 − 2MrNnt

Mn

In the more general case of (5), let ym(x, t) = u(x1 + · · ·+ xn−1, t), 1 ≤ m ≤ N .
Then the system (5) is satisfied.

Now consider the case of (1) where the Ai and B may depend on t and Φ may
be nonzero. If U (x, t) = Y (x, t)−Φ(x), then Y satisfies (1) if and only if U satisfies
the system

∂tU =
n−1∑

i=1

Ãi(x, t, U )∂xiU + B̃(x, t, U )

U (x, 0) = 0

So we can assume Φ ≡ 0. Next, let

V (x, t) = (u0(x, t), U (x, t)) = (u0(x, t), u1(x, t), · · · , uN (x, t))
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where ∂tu0(x, t) = 1 and u0(x, 0) = 0. Hence u0 ≡ t, so in equations (1) we can
replace t by u0 in Ãi and B̃ by adding the extra equation and the extra initial
condition. Thus the proof of existence in the general case (1) is complete. As
analytic functions are completely determined by the values of their derivatives at a
single point, an analytic solution to (1) is necessarily unique. �

We are now prepared to prove the classical result.

Corollary 2.3. (Cauchy-Kowalevski Theorem) Suppose F, φ0, · · · , φk−1 are an-
alytic near the origin, and S is an analytic hypersurface containing the origin.
Assume that the equation F = 0 can be solved for ∂kt u to obtain ∂kt as a function
G of the remaining variables. Then there is a neighborhood of the origin on which
the Cauchy problem

0 = F (x, (∂α)|α|≤k)(6)

∂jνu = φj on S, 0 ≤ j < k

has a unique analytic solution.

Proof. We can make an analytic change of coordinates so that some neighborhood
of the origin in S is mapped to the hyperplane t = 0. So we can assume the system
(6) is of the form

∂kt u = G(x, t, (∂αx∂
j
tu)|α|+j≤k,j<k)(7)

∂jtu(x, 0) = φj(x), 0 ≤ j < k

Now consider the system of equations and initial conditions

∂tyαj = yα(j+1), |α|+ j < k(8)

∂tyαj = ∂xiy(α−1i)(j+1), |α|+ j = k, j < k(9)

∂ty0k =
∂G

∂t
+

∑

|α|+j<k

∂G

∂yαj
yα(j+1)(10)

yαj(x, 0) = ∂αxφj(x), j < k(11)

y0k(x, 0) = G(x, 0, (∂αxφj(x))|α|+j≤k,j<k)(12)

If Y = (y1, · · · , yk), then by Theorem 2.2 the system (8)-(12) has a unique analytic
solution near zero. Hence it suffices to show that u = y00 satisfies (7). Now,
equation (8) implies

(13) yα(j+1) = ∂ltyαj, j + l ≤ k

Combining this with equation (9) gives

∂tyαj = ∂t∂xiy(α−1i)j

and so
yαj(x, t) = ∂xiy(α−1i)j(x, t) + cαj(x)

for some cαj. However, by equation (11),

yαj(x, 0) = ∂αxφj(x) = ∂xi∂
α−1i
x φj(x) = ∂xiy(α−1i)j(x, 0)

and cαj = 0. Hence

(14) yαj = ∂xiy(α−1i)j, |α|+ j = k, j < k
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Now, by (10), (13), and (14),

∂ty0k =
∂G

∂t
+

∑

|α|+j≤k,j<k

∂G

∂yαj

∂yαj
∂t

=
∂

∂t
(G(x, t, (yαj)))

Thus
y0k(x, t) = G(x, t, (yαj(x, t))) + c0k(x)

for some c0k. However, equations (11), (12) imply

y0k(x, 0) = G(x, 0, (∂αx (φj(x))) = G(x, 0, (yαj(x, 0)))

so that c0k = 0 and

(15) y0k = G(x, t, (yαj)|α|+j≤k,j<k)

Next we show by induction on k − j − |α| that

∂αj = ∂xiy(α−1i)j, α 6= 0

The base case k = j + |α| is shown in (14). By (8) and (13),

∂tyαj = yα(j+1) = ∂xiy(α−1i)(j+1) = ∂t∂xiy(α−1i)j

and so
yαj(x, t) = ∂xiy(α−1i)j(x, t) + cαj(x)

Equation (11) gives

∂αj(x, 0) = ∂αxφj(x) = ∂xi∂
α−1i
x φj(x) = ∂xiy(α−1i)j(x, 0)

so that cαj = 0 and the induction is complete.
Finally, (13) and (14) give

(16) yαj = ∂αx ∂
j
t y00

By (11), (15), and (16), u = y00 is a solution to (7). �

Note that in the above discussion, it was assumed that all functions were real-
valued. By considering Cn-valued functions as R2N -valued functions, we need not
assume that the functions are real-valued.

3. Lewy’s Counterexample

One might naturally assume that the Cauchy-Kowalevski theorem would extend
to smooth partial differential equations. In 1957, Hans Lewy [9] showed that this
was not the case. The following exposition derives from and expands upon on
Lewy’s paper and the discussion of the result in [4], [5], and [6].

Let L be the differential operator defined on R3 = {(x, y, t)} by

(17) L = ∂x + i∂y − 2i(x+ iy)∂t

Lemma 3.1. Let f : R → R be continuous. If there exists a C1 function u(x, y, t)
such that Lu = f(t + 2y0x − 2x0y) on a neighborhood U of (x0, y0, t0), then f is
analytic at t = t0.
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Proof. First assume that x0 = y0 = 0. Let R > 0 be such that {(x, y, t) ∈ R3 :
x2 + y2 < R, |t − t0| < R} ⊆ U . Let z = x + iy = reiθ, and let s = r2. Define
V (t, r) for 0 < r < R and |t− t0| < R by the contour integral

V =
∫

|z|=r
u(x, y, t)dz = ir

∫ 2π

0

u(r cos θ, r sin θ, t)eiθdθ

Then by Green’s Theorem,

V = i

∫∫

|z|≤r
(∂xu+ i∂yu)(x, y, t)dxdy

= i

∫ r

0

∫ 2π

0

(∂xu+ i∂yu)(ρ cos θ, ρ sin θ, t)ρdθdρ

Thus

∂rV = i

∫ 2π

0

(∂xu+ i∂yu)(r cos θ, r sin θ, t)rdθ

=
∫

|z|=r
(∂xu+ i∂yu)(x, y, t)r

dz

z

Since Lu = f , we have

∂sV =
1
2r
∂rV

=
∫

|z|=r
(∂xu+ i∂yu)(x, y, t)

dz

2z

= i

∫

|z|=r
∂tu(x, y, t)dz +

∫

|z|=r
f(t)

dz

2z

= i∂tV + πif(t)

Let F (t) =
∫ t
t0
f(α)dα, and U (t, s) = V (t, s) + πF (t). Then ∂tU + i∂sU = 0, i.e.

U satisfies the Cauchy Riemann equations. Thus U is a holomorphic function of
w = t + is in the region 0 < s < R2, |t − t0| < R, and U is continuous up to
the line s = 0. Since V = 0 when s = 0, U (0, t) = πF (t) is real-valued. By the
reflection principle, U (t,−s) := Ū (t, s) defines an analytic continuation of U to a
neighborhood of the origin. Hence U (t, 0) = πF (t) is analytic near t0, and f = F ′

is as well. This completes the argument in the case x0 = y0 = 0.
Now suppose x0 and y0 are arbitrary, and u satisfies the hypotheses of the lemma.

In particular,

Lu(x, y, t) = f(t + 2y0x− 2x0y)
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near (x0, y0, t0), and u ∈ C1 near (x0, y0, t0). Define û(x, y, t) = u(x+x0, y+y0, t−
2y0x+ 2x0y). Then û ∈ C1 near (0, 0, t0), and by the chain rule

Lû(x, y, t) = L(u(x + x0, y + y0, t− 2y0x+ 2x0y))

= (∂xu)(x+ x0, y + y0, t− 2y0x+ 2x0y)−
2y0(∂tu)(x+ x0, y + y0, t− 2y0x+ 2x0y)+

i(∂yu)(x+ x0, y + y0, t− 2y0x+ 2x0y)+

2ix0(∂tu)(x+ x0, y + y0, t− 2y0x+ 2x0y)+

2i(x + iy)(∂tu)(x+ x0, y + y0, t− 2y0x+ 2x0y)

= (∂xu)(x+ x0, y + y0, t− 2y0x+ 2x0y)+

(∂yu)(x+ x0, y + y0, t− 2y0x+ 2x0y)+

2i((x + x0) + i(y + y0))(∂tu)(x+ x0, y + y0, t− 2y0x+ 2x0y)

= f((t − 2y0x+ 2x0y) + 2y0x− 2x0y)

= f(t)

near (0, 0, t0). Thus by the earlier argument, f(t) is analytic at t0. �

Put another way, if f is not analytic at t = t0, there is no C1 function u(x, y, t)
for which Lu = f on any neighborhood of (x0, y0, t0)–even if f is smooth!

Next we prove the existence of smooth, periodic functions on R which are
nowhere analytic. The result can be shown in many ways. See [6] and [10] for
examples arising from trigonometric series. [3] uses a Baire category argument to
show that “most” smooth functions are nowhere analytic (in the same sense that
“most” continuous functions are nowhere differentiable). The exposition given here
is based on [8].

Lemma 3.2. There exists periodic ψ ∈ C∞(R) which is not analytic at any point.

Proof. Let α(x) =

{
0 if x ≤ 0
e−1/x if x > 0

. Then it is well known that α is smooth. Let

β(x) = α(x)α(1−x). Finally, let γj(x) = 1
j!
β(2jx−b2jxc) and γ(x) =

∑∞
j=1 γj(x).

Each γj is smooth as all the derivatives of β vanish at 0 and 1. Moreover, γ is
periodic. γ is also smooth as

∑∞
j=0 γ

(i)
j (x) converges uniformly for each i. Now

suppose that γ is analytic at some point x. Since analyticity at a point implies
analyticity on a neighborhood of that point, γ is analytic at some dyadic rational
r = p/2k with p odd. γj(x) is analytic at r for 1 ≤ j ≤ k − 1, so γ̃(x) :=∑∞

j=k γj(x) is analytic at r. However, γ̃(i)(r) = 0 for all i ≥ 0, and γ̃(x) > 0 on any
small punctured neighborhood of x. This is a contradiction. Hence γ is nowhere
analytic. �

We will now construct a function f for which Lu = f has no solutions at any
point.

Lemma 3.3. Let ψ be as above, and suppose Qj = (xj, yj , tj) is an enumeration
of Q3. If ρj = |xj| + |yj|, let cj = 2−je−ρj . Then for any ε ∈ l∞(R), the series∑∞

j=1 εjcjψ(t − 2yjx+ 2xjy) =: Fε(x, y, t) and all of its formal derivatives converge
uniformly. In particular, Fε ∈ C∞(R3).
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Proof. φ is periodic, so that Mk := supt∈R |ψ(k)(t)| is finite for all k. Thus for any
multi-index α = (α1, α2, α3),

|Dαεjcjψ(t − 2yjx+ 2xjy)| ≤ ‖ε‖cjM|α|2|α|ρ
|α|
j

= 2−j+|α|‖ε‖M|α|ρ
|α|
j e−ρj

≤ 2−j+|α|‖ε‖M|α|

(
|α|
e

)|α|
(18)

since ρ|α|j e−ρj ≤ |α|
e

|α|
for ρj ≥ 0, by elementary calculus. So we have shown that

|Dαεjcjψ(t − 2yjx+ 2xjy)| ≤ Kα2−j for some Kα ∈ R. Hence the series for DαFε
converges uniformly, so that Fε ∈ C∞(R3). �

Next we provide a preliminary result for use in a Baire Category argument.

Lemma 3.4. Let Qj be as in the above lemma. For j, n ∈ N, define Υj,n = {x ∈
R3 : |x − Qj | < n−1/2}. Let Ej,n ⊂ l∞ be the collection of ε for which a solution
uε(x, y, t) ∈ C1(Υj,n) of Luε = Fε(x, y, z) exists, with

(i) uε(Qj) = 0
(ii) |Dαuε(P )| ≤ n for |α| ≤ 1, P ∈ Υj,n

(iii) |Dαuε(P ) −Dαuε(Q)| ≤ n|P − Q|1/n for |α| = 1, P,Q ∈ Υj,n

Then each Ej,n is a closed, nowhere dense subset of l∞.

Proof. First I will show that Ej,n is closed. Suppose ε ∈ l∞ and ε1, ε2, · · · ∈ Ej,n
with limk→∞ ‖ε− εk‖ = 0. Taking α = 0 in equation (18), |Fε − Fεk | = |Fε−εk| ≤
M0‖ε − εk‖. So Fεk → F . Let uεk be a solution of Luεk = Fεk(x, y, z) satisfying
the three properties given in the statement of the lemma. Note that the uεk are
equi-bounded and equi-continuous in Υj,n. By the Arzela-Ascoli Theorem, there
exists a subsequence of the uεk which converge uniformly to a function u (and
the derivatives converge uniformly). u must satisfy (i)-(iii) and also Lu = Fε, so
ε ∈ Ej,n. Thus Ej,n is closed.

Let cj as in the statement of Lemma 3.3, and define δ = (0, · · · , 0, 1/cj, 0, · · · , )
be the sequence which is zero except in the jth position. By definition, Fδ =
ψ(t − 2y0x+ 2x0y).

Now suppose ε is an interior point of Ej,n. Then there exists θ > 0 such that
ε′ = ε+θδ ∈ Ej,n. Let u,u′ be solutions of Lu = Fε and Lu′ = Fε′ , respectively, and
satisfying properties (i)-(iii). If u′′ = (u′ − u)/θ, then u′′ ∈ C1 and Lu′′ = Fδ = ψ
near Qj. This contradicts Lemma 3.1, as ψ is nowhere analytic. �

We are now ready to prove the main result.

Theorem 3.5. Let L be as above as in equation (17). Then there exists F ∈
C∞(R3) such that Lu = F has no solution u on any open set Υ ⊂ R3 with u ∈
C1(Υ) and ∂xu, ∂yu, ∂tu Holder continuous on Υ.

Proof. Assume for the sake of contradiction that the theorem is false. Then for all
ε ∈ l∞, there exists an open set Υε and a solution u of Lu = Fε on Υε with Holder
continuous first derivatives. For some j, Qj ∈ Υε. So Υj,n ⊂ Υε for n large. Also,
u will satisfy properties (ii) and (iii) of Lemma 3.4 if n is large enough. Replacing u
by u−u(Qj), we can also assume that u satisfies property (i) as well. Thus ε ∈ Ej,n,
and l∞ = ∪j,nEj,n. Combining this with Lemma 3.4, we obtain a contradiction to
the Baire Category Theorem. �
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4. Poisson-Bracket Condition

The development given in this section is based on [14] and [7].

4.1. Definitions and Background.

• For convenience, let λs(ξ) = (1 + |ξ|2)s/2, with ξ ∈ Rn and s ∈ R.
• We will often make the association T ∗(Rn) ∼= R2n. The variables x and ξ

will typically represent points in Rn and Tx(Rn), respectively. Moreover, if
f : R2n → R or C, then by ∂xf and ∂ξf we mean the x and ξ gradients,
(∂1f, · · · , ∂nf) and (∂n+1f, · · · , ∂2nf), respectively. If α and β are multi-
indices, then ∂αx f and ∂βξ f denote derivatives of f in the x and ξ variables,
respectively.

• Suppose m ∈ R and a(x, ξ) ∈ C∞(Rn × Rn) (in this paper, C∞ functions
are complex-valued). Then a is said to be a symbol of order m, written
a ∈ Sm, if each function λ|β|−m∂αx ∂

β
ξ a is bounded on Rn×Rn for all multi-

indices α, β ∈ Zn+. Note that l ≤ m implies Sl ⊂ Sm. Thus we define
S−∞ = ∩mSm and S∞ = ∪mSm. Note that for a ∈ Sm, b ∈ Sl, α, β ∈ Zn+,
we have ∂αx ∂

β
ξ a ∈ Sm−|β| and ab ∈ Sm+l . Occaisionally we will formally

substitute the differential operator D = −i(∂1, · · · , ∂n) for the variable ξ
in the expression a(x, ξ). When a is of the form a(x, ξ) =

∑
|α|≤m aα(x)ξα

formally replacing ξ by D makes sense. Lemma 4.4 makes the general
definition precise.

• Let m ≥ 0. Then we say a ∈ Am, or a is an amplitude of order m, if
a ∈ C∞(Rn) and the functions (1 + |x|2)−m/2∂αa(x) are bounded on Rn
for all α ∈ Zn+. On the space Am, we define the norms

|‖a‖|k = max|α|≤k‖(1 + |x|2)−m/2∂αa‖L∞

The following six lemmas are standard results about symbols and oscillatory inte-
grals. Their proofs appear in the appendix.

Lemma 4.1. If a ∈ S0 and F ∈ C∞(C), then F (a) ∈ S0.

Lemma 4.2. Let aj ∈ Sm−j for j ∈ Z+. Then there exists a symbol a ∈ Sm such
that for any k ∈ Z+,

a−
k∑

j=1

aj ∈ Sm−k

Moreover, a is unique modulo S−∞. a can be chosen so that supp a ⊂ ∪j supp aj.

• If a is as in the above lemma, then we write a ∼
∑

j aj , and say that the
{aj} are asymptotic to a.

Lemma 4.3. Let q be a nondegenerate real quadratic form on Rn, a ∈ Am, and
φ ∈ S such that φ(0) = 1. Then the limit

(19) lim
ε→0

∫
eiq(x)a(x)φ(εx)dx

exists and is independent of φ. If in addition a ∈ L1, then the limit is equal
to

∫
eiq(x)a(x)dx. Thus we denote the limit (19) as

∫
eiq(x)a(x)dx, regardless of
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whether a ∈ L1.
∫
eiq(x)a(x)dx is said to be an oscillatory integral. Also,

|
∫
eiq(x)a(x)dx| ≤ Cq,m|‖a‖|m+n+1

where Cq,m depends only on q and m.

Lemma 4.4. If a ∈ S∞ and φ ∈ S, then

a(x,D)φ(x) := (2π)−n
∫
ei〈x,ξ〉a(x, ξ)φ̂(ξ)dξ

defines a function a(x,D)φ ∈ S. Moreover, there exist constants N ∈ Z+ and Ck
for k ∈ Z+ depending on a such that |a(x,D)φ|k ≤ Ck|φ|k+N .

• If a ∈ S∞, then we say that the pseudodifferential operator of symbol a is
the operator a(x,D) : S ′ → S ′ defined by

(20) (a(x,D)u, φ) = (u, a∗(x,D)φ)

for u ∈ S ′, φ ∈ S. If a ∈ Sm , then a(x,D) is said to have order m. We
define Ψm = {a(x,D) : a ∈ Sm}, Ψ∞ = ∪mψm, and Ψ−∞ = ∩mΨm.
Elements of Ψ−∞ are called smoothing operators.

• Note that pseudo-differential operators generalize linear partial differential
operators. In particular, if a(D) is simply a linear partial differential oper-
ator, a(D) =

∑
α aαD

α, then equation (20) is a consequence of the Fourier
inversion formula.

Lemma 4.5. Oscillatory integrals are very similar to usual integrals. In particular,
they satisfy the following properties:

(i) Change of Variables: If A ∈ GLn(R), then
∫
eiq(Ay)a(Ay)| detA|dy =

∫
eiq(x)a(x)dx

(ii) Integration by Parts: If a ∈ Am, b ∈ Al, and α ∈ Zn+, then
∫
eiq(x)a(x)∂αb(x)dx =

∫
b(x)(−∂)α(eiq(x)a(x))dx

(iii) Differentiation Under
∫
: If a ∈ Am(Rn × Rp), then

∫
eiq(x)a(x, y)dx ∈

Am(Rp). Moreover, for all α ∈ Zn+,

∂αy

∫
eiq(x)a(x, y)dx =

∫
eiq(x)∂αy a(x, y)dx

(iv) Fubini’s Theorem: If a ∈ Am(Rn × Rp) as in (iii) and if r is a nonde-
generate real quadratic form on Rp, then

∫
eir(y)(

∫
eiq(x)a(x, y)dx)dy =

∫
ei(q(x)+r(y))a(x, y)dxdy

Lemma 4.6. Let a ∈ Sm and b ∈ Sl. The oscillatory integrals

a∗(x, ξ) = (2π)−n
∫
e−i〈y,η〉ā(x− y, ξ − η)dydη

a#b(x, ξ) = (2π)−n
∫
e−i〈y,η〉a(x, ξ − η)b(x − y, ξ)dydη
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define symbols a∗ ∈ Sm and a#b ∈ Sm+l with the following asymptotic expansions:

a∗ ∼
∞∑

|α|=0

1
α!
∂αξ D

α
x ā

a#b ∼
∞∑

|α|=0

1
α!
∂αξ aD

α
x b

• Note that when a(ξ), b(ξ) are polynomials in ξ (alternatively, a(D), b(D)
are linear partial differential operator), then a∗ = ā and a#b = ab

Lemma 4.7. (Properties of ∗ and #)

(i) (a∗)∗

(ii) a#1 = 1#a = a
(iii) a#(b#c) = (a#b)#c
(iv) (a#b)∗ = b∗#a∗

Also, if a, b ∈ S∞ and φ and ψ ∈ S, then

(v) (a∗(x,D)φ, ψ) = (φ, a(x,D)ψ)
(vi) (a#b(x,D)φ, ψ) = (a(x,D)b(x,D)φ, ψ)

Consider a linear partial ifferential operator a(x,D) =
∑

|α|≤m aα(x)Dα with aα
smooth and complex-valued.

• Then a(x,D) is said to be locally solvable at x0 if there exists a neighborhood
Υ of x0 such that a(x,D)u = f has a solution u ∈ D′(Υ) for any f ∈ C∞

0 (Υ)
• p(x, ξ) =

∑
|α|=m aα(x)ξα ∈ C∞(T ∗(Rn)) is said to be the principal symbol

of a(x,D)
• The Poisson bracket of two C1 complex-valued functions on T ∗Rn is given

by

{p, q}(x, ξ) = 〈∂ξp(x, ξ), ∂xq(x, ξ)〉 − 〈∂xp(x, ξ), ∂ξq(x, ξ)〉

In the case that p and q are the principal symbols of linear partial differen-
tial operators a(x,D) and b(x,D), respectively, {p, q}(x, ξ) is the principal
symbol (modulo a factor of i) of the commutator

[a(x,D), b(x,D)] = (a#b− b#a)(x,D) = (ab− ba)(x,D)

(see Lemma 4.13)
• a(x,D) is said to be of principal type at x0 if the ξ-gradient of its principal

symbol at x0 vanishes only for ξ = 0, that is, ∂ξp(x0, ξ) = 0 if and only if
ξ = 0.

• a(x,D) is said to be principally normal at x0 if there exists a function
q ∈ C∞(T ∗Rn \ {0}) homogeneous of degree m − 1 in ξ such that the
principal symbol p satisfies

{p̄, p}(x, ξ) = 2iRe (q̄(x, ξ)p(x, ξ))

for ξ ∈ Rn \ {0} and x near x0
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4.2. Solvability Theorem.

Lemma 4.8. (Garding’s Inequality) Let a ∈ S2m and assume that for some C0

and ε > 0 and all x, ξ we have Re a(x, ξ) +C0λ
2m−1 ≥ ελ2m. Then for any N ≥ 0

there exists a constant CN such that for all φ ∈ S

2Re (a(x,D)φ, φ) ≥ ε‖φ‖2
m − CN‖φ‖2

m−N

Proof. Let b = λ−m#a#λ−m ∈ S0. Then since b = λ−2ma modulo S−1, the
hypotheses of the lemma imply that

Re b+ (C0 + C1)λ−1 ≥ ε

for some C1 ∈ R, so that b satisfies the hypotheses of the lemma with m = 0. If
the theorem is true in that case, then for φ ∈ S,

2Re (a(x,D)φ, φ) = 2Re (b(x,D)λm(D)φ, λm(D)φ)

≥ ε‖λm(D)φ‖2
0 −CN‖λm(D)φ‖2

−N

= ε‖φ‖2
m − CN‖φ‖2

m−N

and we are finished.
Hence it suffices to assume that m = 0, so that a ∈ S0 with Re a + C0λ

−1 ≥ ε.
Choose F ∈ C∞(C) such that F (z) = ((ε/2) + z)1/2 for z ∈ R+. Since 2(Re a +
C0λ

−1 − ε) ∈ S0 is nonnegative, Lemma 4.1 implies that b = (2Re a + 2C0λ
−1 −

(3/2)ε)1/2 = F (2(Re a+C0λ
−1 − ε)) ∈ S0. Modulo S−1, we have b∗#b = 2Re a−

(3/2)ε = a+ a∗ − (3/2)ε. In particular, for some c ∈ S−1, we have

a+ a∗ = b∗#b+
3
2
ε+ c

So if φ ∈ S,

2Re (a(x,D)φ, φ) = (a(x,D)φ, φ) + (φ, a(x,D)φ)

= ((a+ a∗)(x,D)φ, φ)

= (b∗#b(x,D)φ, φ) + (
3
2
εφ, φ) + (c(x,D)φ, φ)

≥ ‖b(x,D)φ‖2
0 +

3
2
ε‖φ‖2

0 − ‖c(x,D)φ‖1/2‖φ‖−1/2

≥ ε‖φ‖2
0 + (

ε

2
‖φ‖2

0 − C1/2‖φ‖2
−1/2)

for some C1/2 ∈ R because c ∈ S−1. So it suffices to prove

C1/2‖φ‖2
−1/2 ≤ ε

2
‖φ‖2

0 + CN‖φ‖2
−N

where CN := ε
2
(2C1/2

ε
)2N . This can be seen as follows. When C1/2λ

−1(ξ) ≥ ε/2,
then λ(ξ) ≤ 2C1/2/ε, so that

C1/2λ
−1(ξ) = C1/2λ

2N−1(ξ)λ−2N (ξ)

≤ C1/2(2C1/2/ε)2N−1λ−2N (ξ)

= CNλ
−2N (ξ)

≤ ε/2 +CNλ
−2N

The desired estimate is obtained after multiplication by |φ̂|2 and integration. �
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Lemma 4.9. Let Υδ = {x ∈ Rn : |x| < δ}. Then for all δ > 0, m ∈ Z+, we have

‖φ‖m ≤ 2δ‖φ‖m+1

whenever φ ∈ C∞
0 (Υδ). In addition, if Q and R are differential operators of orders

m and 2m, respectively, then there exists C ∈ R such that for all φ ∈ C∞
0 (Υδ), we

have

‖Q(ixjφ)‖0 ≤ Cδ‖φ‖m
|(ixj, Rφ)| ≤ Cδ‖φ‖2

m

Proof. Recall that ‖φ‖2
s+1 = ‖φ‖2

s +
∑
j ‖Djφ‖2

s. Thus the first inequality follows
immediately by induction once the case m = 0 is established. Since ‖D1φ‖0 ≤ ‖φ‖1,
we have

‖φ‖2
0 = (φ, φ)

= (D1(ix1φ), φ)− (ix1(D1φ), φ)

= (ix1φ,D1φ) + (D1φ, ix1φ)

≤ 2‖ix1φ‖0‖D1φ‖0

≤ 2δ‖φ‖0‖φ‖1

For the second inequality, write Q(ixjφ) = [Q, ixj]φixj(Qφ) so that

‖Q(ixjφ)‖0 ≤ ‖[Q, ixj]φ‖0

≤ C‖φ‖m−1 +Cδ‖φ‖m

because [Q, ixj] has order m− 1, and the result follows from the first inequality.
For the third inequality, write R =

∑
k QkQ

′
k for some mth order operators Qk

and Q′
k. By the second inequality, we have

|(ixjφ,Rφ)| = |
∑

k

(Q∗
k(ixjφ), Q′

kφ)|

≤
∑

k

‖Q∗
k(ixjφ)‖0‖Q′

kφ‖0

�

Lemma 4.10. Let a(x,D) be a linear differential operator of order m. Then

(i) If a(x,D) is principal type at 0, there exists a δ0 > 0 and a C0 such that
for all δ < δ0 and φ ∈ C∞

0 (Υδ),

‖φ‖2
m−1 ≤ C0δ(‖a(x,D)φ‖2

0 + ‖a∗(x,D)φ‖2
0 + ‖φ‖2

m−1)

(ii) If a(x,D) is principally normal at 0, there exists a δ > 0 and a C ∈ R
such that for all φ ∈ C∞

0 (Υδ),

‖a(x,D)φ‖2
0 ≤ C(‖a∗(x,D)φ‖2

0 + ‖φ‖2
m−1)

(iii) If a(x,D) is both principally normal and of principal type at 0, there
exists a δ > 0 such that for all φ ∈ C∞

0 (Υδ),

‖φ‖m−1 ≤ ‖a∗(x,D)φ‖0

Proof.
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(i) Let A = a(x,D), Qj = [A, ixj] = (∂ξja)(x,D), B =
∑n

j=1Q
∗
jQj =

b(x,D). By Lemma 4.6, b =
∑n

j=1 |∂ξjp|2 modulo S2m−3. As A is of
principal type, homogeneity gives

∑n
j=1 |∂ξjp(x, ξ)|2 ≥ 2ε|ξ|2m−2 for some

ε > 0 and all x ∈ Υ2δ0 . Hence the symbol b+ ελ2m−2#(1−ψ) satisfies the
hypothesis of Garding’s inequality, provided φ ∈ C∞

0 (Υ2δ0) and ψ ≤ 1. If
also ψ = 1 in Υδ0 and δ < δ0 is such that (1−ψ)φ = 0 for all φ ∈ C∞

0 (Υδ),
then (b(x,D) + ελ2m−2(D)(1 − ψ))φ = Bφ. Thus we have

2
n∑

j=1

Qjφ
2
0 = 2Re(bφ, φ) ≥ ε‖φ‖2

m−1 − C‖φ‖2
m−2

for some C ∈ R. However, for each operator Qj we have

‖Qjφ‖2
0 = (A(ixjφ) − ixj(Aφ), Qjφ)

= (ixjφ,A∗Qjφ) − (ixj(Aφ), Qjφ)

= (ixjφ, [A∗, Qj]φ) + (Q∗
j (ixjφ), A∗φ) − (ixj(Aφ), Qjφ)

If φ ∈ C∞
0 , Lemma 4.9 gives that

‖Qjφ‖2
0 ≤ Cj,1δ‖φ‖2

m−1 + Cj,2δ‖φ‖m−1‖A∗φ‖0 + Cj,3δ‖Aφ‖0‖φ‖m−1

≤ Cjδ(‖Aφ‖2
0 + ‖A∗φ‖2

0 + ‖φ‖2
m−1)

We also have ‖φ‖2
m−2 ≤ 4δ2‖φ‖2

m−1 by Lemma 4.9. Hence

‖φ‖2
m−1 ≤

2
ε

n∑

j=1

‖Qjφ‖2
0 +

C

ε
‖φ‖2

m−2

≤ C0δ(‖Aφ‖2
0 + ‖A∗φ‖2

0 + ‖φ‖2
m−1)

as desired.

(ii) Modify the function q near ξ = 0 so that q ∈ C∞ everywhere while
{p̄, p} = 2iRe (q̄p) holds only for |ξ| ≥ 1 and x in some Υ2δ. Then for
φ ∈ C∞

0 (Υ2δ) we define

b = φa ∈ Sm

c = φq + i{a, φ} ∈ Sm−1

r = b∗#b− b#b∗ − b#c∗ − c#b∗ ∈ S2m

Indeed, we see that r ∈ S2m−2 via Lemma 4.6. More precisely, modulo
S2m−2, we have b∗ = b̄− ib̄〈x,ξ〉, so that

r = (b̄− ib̄〈x,ξ〉)b− i〈b̄ξ, bx〉 − b(b̄− ib̄〈x,ξ〉) + i〈bξ, b̄x〉 − bc̄− cb̄

= −{b̄, b} − 2Re (c̄b)

= −i({b̄, b} − 2iRe (c̄b))

= −iφ2({ā, a} − 2iRe (q̄a))

= −iφ2({p̄, p} − 2iRe (q̄, p))

which is zero when |ξ| ≥ 1. Thus, if ψ is chosen such that ψ = 1 in Υδ ,
then Bφ = Aφ and B∗φ = A∗φ for all φ ∈ C∞

0 (Υδ) because A has the local
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property. Hence we have

‖Aφ‖2
0 = (B∗Bφ, φ)

= (Rφ, φ) + (BB∗φ, φ) + (BQ∗φ, φ) + (QB∗φ, φ)

= (Rφ, φ) + ‖A∗φ‖2
0 + 2Re (Q∗φ,A∗φ)

≤ ‖Rφ‖1−m‖φ‖m−1 + 2‖A∗φ‖2
0 + ‖Q∗φ‖2

0

≤ 2‖A∗φ‖2
0 +C‖φ‖2

m−1

since R ∈ Ψ2m−2 and Q∗ ∈ Ψm−1.

(iii) Finally, if both hypotheses are valid, (i) and (ii) imply that for small
δ > 0 and for φ ∈ C∞

0 (Υδ),

‖φ‖2
m−1 ≤ C1δ(‖a∗(x,D)φ‖2

0 + ‖φ‖2
m−1)

for some C1. If δ < 1/2C1, then

‖φ‖2
m−1 = 2‖φ‖2

m−1 − ‖φ‖2
m−1

≤ 2C1δ(‖a∗(x,D)φ‖2
0 + ‖φ‖2

m−1) − ‖φ‖2
m−1

≤ ‖a∗(x,D)φ‖2
0

�

Theorem 4.11. Let a(x,D) be a principally normal operator of order m and of
principal type at x0. Then there exists a neighborhood Υ of x0 such that the equation
a(x,D)u = f has a solution u ∈ L2(Υ) for any f ∈ H1−m.

Proof. Using translation we can assume without loss of generality that x0 = 0, and
take δ > 0 as in Lemma 4.10(iii). Then a∗(x,D) is injective on C∞

0 (Υδ), and so its
inverse (A∗)−1 is well defined on

E = {ψ ∈ C∞
0 (Υδ) : ∃φ ∈ C∞

0 (Υδ) with ψ = a∗(x,D)ψ}

For each f ∈ H1−m define the semilinear form Uf (ψ) = (f, (A∗)−1ψ) on E. Using
Lemma 4.10.iii on φ = (A∗)−1ψ, we have

|U (ψ)| = |(f, φ)|
≤ ‖f‖1−m‖φ‖m−1

≤ ‖f‖1−m‖a∗(x,D)φ‖0

= ‖f‖1−m‖ψ‖0

Hence U is continuous in the L2-norm. By the Hahn-Banach theorem, U extends
continuously to L2(Υδ), and by the Riesz Representation Theorem there exists
u ∈ L2(Υδ) such that (u, φ) = U (φ) for φ ∈ E. In particular, (u, a∗(x,D)φ) = (f, φ)
for all φ ∈ C∞

0 (Υδ), so that a(x,D)u = f in Υδ . �

4.3. Converse to Solvability Theorem. Let Υ ⊂ Rn, and consider the differen-
tial operator

a(x,D) =
∑

|α|≤m

aα(x)Dα
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of order m with coefficients in C∞(Υ), and let p be its principal symbol (note that
here D is a differential operator on x, not ξ). Also, let p̄ be the corresponding
symbol with conjugate coefficients āα. That is,

p(x, ξ) =
∑

|α|=m

aα(x)ξα

p̄(x, ξ) =
∑

|α|=m

āα(x)ξα

We also define

C2m−1(x, ξ) =
n∑

j=1

i(∂ξjp(x, ξ)∂̄xjp(x, ξ) − ∂xjp(x, ξ)∂ξj p̄(x, ξ))(21)

= {p, p̄}
Then C2m−1 is a polynomial in ξ of degree 2m− 1 with real coefficients, and is the
principal symbol of the commutator [a, ā].

Theorem 4.12. (Due to Hormander, [7]) Suppose a(x,D)u = f has a solution
u ∈ D′(Υ) for every f ∈ C∞

0 (Υ). If x ∈ Υ, ξ ∈ Rn are such that p(x, ξ) = 0, then
C2m−1(x, ξ) = 0 also.

The proof will require some preliminary results.

Lemma 4.13. Let

C(x,D) = ā(x,D)a(x,D) − a(x,D)ā(x,D) = [a, ā]

Then C(x,D) is of order at most 2m− 1 and C2m−1(x,D) is the sum of the terms
in C(x,D) of order 2m − 1. That is,

C(x,D) = C2m−1(x,D) + terms of order ≤ 2m − 1

Proof. Recall Leibniz’s rule, Proposition A.5. Namely, given u ∈ D′, b ∈ C∞, and
a(D) a polynomial in the variables ξ1, · · · , ξn, with ξj replaced by Dj , then

a(D)(bu) =
∑

α

(Dαb)((∂αξ a)(D)u)/α!

Thus we obtain

ā(x,D)a(x,D) =
∑

α

∑

β

(Dαbβ(x)/α!)ā(α)(x,D)Dβ

and a similar formula holds for a(x,D)ā(x,D). Thus

C(x, ξ) =
∑

α 6=0

(∂αξ ā(x, ξ)D
αa(x, ξ) − ∂αξ a(x, ξ)D

αā(x, ξ))/α!

where D acts on x. Here the terms where α = 0 cancel and thus can be omitted
from the sum. Moreover, the α = 0 terms are the only terms of order 2m. Thus
C(x, ξ) is of order at most 2m − 1 and the terms of order 2m − 1 are given by
C2m−1. �

Lemma 4.14. Assume the hypotheses of Theorem 4.12, and let υ ⊂⊂ Υ be an
open set. Then there exist constants C,k,N such that

(22) |
∫
fvdx| ≤ C

∑

|α|≤k

sup
x∈υ

|Dαf |
∑

|β|≤N

sup
x∈υ

|Dβ tav|
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when f, v ∈ C∞
0 (υ).

Proof. We consider
∫
fvdx as a bilinear form for f ∈ C∞

0 (ῡ) and v ∈ C∞
0 (υ). Here

C∞
0 is the Frechet space with the topology from the semi-norms supx∈υ |Dαf(x)|

and C∞
0 (υ) with the (metrizable) topology from the semi-norms supx∈υ |Dβ tav|.

This bilinear form is clearly continuous in f for fixed v. When f is fixed, we can
by hypothesis take u ∈ D′(Υ) such that P (x,D)u = f . Thus

∫
fvdx =

∫
(au)(v) =

∫
u(tav)

so that the form is continuous in v for fixed f . A bilinear form on a product of
a Frechet space and a metrizable space is continuous if provided it is seperately
continuous, so we are finished. �

Lemma 4.15. Given (a1, · · · , an), (f1, · · · , fn) ∈ Cn, where some aj 6= 0, there
exists a symmetric matrix A = (αjk) with positive definite imaginary part satisfying

(23) Aa =
n∑

j=1

αjkaj = fk, 1 ≤ k ≤ n

if and only if

(24) Im
n∑

k=1

fkāk > 0

Proof. First, we show that condition (23) implies (24). If bj = Re aj and cj = Im aj
then the symmetry of αkj and condition (23) give that

(f, a) =
n∑

k=1

fkāk =
n∑

j,k=1

αkjajāk =
n∑

j,k=1

αkjbjbk +
n∑

j,k=1

αkjcjck

The real vectors (b1, · · · , bn) and (c1, · · · , cn) do not both vanish and (Im αkj) is
positive definite, thus (24) is established.

Second, we show show that (24) implies (23). There are two cases to consider.

(1) Assume ca ∈ Rn for some constant c ∈ C. Replacing a and f with ca and
cf , respectively, we may assume that a ∈ Rn. Writing α = β + iγ and
f = g + ih, then (23) can be rewritten as

βa = g, γa = h

Certainly we can find a real symmetric matrix β with βa = g. To see this,
we will use a simple induction on n.

• Base case: Let n = 1. Then since a is nonzero, a1 is nonzero, and so
if we take β = g1/a1 we are finished.

• Induction step: Assume that the result holds for all n ≤ k, and now
take n = k + 1. Since a is nonzero, one of a1, · · · , an is nonzero. If
a1 is the only nonzero component of a, then the result is trivial. So
assume that one of a2, · · · , an is nonzero. Thus we must find a sym-
metric matrix β = (βij) such that the following system of equations is
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satisfied:

β11a1 + β12a2 + · · ·+ β1nan = g1

β12a1 + β22a2 + · · ·+ β2nan = g2

· · ·
β1na1 + β2na2 + · · ·+ βnnan = gn

Clearly we can choose β11, · · · , β1n so that the first equation is satis-
fied. Thus we are reduced to solving the system

β22a2 + · · ·+ β2nan = g2 − β12a1

β23a2 + · · ·+ β3nan = g3 − β13a1

· · ·
β2na2 + · · ·+ βnnan = gn − β1na1

where one of a2, · · · , an is nonzero, and β12, · · · , β1n have been fixed
(β is symmetric). This is the problem in the case n = k, and the
induction is complete.

Next, let h1 = h−a (h,a)
2(a,a)

. Then (h1, a) = (h, a)/2 > 0. Thus if we define γ

by γx = (h,a)
(2a,a)x+ (x,h1)

(a,h1)h1, γ will be positive definite. From the definition
of h1 we see that γa = h.

(2) Assume ca /∈ Rn for any c ∈ C. It suffices to show that

α = i
Im (f, a)

(a, a)
I + β

satisfies (23) for some real symmetric β. So we must have

(25) βa = f − aiIm
(f, a)
(a, a)

=: f1

with

(26) Im (f1, a) = 0

So it remains to find a β. To prove that such a β exists, notice that {z ∈
Cn : ∃ symmetric γ such that z = γa} is a linear subspace with respect to
real scalars. The equation of a plane containing this set can be written as
Im (z, g) = 0 for some g ∈ Cn. Let β be defined by βx = ξ(x, ξ). Then β
is real and symmetric for every ξ ∈ Rn, and βa = ξ(a, ξ). Thus

Im (ξ, g)(a, ξ) = 0

By assumption, a is not proportional to any real vector. Thus g must be
a real multiple of a, and Im (z, g) = 0 follows from the requirement that
Im (z, a) = 0. Thus by (26) there is a real symmetric matrix β satisfying
(25).

�

If we can show that when the conclusion of Theorem 4.12 is not satisfied, the
conclusion of Lemma 4.14 is not valid for any C, k, n, we will have proved Theorem
4.12. Assume without loss of generality that 0 ∈ Υ and the conclusion of Theorem
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4.12 is not valid when x = 0. Since C2m−1(0, ξ) is real valued and odd for ξ ∈ R,
we can find a ξ such that

(27) ξ ∈ Rn/{0}, p(0, ξ) = 0, C2m−1(0, ξ) < 0

Lemma 4.16. Assume condition (27), and let q ∈ Z+. Then there exists w ∈
C∞(Υ), depending on q, such that

p(x, grad w) = O(|x|q), as x→ 0(28)

w(x) = 〈x, ξ〉+
1
2

n∑

j,k=1

αjkxjxk + O(|x|3), as x→ 0(29)

where the matrix αjk is symmetric and has a positive definite imaginary part.

Proof. (28) holds when q = 1 if w(x) = 〈x, ξ〉 since w(x) then satisfies (29),
grad w(x) = (ξ1, · · · , ξn), and p(0, ξ) = 0 so that (28) is satisfied as well. In
order for (28) to hold when q = 2, we have to choose αjk such that the first order
derivatives of p(x, grad w) are zero at 0, i.e.

(30) ∂xjp(0, ξ) +
m∑

k=1

∂ξkp(0, ξ)αjk = 0, 1 ≤ j ≤ n

By Lemma 4.15, equation (21), and equation (27), there exists a symmetric matrix
αjk with positive definite imaginary part which satisfies (30). Thus we can prove
(28) for an arbitrary q as follows. First, assume the coefficients of p are analytic,
as (28) and (29) do not change if the coefficients of p are replaced by their Taylor
expansions of order q. Since C2m−1 < 0 we have ∂ξjp(0, ξ) 6= 0 for some j, say
j = n. By Theorem 1.8.2 of [7] and the ensuing discussion we can thus find a
solution W of p(x, grad W ) = 0 near 0, so that grad W (0) = ξ and W (x) =
〈x, ξ〉 + 1

2

∑n
j,k=1αjkxjxk when xn = 0. Since

(31) ∂xjp+
n∑

k=1

∂ξkp(0, ξ)∂xj∂xkW (0) = 0, 1 ≤ j ≤ n

and ∂xj∂xkW (0) = αjk if j, k < n, (30) and (31) with j < n give that ∂xj∂xnW (0) =
αjn if j < n. Applying the same formulas with j = n gives that ∂2

xn
W (0) = αnn.

Hence W satisfies (29). If φ ∈ C∞
0 is 1 in a neighborhood of the origin and

supported in the set where W is defined, then w = φW satisfies the requirements
of the lemma. �

Now we are prepared to prove the main theorem.

Proof. (of Theorem 4.12) As mentioned above, we argue by contradiction. In par-
ticular, assume that the hypotheses of Theorem 4.12 are true but the conclusion is
false. We will show this implies that for all C, k,N , the conclusion of Lemma 4.14
does not hold when υ is a neighborhood of zero, a contradiction. Choose w via
Lemma 4.16, with

(32) q = 2r, r = n+m + k +N + 1
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Let φ0, · · · , φr−1 ∈ C∞
0 (υ) and F ∈ C∞

0 (Rn) be functions (yet to be determined),
and set

vτ = τn+1+keiτw
r−1∑

ν=0

φντ
−ν

fτ (x) = τ−kF (τx)

τ is a parameter which will tend to ∞. The idea is to choose the φν and F so that
the right side of equation (22) is bounded independent of τ while the left side of
the equation can be made arbitrarily large.

When τ is large, fτ ∈ C∞
0 (υ) (as υ is a neighborhood of zero) and vτ ∈ C∞

0 (υ)
for each τ . Through change of variables, we see that

τ−1

∫
fτ vτdx =

∫
F (x)eiτw(x/t)(

r−1∑

ν=0

φν(x/τ )τ−ν)dx

Since supp F is compact and the right-side integrand is uniformly convergent on
supp F to the limit F (x)ei〈x,ξ〉φ0(0), the right side integral has limit F̂ (−ξ)φ0(0)
when τ → ∞. If F and φ0 chosen so that F̂ (−ξ) 6= 0 and φ0(0) = 1, we get

∫
fτ vτdx→ ∞, τ → ∞

We also have that when |α| ≤ k and τ ≥ 1,

sup
Rn

|Dαfτ | ≤ sup
Rn

|DαF |

Thus to prove that the conclusion of Lemma 4.14 is false it remains to show that
we can choose φ0, · · · , φr−1 and C such that

(33) sup
x∈υ

|Dα tPvτ | ≤ C, τ ≥ 1, |α| ≤ N

Now, when ψ ∈ C∞ we have by Leibniz’s rule, Proposition A.5, that

(34) tP (ψeiτw) =
m∑

j=0

cjτ
jeiτw

where the cj ∈ C∞ are independent of τ .
Next, note that the principal part q(x,D) of ta(x,D) is q(x,D) = p(x,−D).

This can be seen as follows. First note that if R(x,D) is a differential operator of
order k, then repeated integration by parts gives that tR(x,D) is also of order k.
Hence it suffices to show that tp(x,D) = p(x,−D). This also follows by repeated
integration by parts, together when an induction on the order of p.

Thus by Leibniz’s formula, Proposition A.5, we have

(35) cm = Aψ, cm−1 =
n∑

j=1

AjDjψ +Bψ

where A = p(x,−grad w) and Aj = −∂ξjp(x,−grad w). The specific choice of
B ∈ C∞ is not of concern, however, it is independent of ψ. By equations (28) and
(32), we have that for x near 0,

A(x) = O(|x|2r)
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Also, equation (27) says that for some j 6= 0, Aj(0) 6= 0. If we take ψ = φν and
notice that n+ 1 + k +m = r −N , equations (34), (35) show that

(36) tavτ = τ r−N eiτw
m+r−1∑

µ=0

αµτ
−µ

where

a0 = Aφ0, a1 = Aφ1 +
n∑

j=1

AjDjφ0 +Bφ0

The general form of the coefficients aµ is given by

(37) aµ = Aφµ +
n∑

j=1

AjDjφµ−1 + Bφµ−1 + Lµ

provided φν is interpreted as 0 when ν ≥ r. Here Lµ is a linear combination of
functions φν with ν < µ− 1 and their derivatives.

Next we choose the functions φν ∈ C∞
0 (υ). In particular, we show that the φν

can be choosen so that φ0(0) = 1 and

(38) aµ(x) = O(|x|2(r−µ)), µ ≤ r, x→ 0

When µ = 0, the above equation (38) is a consequence of (4.3). Equation (4.3) also
gives that the first term in (37) does not affect (38). So we must find φµ−1 such
that

(39)
n∑

j=1

AjDjφµ−1 + Bφµ−1 + Lµ = O(|x|2(r−µ))

Suppose all φν have been chosen when ν < µ − 1 and 1 ≤ µ ≤ r. To choose
φµ−1 we can assume Aj ,B, and Lµ are analytic, as (39) still holds if the infinitely
differentiable functions are replaced with Taylor expansions of order 2r about 0.
By the Cauchy-Kowalevsky Theorem, we can find a solution Φµ−1 to

n∑

j=1

AjDjΦµ−1 + BΦµ−1 + Lµ = 0

in a neighborhood V of 0. Indeed, we can even choose the values of Φν−1 on
a noncharacteristic plane through 0. Note that such planes exist as Aj(0) 6= 0
for some j. Let η ∈ C∞

0 (υ ∩ V ) be 1 near 0. Then φµ−1 := Φµ−1η ∈ C∞
0 and

satisfies equation (39). Note that when µ = 1 we can easily satisfy the requirement
φ0(0) = 1.

We will have satisfied (33) once we use the following lemma with equations (36)
and (38). �

Lemma 4.17. If υ is a sufficiently small neighborhood of 0, 0 ≤ s ∈ R then

sup
x∈υ

|Dα(ψ(x)eiτw(x))| = O(τ |α|−s), τ → ∞

for every ψ ∈ C∞
0 (υ) such that

ψ(x) = O(|x|2s), x→ 0
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Proof. By construction, the Taylor expansion of Im w at 0 begins with a positive
definite quadratic form. Thus when υ is small, we have

Im w(x) ≥ a|x|2, x ∈ υ

for some positive number a.
By Leibniz’s formula, Proposition A.5, it suffices to show

sup
x∈υ

|eiτw(x)Dβψ(x)| = O(τ |β|−s)

as τ → ∞. Since Im w(x) ≥ 0 in υ, this holds when |β| ≥ s. When β < s, we see
that

Dβφ(x) = O(|x|2s−|β|) = O(|x|2(s−|β|))

for x ∈ υ. Thus we have

τ s−|β||eiτwDβψ| ≤ C(τ |x|2)s−|β|e−aτ |x|
2

Here the right hand side is bounded in τ |x|2, and so we are done. �

In particular, we have

Corollary 4.18. Let a(x,D) be a linear differential operator with principal symbol p
such that the real and imaginary parts of the ξ-gradient of p are linearly independent
at (x0, ξ) for all solutions ξ 6= 0 of p(x0, ξ) = 0. Then a(x,D) is of principal type
at x0, and the following are equivalent:

(i) a(x,D) is principally normal at x0

(ii) a(x,D) is locally solvable at x0

(iii) a(x,D) satisfies {p̄, p} = 0 on p = 0 in a neighborhood of x0

Proof. Since p is homogeneous of order m in ξ, Euler’s Theorem gives p(x0, ξ) =
(1/m)〈∂ξp(x0, ξ), ξ〉. Thus to show that a is of principal type at x0, it suffices to see
that ∂ξp(x0, ξ) 6= 0 when p(x0, ξ) = 0 and ξ 6= 0. This is guaranteed by hypothesis.

The implication (i)⇒(ii) follows from Theorem 4.11 and the implication (ii)⇒(iii)
follows from Theorem 4.12. The implication (iii)⇒(i) is as follows. To show that
a is principally normal at x0, it suffices to check that a satisfies the defnition of
principally normal near the zeroes of p. For if p(x0, ξ0) 6= 0, we can take q = {p̄,p}

2ip̄

and we have {p̄, p} = 2iRe (q̄p). Hence if we can write {p̄, p} = 2iRe (q̄p) near any
zero of p, the compact set K = {(x, ξ) ∈ R2n : x = x0, |ξ| = 1} can be covered
by finitely many open sets where {p̄, p} = 2iRe (q̄jp). Employing a partition of
unity, we find a function q0 such that {p̄, p} = 2iRe (q̄0, p} in a neighborhood of K.
Setting q(x, ξ) = |ξ|m−1q0(x, ξ/|ξ|)) we have {p̄, p} = 2iRe (q̄p) for ξ ∈ Rn and x
near x0, by homogeneity.

Now, for (x, ξ′) near (x0, ξ), the hypotheses of the corollary give that Re p and
Im p can be taken as local coordinates in R2n. By Taylor’s formula,

1
2i
{p̄, p} =

1
2i
{p̄, p}|p=0 + q1Re p+ q2Im p

for some q1, q2 ∈ C∞(R2n). Taking q = q1 + q2, condition (iii) gives {p̄, p} =
2iRe (q̄p). �
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5. Other Results

5.1. More General Linear PDE. Charles Fefferman and Richard Beals proved
the following general result in [1]. The following discussion is based on their paper.

Let a be a linear partial differential operator of order m, defined on a neighbor-
hood Υ of x0 ∈ Rn+1. Assume that a is of principal type. Define the bicharacteristic
curves of Re p to be the of the Hamilton Jacobi equations,

dx

ds
= ∂ξ(Re p)

dξ

ds
= −∂x(Re p)

on Υ × (Rn+1/{0}). Re p is constant on bicharacteristics. We define the null
bicharacteristics to be the bicharacteristics on which Re p is zero. An important
condition used in the theorem is condition (P) given by Nirenberg and Treves,
namely, that Im p does not change sign along the null bicharacteristics of Re p.

Theorem 5.1. Let a be a linear partial differential operator or order m with smooth
coefficients defined on Υ. If a is of principal type and satisfies condition (P), then
for each real s ≥ 0 there is a neighborhood Υs of x0 such that au = f has a solution
u ∈ Hs+m−1(Υs) for every f ∈ Hs(Υs).

5.2. Nirenberg-Treves Conjecture. In 1970, Nirenberg and Treves, [11], [12],
made the following conjecture similar to Theorem 5.1:

Theorem 5.2. (Nirenberg-Treves Conjecture) Let a be a pseudo-differential oper-
ator of principal type, and x0 ∈ Rn be fixed. Also, let p denote the principal symbol
of a (one can make sense of principal symbols for pseudo-differential operators in
addition to linear partial differential operators). Then the following two statements
are equivalent:

(i) For any f ∈ C∞, there is some neighborhood of Vf of x0 and some
distribution u ∈ D′(Vf ) such that au = f

(ii) (Condition (Ψ)) If Im p is negative at a point on any null bicharacteristic
Γ of Re p, then Im p remains nonpositive along Γ.

(Note that the pseudo-differential operators in this Theorem are slightly different
than the ones used in this paper) In their papers, Nirenberg and Treves proved that
condition (Ψ) was necessary for local solvability.

Recently, Nils Dencker [2] has proven that condition (Ψ) is also sufficient for
local solvability, thus resolving the Nirenberg-Treves conjecture.

Appendix A. Background Results

Proof. (of Lemma 4.1) Write a = b + ic, where b and c are real valued. Since
a ∈ S0 ⊂ C0 ∩ L∞, we have F (a) is such that

(40) |F (n)(a)| ≤ Cn

for all n ∈ Z+ (since a is bounded). To show that F (a) ∈ S0, we must show that

(41) |(∂αx∂
β
ξ )F (a(x, ξ))| ≤ Cαβ(1 + |ξ|2)(m−|β|)/2

for all multi-indices α, β ∈ Zn+.
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For notational convenience, let Tm, m ∈ R, denote the space of all C∞(Rn×Rn)
functions b(x, ξ) such that

|b(x, ξ)| ≤ C(1 + |ξ|2)m/2

for some constant C.
By definition of Sm, to prove the result it suffices to show that ∂αx ∂

β
ξ F (a(x, ξ)) ∈

T−|β| for all α, β ∈ Zn+. First note that each Sm (respectively Tm) is a vector
space, so a linear combination of terms in Sm (respectively Tm) is again in Sm

(respectively Tm). Thus it suffices to show that ∂αx ∂
β
ξ F (a) is a linear combination

of terms in T−|β|. To do so, we will use induction.
Claim: Let n = |α| + |β|. Then ∂αx ∂

β
ξ F (a) is a linear combination of terms of

the form

(42) F (k)(a(x, ξ))
k∏

i=1

(∂αi
x ∂βi

ξ a)(x, ξ)

for some k ≥ 0 and multi-indices α1, β1, · · · , αn−k+1, βn−k+1 ∈ Zn+ satisfying∑n−k+1
i=1 αi = α and

∑n−k+1
i=1 βi = β (all empty products are interpreted as 1).

• Base Case: First suppose n = 0. Then the result is trivial. For notational
simplicity we will also prove the case n = 1 directly. In this case, we have
by the chain rule

(∂αx ∂
β
ξ )(F (a(x, ξ)) = (F (1)(a(x, ξ)))(∂αx ∂

β
ξ a(x, ξ))

which is of the desired form.
• Induction Step: Assume that the claim holds for all n ≤ j ≥ 1. First we

consider x derivatives. Consider a term of the form (42) in the expression
for (∂αx ∂

β
ξ )(F (a(x, ξ))). Let α̃, β̃ ∈ Zn+ be multi-indices with |α̃| + |β̃| = 1.

Then by the chain and product rules,

(∂α̃x ∂
β̃
ξ )(F (k)(a(x, ξ))

k∏

i=1

(∂αi
x ∂βi

ξ a)(x, ξ))

=(F (k+1)(a(x, ξ)))(∂α̃x ∂
β̃
ξ a(x, ξ))

k∏

i=1

(∂αi
x ∂

βi

ξ a)(x, ξ))+

(F (k)(a(x, ξ)))
k∑

m=1

(
m−1∏

i=1

(∂αi
x ∂βi

ξ a)(x, ξ)(∂
αm+α̃
x ∂βm+β̃

ξ a)(x, ξ)
k∏

i=m+1

(∂αi
x ∂

βi

ξ a)(x, ξ))

which is a linear combination of terms of the form (42), as desired.

It remains to show that terms of the form (42) are in T−|β|. By (40), F (k)(a(x, ξ)))
is bounded. Moreover, since a ∈ S0, we have that (∂αi

x ∂βi

ξ a)(x, ξ) ∈ S−|βi|. Thus,∏k
i=1 (∂αi

x ∂
βi

ξ a)(x, ξ) ∈ S−|β| ⊂ T−|β|, and so terms of the form (42) are in T−|β|

as well. Thus (41) has been established. �

Proof. (of Lemma 4.2) We will define a sequence bj which approximates aj and
is such that

∑
j bj converges. Let φ ∈ C∞

0 (Rn) be satisfy on φB1(0) ≡ 1 and
φ(B̄2(0)c) ≡ 0. Let cj ∈ (0, 1) be sequences with limj→∞ cj = 0, and define bj(x, ξ) =
(1 − φ(cjξ))aj(x, ξ). As bj − aj has compact support, bj − aj ∈ S−∞, and so
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bj ∈ Sm−j .
Now, if |ξ| ≤ 2/cj, then by definition of λ we have λ(ξ)cj ≤

√
5. Hence

|∂αx ∂
β
ξ bj| ≤

∑

|γ|≤β

Cγc
|γ|
j |∂αx∂

β−α
ξ aj| ≤ Cjαβλ

m−j−|β|

for some constants Cjαβ. A similar result holds for ξ ≥ 2/cj since bj = aj there.
Since 1 ≤ cj |ξ| in supp (1 − φ) ⊂ supp bj, the estimate can be improved:

|∂αx∂
β
ξ bj| ≤ cjλ|∂αx∂

β
ξ bj| ≤ cjC

j
αβλ

m+1−j−|β|

Thus if cj ≤ min {1/Cjαβλm+1−j−|β|}, then |λ|β|−m∂αx ∂
β
ξ bj| ≤ λ1−j when |α+β| ≤

j. Since cj → 0, we have

a(x, ξ) :=
∑

j≥0

bj(x, ξ) < ∞

near any fixed ξ0 and so the sum defines a function a ∈ C∞. If k ∈ Z+ and
α, β ∈ Zn+ are fixed, and we take N = max (|α+ β|, k+ 1), then we can write

a−
∑

j<k

aj =
∑

j<k

(bj − aj) +
∑

k≤j<N

bj +
∑

j≥N

bj

The sums
∑
j<k and

∑
k≤j<N are in Sm−k as finite sums of terms in Sm−k . So

consider the sum
∑

j≥N , then

|λ|β|−(m−k)∂αx ∂
β
ξ

∑

j≥N

bj| ≤
∑

j≥N

|λ|β|−m+k∂αx ∂
β
ξ bj|

≤
∑

j≥k+1

λk+1−j

≤
√

2√
2 − 1

since |α+ β| ≤ j and λ(ξ) ≥
√

2 on supp bj. Thus we have a −
∑

j<k aj ∈ Sm−k ,
which for k = 0 implies that a ∈ Sm. The property of the supports follows by
construction. �

Lemma A.1. Suppose q is a nondegenerate real quadratic form on Rn and χ ∈ C∞
0

with χ = 0 near 0. Then for all N ∈ Z+,

|
∫
eiµ

2q(y)b(µy)χ(y)dy| ≤ CNµ
−N sup

y∈ supp χ,|α|≤N
|(∂αb)(µy)|

where CN is independent of µ ≥ 1 and b ∈ C∞.

Proof. There is a linear change of variables so that q(y) = |y′|2 − |y′′|2 with y =
(y′, y′′). Then the operator L = (1/2|y|2)(〈y′, ∂′〉 − 〈y′′, ∂′′〉) is well defined on
supp χ with C∞ coefficients and satisfies Lq = 1. Integrating by parts involves the
transpose of L, tL, which is given by tL = 〈∂′′, y′′/2|y|2〉− 〈∂′, y′/2|y|2〉. Note that
tL is also a first-order differential operator with C∞ coefficients. Integrating by
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parts N times gives
∫
eiµ

2q(y)b(µy)χ(y)dy = (iµ2)−N
∫

(LN eiµ
2q(y))b(µy)χ(y)dy

= (iµ2)−N
∫
eiµ

2q(y)(tL)N (b(µy)χ(y))dy

= (iµ2)−N
∫
eiµ

2q(y)cµ,N (y)dy

where cµ,N is a linear combination with C∞ coefficients of terms of the form
µ|α|((∂αb)(µy))(∂βχ(y)) for |α + β| ≤ N . As supp χ is compact, the result fol-
lows. �

Proof. (of Lemma 4.3) If a ∈ L1 this follows immediately from the Lebesgue Dom-
inated Convergence Theorem.

For the general case, take ψ ∈ C∞
0 (Rn) such that ψ = 1 on B1 and supp ψ ⊂ B̄2.

Define Ij =
∫
eiq(x)a(x)φ(εx)ψ(2−jx)dx. First I will show that limj→∞ Ij exists and

is equal to limε→0 e
iq(x)a(x)φ(εx)dx, and that these limits exist for any φ ∈ S and

is independent of choice of φ. Now, since∫
eiq(x)a(x)φ(εx)dx = lim

j→∞

∫
eiq(x)a(x)φ(εx)φ(2−jx)dx

for any fixed ε > 0 by dominated donvergence, we define

Ij(ε) =
∫
eiq(x)a(x)(1 − φ(εx))ψ(2−jx)dx

and show that limj→∞ Ij exists and that limj→∞ Ij(ε) = 0(ε) (look into this). First
take y = 2−jx. Then

Ij − Ij−1 =
∫
eiq(x)a(x)(ψ(2−jx) − ψ(21−jx))dx

=
∫
ei2

2jq(y)a(2jy)(ψ(y) − ψ(2y))2jndy

and similarly

Ij(ε) − Ij−1(ε) =
∫
ei2

2jq(y)a(2jy)(1 − φ(ε2jy))(ψ(y) − ψ(2y))2jndy

Now let χ(y) = ψ(y) − ψ(2y). Then χ ∈ C∞
0 and supp χ ⊂ {y : 1/2 ≤ |y| ≤ 2}. In

addition, y ∈ supp χ implies

|(∂αa)(2jy)| ≤ |‖a‖||α|(1 + 22j|y|2)m/2

≤ |‖a‖||α|2m(j+2)

and similarly |1 − φ(ε2jy)| ≤ |ε2jy| supRn |φ′| ≤ εC2j implies

|(∂αbε)(2jy)| ≤ εC2(m+1)j

where bε(x) = (1 − φ(εx))a(x) and C does not depend on ε or j. Taking µ = 2j

and N = m+ n+ 1 (and N = M + n+ 2, respectively) in Lemma A.1, we have

|Ij − Ij−1| ≤ Cq,m2−j|‖a‖|m+n+1

|Ij(ε) − Ij−1(ε)| ≤ εC2−j

and the result follows. �
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Proof. (of Lemma 4.4) Since Sl ⊂ Sm when l ≤ m, we assume without loss of
generality that a ∈ S2m for some m ∈ Z+. Then since φ ∈ S we have φ̂ ∈ S, and
so

|a(x,D)φ(x)| ≤ (2π)−n
∫

‖λ−2ma‖∞‖λ2m+2nφ̂‖∞λ−2n(ξ)dξ

Thus a(x,D)φ is bounded and ‖a(x,D)φ‖∞ ≤ C|φ̂|2m+2n. Moreover, ‖a(x,D)φ‖ ≤
C0|φ|N with N = 2m+4m be the continuity of the Fourier Transform. In addition,
differentiating under the integral gives

∂j(a(x,D)φ(x)) = a(x,D)(∂jφ)(x) + (∂xja)(x,D)φ(x)

Integrating by parts, we see

xj(a(x,D)φ(x)) = a(x,D)(xjφ)(x) + i(∂ξja)(x,D)φ(x)

Hence
xα∂β(a(x,D)φ(x))

can be written as a linear combination of terms

(∂γx∂
δ
ξa)(x,D)(xα−δ∂β−γφ)(x)

and so a(x,D)φ ∈ S with |a(x,D)φ|k ≤ Ck|φ|k+N . �

Proof. (of Lemma 4.5) This proof essentially consists of checking that the integrals
in the statement of the lemma are indeed oscillatory integrals, and then letting
ε→ 0 as in the definition (when they are actual integrals).

(i) This follows from the change of variables x = Ay in the integral
∫
eiq(x)a(x)φ(εx)dx

since ψ(y) = φ(Ay) ∈ S satisfies ψ(0) = φ(0) = 1 and since b(y) =
| detA|a(Ay) is an amplitude of order m.

(ii) Integrations by parts in the right side of the given equation with the
added factor φ(εx) give a factor

∂α(φ(εx)b(x)) =
∑

β

(
α

β

)
ε|β|(∂βφ)(εx)∂α−βb(x)

and for β 6= 0, the ε|β| gives zero as ε → 0, while for β = 0 we get the left
hand side.

(iii) Recall the proof of Lemma 4.3. We considered the integrals

Ij(y) =
∫
eiq(x)a(x, y)ψ(2−jx)dx

which satisfy ∂αy Ij(y) =
∫
eiq(x)∂αy a(x, y)ψ(2−jx)dx because of the absolute

convergence of the factor ψ(2−jx). Since for |z| ≤ 2

|∂βx∂αy a(µz, y)| ≤ Cαβ(1 + |µz|2 + |y|2)m/2

≤ Cαβ5m/2µm(1 + |y|2)m/2

Lemma A.1 gives the estimates

|∂αy Ij(y) − ∂αy Ij−1(y)| ≤ Cα2−j(1 + |y|2)m/2
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which imply uniform convergence on every compact set for the sequence
∂αy Ij(y). Hence the limit I(y) of the sequence Ij(y) is in Am(Rp) and
satisfies ∂αy I(y) = limj→∞ ∂αy Ij(y).

(iv) The estimates in the previous part show that

|∂αy (I(y) − Ij(y))| ≤ Cα2−J (1|y|2)m/2

so that the functions bj(y) = ψ(2−jy)(I(y) − Ij(y)) satisfy bj ∈ Am(Rp)
with |‖bj‖|m+p+1 ≤ C02−j . So we can write

∫
eir(y)(

∫
eiq(x)a(x, y)dx)dy = lim

j→∞

∫
eir(y)I(y)ψ(2−J y)dy

and∫
eir(y)I(y)ψ(2−jy)dy =

∫
eir(y)Ij(y)ψ(2−jy)dy +

∫
eir(y)bj(y)dy

Thus the property follows since

lim
j→∞

∫
eir(y)Ij(y)ψ(2−jy)dy =

∫
ei(q(x)+r(y))a(x, y)dxdy

and

|
∫
eir(y)bj(y)dy| ≤ Cr,m|‖bj‖|m+p+1 ≤ Cr,mC02−j

�

Lemma A.2. (Peetre’s Inequality) For any s ∈ R and all ξ, η ∈ Rn,

λs(ξ) ≤ 2|s|λ|s|(ξ − η)λs(η)

Proof. From the triangle inequality,

(1 + |ξ|) ≤ (1 + |ξ − η| + |η|) ≤ (1 + |ξ − η|)(1 + |η|)
Hence

λ2(ξ) ≤ (1 + |ξ|)2 ≤ (1 + |ξ − η|)2(1 + |η|2)
We also have

(1 + |η|)2 ≤ (1 + |η|)2 + (1 − |η|)2 = 2λ2(η)

(1 + |ξ − η|)2 ≤ (1 + |ξ − η|)2 + (1 − |ξ − η|)2 = 2λ2(ξ − η)

Thus
λ2(ξ) ≤ 22λ2(ξ − η)λ2(η)

When s ≥ 0 the result follows by taking the power s/2. When s < 0, switching ξ
and η gives

λ−s(η) ≤ 2−sλ−s(η − ξ)λ−s(ξ)
or

λs(ξ) ≤ 2−sλ−s(ξ − η)λs(η)
as desired. �

Lemma A.3. We have the following.
(i) If a ∈ Am(Rn), then

(2π)−η
∫
e−i〈y,η〉a(y)dydη = (2π)−n

∫
e−i〈y,η〉a(η)dydη = a(0)
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(ii) If α, β ∈ Zn+, we have

(2π)−n
∫
e−i〈y,η〉

yα

α!
ηβ

β!
dydη =

{
0 if α 6= β

(−i)|α|/α! if α = β

Proof. First note that 〈y, η〉 is nondegenerate as a quadratic form on R2n ∼= Rn×Rn.
To see this, recall that a quadratic form q(x) is said to be nondegenerate if the
associated bilinear form b(x, y) defined by b(x, y) = 1

2 (q(x + y) − q(x) − q(y)) is
nondegenerate. In the case when when q(x) = q(x1, x2) = x1 ·x2 for x = (x1, x2) ∈
R2n, we have

b(x, y) =
1
2
(q(x+ y) − q(x) − q(y))

=
1
2
((x1 + y1) · (x2 + y2) − x1 · x2 − y1 · y2)

=
1
2
(x1 · y2 − x2 · y1)

which is clearly nondegenerate.

(i) The first equality follows by symmetry and Fubini’s Theorem. For the
second equality, let φ ∈ S with φ(0) = 1. So by definition of oscillatory
integrals,

∫
e−i〈y,η〉a(η)dydη = lim

ε→0

∫
e−i〈y,ηa(η)φ(εy)φ(εη)dydη

Let z = εy, ζ = η/ε, and integrate in z to get
∫
e−i〈z,ζ〉a(εζ)φ(z)φ(ε2ζ)dzdζ =

∫
φ̂(ζ)a(εζ)φ(ε2ζ)dζ

When ε < 1, |φ̂(ζ)a(εζ)φ(ε2ζ)| ≤ |φ̂(ζ)||‖a‖|0(1 + |ζ|2)m/2|φ|0. This is
integrable, so by dominated convergence,

(2π)−n
∫
e−i〈y,η〉a(η)dydη = (2π)−n

∫
φ̂(ζ)a(0)dζ = φ(0)a(0) = a(0)

(ii) When α, β ∈ Zn+, we have yαe−i〈y,η〉 = (−Dη)αe−i〈y,η〉. Thus

(2π)−n
∫
e−i〈y,η〉

yα

α!
ηβ

β!
dydη = (2π)−n

∫
e−i〈y,η〉

Dα
η

α!

(
ηβ

β!

)
dydη

The function a(η) =
Dα

η

α!

(
ηβ

β!

)
= (−i)|α|

β!

(
β
α

)
ηβ−α satisfies a(0) = 0 when

β 6= α and a(0) = (−i)|α|/α! if β = α, so (ii) follows from (i).

�

Proof. (of Lemma 4.6) From the beginning of the proof of Lemma A.3, we see that
the quadratic form 〈y, η〉 is nondegenerate. Now, Peetre’s inequality gives that
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bx,ξ(y, η) := ā(x− y, ξ − η) is an amplitude when x, ξ are fixed:

|∂αy ∂βη ā(x− y, ξ − η)| ≤ Cαβλ
m−|β|(ξ − η)

≤ Cαβλ
m(ξ − η)

≤ Cαβ2|m|λ|m|(η)λm(ξ)

≤ Cαβ2|m|λm(ξ)(1 + |y|2 + |η|2)|m|/2

for all α, β ∈ Zn+, and so bx,ξ ∈ A|m|(R2n) with |‖bx,ξ‖||m|+2n+1 ≤ C0λ
m(ξ). By

Lemma 4.3, λ−m(ξ)a∗(x, ξ) is bounded. Also, since ∂αx ∂
β
ξ (a∗) = (∂αx ∂

β
ξ a)

∗ and
∂αx ∂

β
ξ a ∈ Sm−|β|, λ|β|−m∂αx ∂

β
ξ a

∗ is bounded for any α, β ∈ Zn+ by the same argu-
ment. Hence a∗ ∈ Sm.

Next we consider a#b. The function cx,ξ(y, η) := a(x, ξ− η)b(x− y, ξ) is also an
amplitude–if we fix (x, ξ), we have:

|∂αy ∂βη a(x, ξ − η)b(x− y, ξ)| = |∂βη a(x, ξ − η)||∂αy b(x− y, ξ)|

≤ Cβ(1 + |ξ − η|2)
m−|β|

2 Cα(1 + |ξ|2) l
2

≤ Cαβλ
m−|β|(ξ − η)

≤ Cαβ2|m|λm(ξ)(1 + |y|2 + |η|2)|m|/2

where the last line follows from the calculation for a∗. Thus cx,ξ ∈ A|m|(R2n) and
|‖cx,ξ‖||m|+2n+1 ≤ C0λ

m+l(ξ). Hence, as above, we see that λ−m−l(ξ)a#b(x, ξ) is
bounded. By the product rule,

∂αx ∂
β
ξ (a#b)(x, ξ) =

∑

(γ,δ)∈Z2n
+

(
(α, β)
(γ, δ)

)
(∂γx∂

δ
ξa)#(∂α−γx ∂β−δξ b)

Now, ∂γx∂δξa ∈ Sm−|δ| and ∂α−γx ∂β−δξ b ∈ Sl−|β−δ| for all γ, δ. Hence

|(∂γx∂δξa)#(∂α−γx ∂β−δξ b)| ≤ Cλm+l−|β|

and so λ|β|−m−l∂αx ∂
β
ξ (a#b)(x, ξ) is bounded for any α, β ∈ Zn+. So a#b ∈ Sm+l .

The asymptotic expansions are proved using Taylor’s formula:

ā(x− y, ξ − η) =
∑

|α+β|<2k

(−y)α

α!
(−η)β

β!
∂αx ∂

β
ξ ā(x, ξ) + rk(x, ξ, y, η)

rk(x, ξ, y, η) =
∑

|α+β|=2k

2k
(−y)α

α!
(−η)β

β!
rαβ(x, ξ, y, η)

rαβ(x, ξ, y, y, η) =
∫ 1

0

(1 − t)2k−1∂αx ∂
β
ξ ā(x− ty, ξ − tη)dt

The terms with |α + β| < 2k give after integration the terms of the expansion in
view of Lemma A.3(ii). Note that rk(y, η) ∈ A|m|+2k, so we can integrate by parts
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as in Lemma A.3(ii):
∫
e−i〈y,η〉

(−y)α

α!
(η)β

β!
rαβ(x, ξ, y, η)dydη

=
1
α

∫
(−η)β

β!
rαβ(x, ξ, y, η)Dα

η (e−i〈y,η〉)dydη

=
1
α!

∫
e−i〈y,η〉

∑

γ

(
α

γ

)
((−Dη)γ

(−η)β

β!
)((−Dn)α−γrαβ(x, ξ, y, η))dydη

=
∑

γ

(−i)|γ|γ!
α!β!

(
α

γ

)(
β

γ

)∫
e−i〈y,η〉(−η)β−γ (−Dα−γ

η rαβ(x, ξ, y, η)dydη

=
∑

γ

(−i)|γ|γ!
α!β!

(
α

γ

)(
β

γ

)∫
e−i〈y,η〉(−Dy)β−γ (−Dη)α−γrαβ(x, ξ, y, η)dydη

after a second integration by parts. By definition of rαβ,

(−Dy)β−γ (−Dη)α−γrαβ(x, ξ, y, η)

=
∫ 1

0

(1 − t)2k−1(−it)2k−2|γ|∂α+β−γ
x ∂α+β−γ

ξ ā(x− ty, ξ − tη)dt

γ ≤ α and γ ≤ β, so |γ| ≤ k and |α+ β − γ| ≥ k. Thus ∂α+β−γ
x ∂α+β−γ

ξ ā ∈ Sm−k .
Hence the equations above can be summarized by

∫
e−i〈y,η〉rk(x, ξ, y, η)dydη =

∫
e−i〈y,η〉sk(x, ξ, y, η)dydη

where the amplitude sk ∈ A|m−k| with |‖sk‖||m−k|+2n+1 ≤ Ckλ
m−k(ξ). So

λk−m(ξ)
∫
e−i〈y,η〉rk(x, ξ, y, η)dydη

is bounded. Then, arguing as above,
∫
e−i〈y,η〉rk(x, ξ, y, η)dydη ∈ Sm−k since ∂αx ∂

β
ξ rk

is the rest of index 2k in the Taylor expansion of ∂αx ∂
β
ξ ā(x− y, ξ− η), and ∂αx ∂

β
ξ ā ∈

Sm−|β|.
The argument asymptotic expansion for a#b is the same as the argument for

the asymptotic expansion for a∗, verbatim, except with ā(x − ty, ξ − tη) replaced
by a(x, ξ − tη)b(x− ty, ξ) and Sm replaced with Sm+l . �

Proof. (of Lemma 4.7)

(i) We have

(a∗)∗(x, ξ)

=(2π)−2n

∫
e−i〈z,ζ〉(

∫
e−i〈y,η〉ā(x− z − y, ξ − ζ − η)dydη)dzdζ

=(2π)−2n

∫
ei(〈y,η〉−〈z,ζ〉)a(x− z − y, ξ − ζ − η)dydηdzdζ

Make the change of variables Y = −y, H = η + ξ, Z = z + y, Z = ζ,
for which 〈y, η〉 − 〈z, η〉 = −〈Y,H〉 − 〈Z,Z〉 and dydηdzdζ = dY dHdZdZ.
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Then

(a∗)∗(x, ξ)

=(2π)−2n

∫
e−e(〈Y,H〉+〈Z,Z〉)a(x− Z, ξ −H)dY dY dZdZ

=(2π)−2n

∫
e−i〈Z,Z〉(

∫
e−i〈Y,H〉a(x− Z, ξ −H)dY dH)dZdZ

=(2π)−n
∫
e−i〈Z,Z〉a(x− Z, ξ)dZdZ

=a(x, ξ)

where the last two equalities are consequences of the fact that

(43) (2π)−n
∫
e−i〈y,η〉a(y)dydη = (2π)−n

∫
e−〈y,η〉a(η)dydη = a(0)

This can be seen as follows. First note that the quadratic form on Rn given
by (y, η) → 〈y, η〉 is nondegenerate (by the proof of Lemma A.3). Moreover,
the polynomial yαηβ is in A|α+β| so that the integrals in equation (43) are
indeed osciallatory integrals. The first equality follows by switching y and
η. Next, take φ ∈ S such that φ(0) = 1. By definition, we have

∫
e−i〈y,η〉a(η)dydη = lim

ε→0

∫
e−i〈y,η〉a(η)φ(εy)φ(εη)dydη

Making the change of variables εy = z, εξ = ζ and then integrating in z we
get

∫
e−i〈z,ζ〉a(εζ)φ(z)φ(ε2ζ)dzdζ =

∫
φ̂(ζ)a(εζ)φ(ε2ζ)dζ

When ε < 1, we have

|φ̂(ζ)a(εζ)φ(ε2ζ)| ≤ |φ̂(ζ)||‖a‖|0(1 + |ζ|2)m/2|φ|0
which is integral. Hence by dominated convergence,

(2π)−n
∫
e−〈y,η〉a(η)dydη = (2π)−n

∫
φ̂(ζ)a(0)dζ

= φ(0)a(0)

= a(0)

and we are finished.
(ii) The proof of Lemma 4.6 with k = m + 1 gives

a#b =
∑

|a|≤m

(1/α!)∂αξ aD
α
x b

for any b ∈ Sl, and the result follows.
(iii) Write

a#(b#c)(x, ξ)

=(2π)−2n

∫
e−i〈y,η〉a(x, ξ − η)(

∫
e−〈z,ζ〉b(x− y, ξ − ζ)c(x− y − z, ξ)dzdζ)dydη

=(2π)−2n

∫
e−i(〈y,η〉+〈z,ζ〉)a(x, ξ − η)b(x− y, ξ − ζ)c(x− y − z, ξ)dydηdzdζ
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Hence we have

(a#b)#c(x, ξ)

=(2π)−2n

∫
e−i〈Z,Z〉(

∫
e−i〈Y,H〉a(x, ξ − Z −H)b(x− Y, ξ −Z)dydH)c(x− Z, ξ)dZdZ

=(2π)−2n

∫
e−i(〈Y,H〉+〈Z,Z〉)a(x, ξ − Z −H)b(x− Y, ξ − Z)c(x− Z, ξ)dY dHdZdZ

These two quantities are equal through the change of variables y = Y ,
η = H + Z, z = Z − Y , and ζ = Z.

(iv) Next, we have

b∗#a∗(x, ξ)

=(2π)−3n

∫
e−i〈t,τ〉(

∫
e−i〈z,ζ〉 b̄(x− z, ξ − τ − ζdzdζ)(

∫
e−i〈y,η〉ā(x− t − y, ξ − η)dydη)dtdτ

=(2π)−3n

∫
e−i(〈y,η〉+〈z,ζ〉+〈t,τ〉) ā(x− t− y, ξ − η)b̄(x− z, ξ − τ − ζ)dydηdzdζdtdτ

=(2π)−3n

∫
e−i(−〈Y,H〉+〈Z,Z〉+〈X,Ξ〉) ā(x− Z, ξ −Z −H)(̄x− ZY , ξ −Z)dY dHdZdZdXdΞ

=(2π)−2n

∫
e−i〈Z,Z〉(

∫
e−i〈Y,H〉a(x− Z, ξ − Z −H)b(x− Z − Y, ξ − ZdY dH)dZdZ

after a change of variables (Y = z − t − y, H = η − τ − ξ, Z = t + y,
Z = τ + ξ, X = z − t, Ξ = η − τ ) and the last equality follows from
integration in (X,Ξ) and Lemma A.3(i). Thus the result follows since

a#b(x−Z, ξ−Z) = (2π)−n
∫
e−i〈Y,H〉a(x− Z, ξ −Z −H)b(x− Z − Y, ξ − Z)dY dH

(v) (I∗0 = (a∗(x,D)φ, ψ) is equal to the oscillatory integral

I∗0 = (2π)−2n

∫
ei〈x,ξ〉(

∫
e−i〈y,η〉ā(x− y, ξ − η)dydη)φ̂(ξ)ψ̄(x)dxdξ

= (2π)−2n

∫
ei(〈x,ξ〉−〈x−z,ξ−ζ〉)ā(z, ζ)φ̂(ξ)ψ̄(x)dxdξdzdζ

Similarly, I#
0 = (a#b(x,D)φ, ψ) is given by

I#
0 = (2π)−2n

∫
ei(〈x,ξ〉−〈x−z,ξ−ζ〉)a(x, ζ)b(z, ξ)φ̂(ξ)ψ̄(x)dxdξdzdζ

On the other hand, I∗ = (φ, a(x,D)φ) = (2π)−n(φ̂, ˆa(x,D)φ and I# =
(a(x,D)b(x,D)φ, ψ) are given by

I∗ = (2π)−2n

∫
φ̂(ξ)(

∫
ei〈z,ξ〉(

∫
e−i〈z,ζ〉ā(z, ζ)(

∫
ei〈x,ζ〉ψ̄(x)dx)dζ)dz)dξ

I# = (2π)−2n

∫
(
∫
ei〈x,ζ〉a(x, ζ)(

∫
e−i〈z,ζ〉(

∫
e〈z,ξ〉b(z, ξ)φ̂(ξ)dξ)dz)dζ)ψ̄(x)dx

Thus it suffices to show that I∗0 = I∗ and I#
0 = I#.

First, we show that I∗0 = I∗. Note that I∗0 is limε→0 I
∗
ε , where

I∗ε = (2π)−2n

∫
χ(εx)χ(εξ)χ(εz)χ(εζ)ei(〈x,ξ〉−〈x−z,ξ−ζ〉) ā(z, ζ)φ̂(ξ)ψ̄(x)dxdξdzdζ
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where χ ∈ S can be chosen so that χ = 1 in B1. Then we have I∗ − I∗ε =
I1
ε + I2

ε + I3
ε , where

I1
ε = (2π)−n

∫
ei〈z,ξ〉φ̂(ξ)(1 − χ(εξ)χ(εz))ā(z,D)ψ(z)dξdz

I2
ε = (2π)−2n

∫
ei(〈z,ξ〉−〈z,ζ〉) φ̂(ξ)ā(z, ζ)χ(εξ)χ(εz)(1 − χ(εζ))ψ̂(ζ)dξdzdζ

I3
ε = (2π)−2n

∫
ei(〈x,ζ〉+〈z,ξ〉−〈z,ζ〉) φ̂(ξ)ā(z, ζ)χ(εξ)χ(εz)χ(εζ)(1 − χ(εx))ψ̄(x)dξdzdζdx

The integral I1
ε → 0 as ε → 0 by dominated convergence. The integrals I2

ε

and I3
ε also go to 0 as ε → 0, by the following result, Lemma A.4. FIX

THIS
(vi) Finally, we show that I#

0 = I#. (similar to above, add)

�

Lemma A.4. Let a(x, y) ∈ Am(Rn×Rp), φ be a real valued function, and χ, ψ, υ ∈
S with χ|B1(0) ≡ 1. Then

lim
ε→0

∫
eiφ(x,y)a(x, y)υ(εx)(1 − χ(εy))ψ̄(y)dxdy = 0

Proof. Let I be the integral in the above limit. Setting z = εx gives

I =
∫
eiφ(z/ε,y)a(z/ε, y)υ(z)(1 − χ(εy))ψ̄(y)ε−ndzdy

By definition of |‖a‖|0, we have that

|a(z/ε, y)| ≤ |‖a‖|0(1 + |z/ε|2 + |y|2)m/2

≤ |‖a‖|0ε−m(1 + |z|2)m/2(1 + |y|2)m/2

When y ∈ supp(1 − χ(εy)), |y| ≥ 1/ε, and so

|ψ̄(y)| ≤ |ψ|2(m+n+p)

(
1 + |y|2

1 + p

)−m−n−p

≤ Cψε
m+n+p(1 + |y|2)−

m+n+p
2

when y ∈ supp(1 − χ(εy)). Thus,

|eiφ(z/ε,y)a(z/ε, y)υ(z)(1−χ(εy))ψ̄(y)ε−n| ≤ εp|‖a‖|0Cψ(1+|z|2)m/2|υ(z)|(1+|y|2)−
n+p

2

Integrating gives the desired result. �

Proposition A.5. (Leibniz’s rule) Let u ∈ D′(Υ), a ∈ C∞(Υ), and P (ξ) be a
polynomial in the n variables ξ1, · · · , ξn. If Dj denotes −i∂xj (only x derivatives,
no ξ derivatives), and P (D) is the differential operator obtained by replacing ξj
with Dj , then

(44) P (D)(au) =
∑

α

(Dαa)(P (α)(D)u)/α!

where P (α)(ξ) = ∂|α|P (ξ)/∂ξα1
1 · · ·ξαn

n = i|α|DαP (ξ)
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Proof. If φ ∈ C∞
0 (Υ), recall the definitions

(Dku)(φ) := −u(Dkφ)

(au)(φ) := u(aφ)

The basic product rule generalizes easily, as follows:

((Dka)u)(φ) + (a(Dku))(φ) = u((Dka)φ) + (Dku)(aφ)

= u((Dka)φ) − u(Dk(aφ))

= u((Dka)φ) − u((Dka)φ) − u(a(Dkφ))(45)

= −u(a(Dkφ))

= (Dk(au))(φ)

Repeatedly applying (45), we see that

P (D)(au) =
∑

α

(Dαa)Qα(D)u

for some polynomial Qα in D1, · · · , Dn.
It remains to show that Qα(D) = P (α)(D)/α!. Notice that P (D)ei〈x,ξ+η〉 =

P (ξ+ η)ei〈x,ξ+η〉 . Thus if we take for the moment a(x) = ei〈x,ξ〉 and u(x) = ei〈x,η〉,
we have

P (ξ + η)ei〈x,ξ+η〉 = P (D)ei〈x,ξ+η〉

= P (D)(ei〈x,ξ〉ei〈x,η〉)

=
∑

α

(Dαei〈x,ξ〉)Qα(D)ei〈x,η〉)

= ei〈x,ξ+η〉
∑

α

ξαQα(η)

and hence P (ξ+η) =
∑

α ξ
αQα(η). By Taylor’s formula, Qα(η) = P (α)(η)/α!, and

we are finished. �

Appendix B. Index of notation

• If u ∈ L1, we define the Fourier transform û of u by û(ξ) =
∫
e−i〈x,ξ〉u(x)dx

(recall that the Fourier Transform extends continuously to functions v ∈
L2). Thus we have the following formulas for φ ∈ S:

– For α ∈ Zn+, we have D̂α
xφ(ξ) = ξαφ̂(ξ) and x̂αφ(ξ) = (−Dξ)αφ̂(ξ)

– For all u ∈ L1, (û, φ) = (ǔ, φ̂)

– (Inversion formula) ̂̂
φ = (2π)nφ̌, i.e. φ(x) = (2π)−n

∫
ei〈x,ξφ̂(ξ)dξ

– (Parseval’s formula) For any ψ ∈ S, (φ̂, ψ̂) = (2π)n(φ, ψ)
• Hs is the Sobolev space with exponent s, and

‖u‖2
s = (2π)−n

∫
(1 + |ξ|2)s|û(ξ)|2dξ < ∞

for u ∈ Hs.
• S(Rn) denotes the Schwarz space of rapidly decreasing functions
• D′(Υ) denotes the space of distributions on Υ
• λs(ξ) = (1 + |ξ|2)s/2
• If uv̄ ∈ L1, then by definition (u, v) =

∫
u(x)v̄(x)dx
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• Dj = −i∂j and Dα = (−i)|α|∂α
• A ⊂⊂ B means Ā ⊂ B and Ā compact.
• tP denotes the adjoint of P given by

∫
(Pu)(v) =

∫
u(tPv) whenever u or

v has compact support and both u and v are smooth. Notice this is not the
transpose with respect to the inner product (u, v) =

∫
uv̄dx.
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