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Introduction

We would like to study the space of smooth cubic surfaces in P3 when each
surface is considered only up to projective linear transformation. Brundu and
Logar ([1], [2]) define an action of the automorphism group of the 27 lines of a
smooth cubic on a certain space of cubic surfaces parametrized by P4 in such
a way that the orbits of this action correspond bijectively to the orbits of the
projective linear group PGL4 acting on the space of all smooth cubic surfaces
in the natural way. They prove several other results in their papers, but in
this paper (the author’s senior thesis at the University of Washington) we focus
exclusively on presenting a reasonably self-contained and coherent exposition of
this particular result. In doing so, we chose to slightly modify the action and
ensuing proof, more aesthetically than substantially, in order to better reveal
the intricate relation between combinatorics and geometry that underlies this
problem. We would like to thank Professors Chuck Doran and Jim Morrow for
much guidance and support.

The Space of Cubic Surfaces

Before proceeding, we need to define terms such as “the space of smooth cubic
surfaces”. Let W be a 4-dimensional vector-space over an algebraically closed
field k of characteristic zero whose projectivization P(W ) = P3 is the ambient
space in which the cubic surfaces we consider live. Choose a basis (x, y, z, w) for
the dual vector-space W ∗. Then an arbitrary cubic surface is given by the zero
locus V (F ) of an element F ∈ S3W ∗ ⊂ k[x, y, z, w], where SnV denotes the nth

symmetric power of a vector space V — which in this case simply means the
set of degree three homogeneous polynomials. Let us write such a polynomial
explicitly as

F (x, y, z, w) = a1x
2y + a2x

2z + a3xy2 + a4xyz + a5xyw + a6xz2 + a7xzw +
a8y

2w + a9yzw + a10yw2 + a11x
3 + a12x

w + a13xw2 + a14y
3 + a15y

2z +
a16yz2 + a17z

3 + a18z
2w + a19zw2 + a20w

3.

Then we can take (a1 : . . . : a20) to be homogeneous coordinates for a pro-
jective space P19 whose points are in bijection with the cubic surfaces in P3
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(and we often blur the distinction between these points p and the corresponding
cubic surfaces Sp).

Definition: The projective space P19 constructed above is known as the
space of cubic surfaces. If Σ ⊂ P19 is the closed subvariety of singular cubic
surfaces (i.e. the set of points in P19 that correspond to singular cubic surfaces
in P3), then P19 \ Σ is the space of smooth cubic surfaces.

We are interested in the effect of projective linear transformations (often
called projectivities) on cubic surfaces. Given such a transformation T : P3 →
P3, T ∈ PGL4, it is clear that T sends (smooth) cubic surfaces to (smooth)
cubic surfaces, i.e. it acts on the space of cubic surfaces P19 in such a way
that the space of smooth cubic surfaces P19 \ Σ is stable under this action. We
can understand this action explicitly as follows. Let Sp = V (F ), F ∈ S3W ∗ ⊂
k[x, y, z, w], be a cubic surface corresponding to the point p ∈ P19. Then T · p
is the point in P19 corresponding to the cubic surface V (T · F ), where T · F is
defined to be the cubic form given by F (T · (x : y : z : w)) (and this last action
is the natural one of PGL4 on P3).

Line Quintets

We now introduce a particular configuration of five projective lines in P3 that
we call a line quintet. These objects are quite useful because they ‘characterize’
projective linear transformations in a way that will be made precise shortly.

Definition: An line quintet (l1, . . . , l5) is an ordered quintuple of lines in
P3 such that:

• l2 meets l1, l3, and l5 in three distinct points.
• l4 meets l1 and l3 in two distinct points.
• There are no other intersections among the five lines.

Notation:

1. Let us name these five points of intersection as follows: A = l1 ∩ l2, B =
l1 ∩ l4, C = l3 ∩ l4, D = l2 ∩ l3, and E = l2 ∩ l5.

2. If T ∈ PGL4 is a projectivity and L = (l1, . . . , l5) is a line quintet,
then since T preserves incidence relations we get another line quintet
(T · l1, . . . , T · l5) that we denote by T · L.

The following two results are a crucial first step in classifying smooth cubic
surfaces up to projectivity.

Proposition: Every smooth cubic surface in P3 contains a line quintet.

Proof : Indeed, we show in a later section that there are 25920 ways to
choose a line quintet from among the 27 lines on a smooth cubic surface. ¤
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Quintet Lemma: If L = (l1, . . . , l5) and L′ = (l′1, . . . , l
′
5) are two line quin-

tets, then there exists a unique projectivity T ∈ PGL4 such that T · L = L′.

Proof : Unfortunately the author is still working through the details of this
proof. ¤

Corollary: If two projectivities agree on a line quintet, then they must be
equal.

Proof : Suppose T1 · L = T2 · L. Then T−1
2 T1 · L = L. The Quintet Lemma

says that there is a unique projectivity sending L to itself, which is clearly the
identity transformation. Thus T−1

2 T1 = id, and so T1 = T2. ¤

We may fix a particular line quintet L with nice (i.e. easy to work with)
coordinates and consider the family of smooth cubic surfaces that contain L.
The preceding results imply that every smooth cubic surface is projectively
equivalent to a member of this family: an arbitrary smooth cubic surface S must
contain a line quintet LS , and by the Quintet Lemma there is a projectivity T
sending LS to L which clearly carries S to a smooth cubic surface containing L.

For the rest of this paper we fix the line quintet L = (l1, . . . , l5) given by
l1 = V (y, z), l2 = V (x, y), l3 = V (x,w), l4 = V (x−w, y−z), l5 = V (x−y, z+w).

The intersection points as defined above are
A = (0:0:0:1), B = (1:0:0:1), C = (0:1:1:0), D = (0:0:1:0), E = (0:0:1:-1).

If S = V (F ) is a cubic surface with coordinates a1, . . . , a20, then the condi-
tion that S contains l1, l2, l3 is equivalent to having a11 = a12 = . . . = a20 = 0.
Next, S contains l4 ⇐⇒ F (x, y, y, x) = 0 ⇐⇒ a1 + a2 + a5 + a7 + a10 =
a3 + a4 + a8 + a9 = 0 and it contains l5 ⇐⇒ F (x, x, z,−z) = 0 ⇐⇒ a1 + a3 =
a2 + a4 − a5 − a8 = −a7 − a9 + a10 = 0. The set of points satisfying these
conditions is a linear subvariety of P19, and a little elementary algebra shows
that it is 4-dimensional (i.e. these conditions are independent), so that the
family of cubic surfaces containing L forms a projective space P4. If we take
a1, a2, a4, a5, a6 to be free parameters, then a3 = −a1, a7 = −a1−a5 +a4, a8 =
a2 + a4 − a5, a9 = a1 − a2 − 2a4 + a5, a10 = −a2 − a4. Therefore, we have a
natural injective linear map φ which sends a cubic surface in this family to the
corresponding point in the space of cubic surfaces,

φ : P4 −→ P19

(a : b : c : d : e) 7−→
(a : b : −a : c : d : e : −a− d + c : b + c− d : a− b− 2c + d : −b− c : 0 : . . . : 0).

Of course, some of the cubic surfaces in this family (i.e. in the image of φ)
are singular. Let us gather such surfaces into a set that we call ΣL,

ΣL := φ−1(Σ).
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Remark: Later we will be able to give a precise description of ΣL.

This brings us one step closer to understanding the space of smooth cubic
surfaces, as the following simple result illustrates.

Proposition: If ψ : PGL4× (P4 \ΣL) → P19 is defined by (T, q) 7→ T ·φ(q),
then im(ψ) = P19 \ Σ.

Proof : If q ∈ P4 \ ΣL, then φ(q) ∈ P19 \ Σ, so T · φ(q) ∈ P19 \ Σ for
all T ∈ PGL4 because the space of smooth cubic surfaces is stable under this
action, hence im(ψ) ⊆ P19 \ Σ.

Conversely, if S ∈ P19 \ Σ (i.e. if S is a smooth cubic surface), then by an
earlier comment S is projectively equivalent to a smooth cubic surface contain-
ing L, say T · S ⊃ L for some T ∈ PGL4. This means that T · S ∈ φ(P4 \ ΣL),
say T · S = φ(q) where q ∈ P4 \ ΣL. Then S = T−1 · φ(q), so S ∈ im(ψ). ¤

Therefore, we have a space P4\ΣL that seems like a reasonable candidate for
the space of orbits of smooth cubic surfaces under the action of PGL4. However,
this space is too large — in the sense that different points in the image of ψ
correspond to the same orbit. To remedy this situation we need to carefully
investigate the configuration of lines on a smooth cubic surface.

Finding the Twenty-Seven Lines

It is well-known that a smooth cubic surface contains 27 lines. In this section we
describe an algorithmic method for determining these lines on a given smooth
cubic surface S ∈ P19 \ Σ. Along the way several concepts will be developed
that are fundamental in determining how to reduce P4 \ ΣL to a small enough
space so that its points correspond bijectively to projectivity classes of smooth
cubic surfaces.

Suppose l is a line contained in S. Since l lives in P3 we can represent it
as the intersection of two projective planes, i.e. l = V (f, g) for some linear
forms f, g ∈ S1W ∗. It is convenient to work with the pencil of planes through
l, which we denote by πl(p, q) := V (pf + qg). Indeed, we may see that any
plane containing l is in this pencil by choosing coordinates so that l = V (x, y)
and then noting that an arbitrary plane π = V (px + qy + rz + sw) contains l
if and only if r = s = 0, or in other words, if and only if π = πl(p, q) for some
(p : q) ∈ P1.

Since S = V (F ) has degree 3, when it is intersected with a plane the re-
sulting object will be a plane cubic curve. However, if the plane intersecting S
contains l, i.e. it is in the pencil πl(p, q), then this cubic curve will contain l
(recall that by assumption l ⊂ S), so that the degree three homogeneous poly-
nomial defining the curve will have a linear factor corresponding to l. Once this
linear term is factored off, the resulting degree 2 polynomial defines a conic in
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the plane πl(p, q). Let us denote this conic by Cl(p, q). We denote by Dl(p, q)
the determinant of this conic (more precisely, the determinant of the matrix
associated to the quadratic form defining this conic). Thus Cl(p, q) is singular
if and only if Dl(p, q) = 0 (see [3] if this is unfamiliar). Recall that a singular
plane conic is the union of two (not necessarily distinct) lines.

Summarizing this construction we have,

Geometrically: S∩πl(p, q) = l∪Cl(p, q) =

{
l ∪ l1 ∪ l2, if Dl(p, q) = 0
l∪(smooth conic), if Dl(p, q) 6= 0

Algebraically: F |pf+qg=0 =

{
(linear)(linear)(linear), if Dl(p, q) = 0
(linear)(quadratic), if Dl(p, q) 6= 0

Definition: Suppose l and l′ are two non-skew lines on a smooth cubic sur-
face and let π be the plane spanned by these two lines. Since π is in the pencil
of planes through l, we know that S ∩ π is the union of l and a conic. However,
since both l and l′ are contained in this intersection, we see that the conic must
contain l′ and hence is the union of l′ and another line. We denote this third
line by Sl′

l .

Claim: Equivalently, we may say that given two non-skew lines l, l′ ⊂ S, the
line Sl′

l is defined to be the unique line of S that meets both l and l′. Indeed,
the line Sl′

l defined above is coplanar with l and l′ (namely all three lines lie
in π), hence it must meet both these lines since two projective lines intersect if
and only if they are coplanar. Conversely, if l′′ is a line of S intersecting both l
and l′, say l′′ ∩ l = P and l′′ ∩ l′ = Q, then l′′ is the line spanned by these two
points, both of which lie in π, so l′′ is contained in π as well and thus it must
be the line Sl′

l . ¤

For concreteness, let l = V (x, y) and consider an arbitrary cubic surface con-
taining l. Such cubic surfaces are precisely those with a17 = a18 = a19 = a20 = 0
according to the coordinates specified earlier in this paper. Now πl(p, q) =
V (px+ qy), so if p 6= 0 we may restrict to this plane by making the substitution
x = − q

py. This yields the following:

F (− q
py, y, z, w) =

y
p3 [(a14p

3 − a3p
2q + a1pq2 − a11q

3)y2 + (a15p
3 − a4p

2q + a2pq2)yz + (a16p
3 −

a6p
2q)z2 + (a8p

3− a5p
2q + a12pq2)yw + (a9p

3− a7p
2q)zw + (a10p

3− a13p
2q)w2]

The matrix associated to the above quadratic form is:




a14p
3 − a3p

2q + a1pq2 − a11q
3 a15p

3 − a4p
2q + a2pq2 a8p

3 − a5p
2q + a12pq2

a15p
3 − a4p

2q + a2pq2 a16p
3 − a6p

2q a9p
3 − a7p

2q
a8p

3 − a5p
2q + a12pq2 a9p

3 − a7p
2q a10p

3 − a13p
2q



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For each line l that we know to be contained in S, we will be able to use the
determinant of this matrix to find many more lines of S. As will soon be shown,
we can easily develop an algorithm for finding all the lines of S once we know
any two non-skew lines of S.

Definition-Lemma: The determinant of the above matrix is a homoge-
neous polynomial in p and q of degree 9, but each term in it is divisible by p4

so the corresponding conic splits into two linear factors if and only if (p : q) is
a root of the resulting degree 5 homogeneous polynomial which we denote by
D̃l(p, q). Thus given a line l contained in S, we may find all five roots of D̃l(p, q),
say (pi : qi), . . . (p5 : q5), and the corresponding conics Cl(p, q) will each split
into two lines, both of which are contained in S, so that we will find up to 10
lines of S in this manner. We call these lines the lines of S associated to l.

Proposition: If l1, l2 ⊂ S are two given non-skew lines of a smooth cubic
surface S, then the 27 lines of S are exhausted by the lines associated to l1, l2,
and l3 := Sl1

l2
.

Proof : Suppose l is an arbitrary line of S. Consider the plane π spanned
by l1 and l2. By counting projective dimensions we know that l must intersect
π, and since l is contained in S this point of intersection must be contained in
S ∩ π = l1 ∪ l2 ∪ l3. Thus l must intersect some li for i ∈ {1, 2, 3}. But this
means that l will show up as a factor of the conic corresponding to one of the
roots of D̃li(p, q), and hence l is associated to li. ¤

Identifying the Singular Cubic Surfaces

With this machinery in place, we are almost ready to determine explicitly which
cubic surfaces that contain the fixed line quintet L are singular.

Lemma: If S is an irreducible cubic surface containing a line l such that
D̃l(p, q) has 5 distinct roots, then S is smooth on S \ l.

Proof : We may assume that l = V (x, y) ⊂ S = V (F ), so that F is of the
form in the above algorithm (i.e. a17 = . . . = a20 = 0). Suppose that P /∈ l is
a singular point. We can choose coordinates without loss of generality so that
P = (1 : 0 : 0 : 0). Because S is irreducible, the condition that P is a singular
point means precisely that ∂F

∂x (P ) = ∂F
∂y (P ) = ∂F

∂z (P ) = ∂F
∂w (P ) = 0. These

partial derivatives are:

∂F
∂x = 3a11x

2+2a1xy+2a2xz+2a12xw+a3y
2+a4yz+a5yw+a7zw+a13w

2,

∂F
∂y = a1x

2 + 2a3xy + a4xz + a5xw + 3a14y
2 + 2a15yz + 2a8yt + a16z

2 +
a9zw + a10w

2,

∂F
∂z = a2x

2 + a4xy + a7xt + a15y
2 + 2a16yz + a9yt,
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∂F
∂w = a12x

2 + a5xy + a7xz + 2a13xt + a8y
2 + a9yz + 2a10yt.

Thus vanishing at P means that a1 = a2 = a11 = a12 = 0, so

Dl(p, q) =

∣∣∣∣∣∣

a14p
3 − a3p

2q a15p
3 − a4p

2q a8p
3 − a5p

2q
a15p

3 − a4p
2q a16p

3 − a6p
2q a9p

3 − a7p
2q

a8p
3 − a5p

2q a9p
3 − a7p

2q a10p
3 − a13p

2q

∣∣∣∣∣∣
This is a rather messy polynomial, but with the help of a computer algebra

system we see that the discriminant of D̃l(p, q) with respect to both p and q
vanishes, so that indeed there is a repeated root. ¤

Proposition: An irreducible cubic surface S containing a pair of non-skew
lines l1, l2 is smooth if and only if the polynomials D̃li(p, q), i = 1, 2, have no
repeated roots and S is smooth at the point l1 ∩ l2.

Proof : Smoothness readily follows from this property by the preceding
lemma because the hypothesis for the lemma is satisfied for both D̃l1(p, q) and
D̃l2(p, q), hence S is smooth on (S\l1)∪(S\l2) = S\(l1∩l2), and by assumption
S is smooth at this remaining point l1 ∩ l2.

Conversely, if S is smooth then obviously S is smooth at l1 ∩ l2, so we just
need to show that D̃li(p, q) has no repeated roots for i = 1, 2. An easy way
to see this with the tools we have developed thus far is to try to find the 27
lines that we know to exist1 on S. We proved earlier that each of the 27 lines is
associated to l1, l2, or l3 := Sl1

l2
. Suppose, by contradiction, that D̃l1(p, q) has

at most 4 distinct roots. Then there will be at most 2 ∗ 4 = 8 lines associated
to l1, but l2 and l3 will be counted among them, so we only get at most 6 new
lines. Then associated to l2 we have at most the usual 2∗5 = 10 lines, although
these include l1 and l3, so we only get at most 8 more new ones. Similarly
there are no more than 8 new lines associated to l3. Thus there are at most
3 + 6 + 8 + 8 = 25 lines obtained in this fashion, contradicting the fact the we
should have found all 27. ¤

This allows us to determine which cubic surfaces that contain a given pair of
lines are singular, hence in particular we can explicitly describe the set ΣL ⊂ P4

of singular cubic surfaces containing L: if F is the equation of a general cubic
surface in the family P4 of cubic surfaces containing a line quintet (l1, . . . , l5),
and A := l1 ∩ l2, then this set is given by

V (∂F
∂x (A), ∂F

∂y (A), ∂F
∂z (A), ∂F

∂w (A))
⋃

V (Disc(D̃l1 , p),Disc(D̃l1 , q))
⋃

V (Disc(D̃l2 , p),Disc(D̃l2 , q)),

where Disc(f(x1, . . . , xn), xi) denotes the discriminate of a multivariate polyno-
mial with respect to the ith variable (i.e. treating all xj , j 6= i as constants). In
[1] this is explicitly calculated for L thereby producing a formula for ΣL.

1Brundu and Logar use computational methods related to the material developed in the
preceding section to prove directly that every smooth cubic surface contains 27 lines. We
decided to keep things cleaner by referring to the literature for this well-known fact.
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The 27 Lines and Their Incidence Relations

Theoretically it is possible to use the above algorithm to find all 27 lines on a
general smooth cubic surface and study the ways these lines intersect explicitly.
However, we find it much cleaner to refer to more general theory (see [4]) in
which each smooth cubic surface is obtained as the blow-up of 6 points of P2 in
general position, so that the 27 lines have a natural interpretation in terms of
exceptional divisors and strict transforms. This leads to the following notation
for the lines:

• E1, . . . , E6 correspond to the exceptional curves from blowing up 6 points
in the plane.

• Fij (1 6 i < j 6 6) correspond to the strict transform of the
(
6
2

)
= 15

lines passing through each pair of these points.

• G1, . . . , G6 correspond to the strict transform of the unique non-singular
conic containing any 5 of these 6 points (note that this is well-defined
because the 6 points are assumed to be in general position).

The incidence relations for this labeling of the lines is listed here in its entirety
in Table 1 (two lines intersect if and only if their corresponding entry is 1).

Using the incidence table we may observe that every smooth cubic surface
contains precisely 51840/2 = 25920 line quintets: there are 27 choices for the
line l1, 10 for l2, 8 for l3, 4 for l4, and 3 for l5, thus 27 · 10 · 8 · 4 · 3 = 25920 total
ways to choose lines (l1, . . . , l5) that satisfy the axioms of a line quintet. The
particular labeling we will use for the fixed line quintet L is (E1, G4, E2, G3, E3).

It is important to understand the automorphism group of this configuration
of lines (i.e. the group of permutations in the symmetric group on 27 letters
that preserve all incidence relations). A key fact is that any six mutually skew
lines determine the rest of the lines. Hartshorne proves this directly, but once
we know the structure of the lines, i.e. their incidence relations, we can verify
this fact: having labeled any six mutually skew lines as Ei, we know that Gj

is the unique line of S that meets all Ei for i 6= j, and Fij is the unique line
of S that meets Ei and Ej but is skew with all other Ek (k 6= i, j). Thus each
way to choose 6 mutually skew lines from among the lines on S uniquely deter-
mines an automorphism of the lines (by sending the Ei to these lines), and any
automorphism must send 6 mutually skew lines to 6 mutually skew lines so the
entire automorphism group is obtained in this way. By looking at the incidence
table we see that there are 27 choices for E1, 16 choices for E2, 10 for E3, 6
for E4, 2 for E5, and only 1 for E6, so there are 27 · 16 · 10 · 6 · 2 · 1 = 51840
automorphisms. In fact, it turns out (see [5]) that this group is isomorphic to
the Weyl group E6, but we do not actually need to work with this isomorphism.

In order to prove that there is an action of the automorphism group on the
space of smooth cubic surfaces in such a way that the orbits of this action are
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Table 1: The incidence matrix for the 27 lines on a smooth cubic surface.

E1 E2 E3 E4 E5 E6 G1 G2 G3 G4 G5 G6 F12 F13 F14 F15 F16 F23 F24 F25 F26 F34 F35 F36 F45 F46 F56

E1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

E2 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0

E3 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0

E4 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0

E5 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1

E6 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

G1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

G2 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0

G3 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0

G4 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0

G5 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1

G6 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

F12 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

F13 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1

F14 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1

F15 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0

F16 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0

F23 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1

F24 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1

F25 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0

F26 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 0 0

F34 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1

F35 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0

F36 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0

F45 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0

F46 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 0 1 0 0 0

F56 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 0
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in bijection with projectivity classes of smooth cubic surfaces, we need to work
very closely with the lines on various cubic surfaces and maps between these
lines that preserve incidence relations. It turns out to be quite convenient to
interpret this problem in the context of graph theory since many of the ideas
needed to study the lines on cubic surfaces for our purposes are standard ideas
when dealing with graphs and maps between graphs. Let us now develop this
connection.

A Graph-Theoretic Approach

We now restrict our attention to the category of graphs: the objects we consider
are graphs and the morphisms between them are graph homomorphisms. Recall
that a graph homomorphism

f : G = (VG, EG) → H = (VH , EH)

is a set-map on the vertex sets f : VG → VH such that edges are preserved: if
p, q ∈ VG are vertices connected by an edge pq ∈ EG of G, then f(p)f(q) ∈ EH

is an edge of H. The only graph homomorphisms we will need in this paper are
injective on the vertex sets, so that we do not need to worry about contracting
two connected vertices down to one vertex with a loop. In fact, we can restrict
our category to simple graphs without any problem. For the remainder of the
paper we shall consider the graphs obtained from various sets of lines according
to their incidence relations. That is, given a set of lines L = {li} (which can
be either actual lines embedded in P3 or abstract labels such as Ei, Gj , Fkl) we
define a graph, also denoted by L, to have vertices indexed by the lines {li} and
edges lilj if and only if li ∩ lj 6= ∅ for i 6= j. Let us now fix some notation for
the objects that arise in the course of the proof.

Definition: Let S ∈ P4 \ ΣL be a smooth cubic surface.

• L := {E1, · · · , E6, G1, · · · , G6, F12, · · · , F56} is the graph given by the 27
abstract labels.

• LS := {l ⊂ S} is the graph of the actual 27 lines on S.

• L := {E1, G4, E2, G3, E3} is the graph of the labels of a fixed line quintet.

• LS := {l ∈ LS | l ∈ L} is the graph of the fixed line quintet used to define
the space P4 \ ΣL.

• It is clear that there are natural inclusions L ↪→ L and LS ↪→ LS . Addi-
tionally, if S′ is another element of P4 \ΣL, then by definition it contains
the line quintet L as well. Thus there is a natural isomorphism LS →̃ LS′ ,
which simply means that we may interpret the lines of L either as lines of
S or as lines of S′.

• We proved earlier that for any non-skew lines l, l′, the line Sl′
l is the unique

line of S that intersects both l and l′. Accordingly, we can define a similar
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relation abstractly on the labels L. Given two labels l, l′ ∈ L such that ll′

is an edge, we write Ll′
l for the unique label that is joined to both l and l′

by an edge.

• G := Aut(L) ∼= E6 is the automorphism group of the graph L.

Given an arbitrary S ∈ P4 \ΣL, it is clear that we can label the line quintet
L according the labels in L — i.e. there is an isomorphism LS →̃ L. In fact,
since Aut(L) ∼= Z2 (as can easily be seen by looking at the graph of L), there
are two such maps. Let us fix one and call it φS . We would like to know how
many different ways there are to label all the lines of S once we have fixed this
labeling for the 5 lines of the fixed line quintet. This is rephrased and answered
precisely in the following proposition.

Proposition: Let S ∈ P4 \ ΣL, and let σ ∈ G be the involution defined
by permuting the indices 5 and 6, namely E5 ↔ E6, G5 ↔ G6, and Fi5 ↔ Fi6

for i ∈ {1, . . . , 4}. There are precisely two maps ΦS that make the following
diagram commute:

LS
⊂ - LS

L

φS

?
⊂ - L

ΦS

?

Moreover, they differ by composition with σ: if ΦS is one such map, then σ ◦ΦS

is the other one.

Proof : A moment’s thought reveals that the claimed result is equivalent to
saying that the automorphism group G̃ of the vertex-colored graph L̃, in which
each label l ∈ L is given a unique color and the remaining 22 labels are in a
distinct sixth color class, is precisely the group {1, σ}. The first step in proving
this reformulated version of the proposition is to show that fixing the 5 labels
of L actually fixes many more labels.

Consider the set

X := {l ∈ L | g(l) = l ∀g ∈ G}

We are initially only given that L ⊂ X. However, suppose l, l′ are intersecting
labels in X. Then we claim Ll′

l ∈ X as well. Indeed, it is clear that for any
g ∈ G we must have

g(Ll′
l ) = Lg(l′)

g(l) = Ll′
l .

Using this relation inductively, we see that X contains Ei and Gi for i = 1, . . . , 4,
Fij for 1 6 i < j 6 4, and F56. Indeed, LGj

Ei
= Fij , so we quickly get

F13, F14, F23, F24, F34 ∈ X. Next, LFi3
E3

= Gi for i = 1, 2, so G1, G2 ∈ X.
Finally, LF34

G3
= E4, LG2

E1
= F12, and LF34

F12
= F56, so we get E4, F12, F56 ∈ X. It

11



is clear from its definition that σ fixes each of the labels in L, hence each of the
above labels as well, but it does not fix any other labels. Thus X is precisely
equal to the set of labels described above. This proof will be complete once we
show that σ is in fact the only automorphism with this property.

Suppose g ∈ G satisfies g(l) = l for each l ∈ X. We want to show g ∈ {1, σ}.
Because E5 intersects G1, . . . , G4 and g preserves incidence relations, we must
have that g(E5) intersects g(G1) = G1, . . . , g(G4) = G4. By looking at the table
of incidence relations, we see that this implies g(E5) is either E5 or E6. For
the exact same reason we get that g(E6) is either E5 or E6, hence because g
is an automorphism we see that g either permutes E5 and E6 or it fixes both
of them. Similarly, g either permutes or fixes G5 and G6 because both of these
labels intersect g(E1) = E1, . . . , g(E4) = E4. Next, F15 and F16 both intersect
E1, G1 and do not intersect E2, E3, E4, G2, G3, G4, all of which lines in X, so
the incidence table allows us to see that g either fixes these two labels or per-
mutes them. A completely analogous observation shows that g either permutes
or fixes Fi5 and Fi6 for each of i = 1, . . . , 4. Thus, it only remains to show that
if g fixes any one of these pairs of labels, then it must fix all the other pairs as
well. Indeed, if g(E5) = E5 then since E5 intersects G6 we get that g(E5) = E5

intersects g(G6), so we must have g(G6) = G6, and since Fi5 = LGi

E5
we must

have g(Fi5) = g(LGi

E5
) = Lg(Gi)

g(E5)
= LGi

E5
= Fi5. Thus any automorphism that

fixes each of the lines in L is either the identity or σ. ¤

The Quintet Lemma tells us that projectivities are characterized by line
quintets. As we see in the preceding proposition and corresponding proof, la-
beling the lines of a quintet only determines a labeling on all the lines of S up
to an action of an order 2 permutation, but if we choose a label for a sixth line,
say E5, then there exists a unique way to extend the labeling L∪{E5} to all the
lines of S. This discrepancy of needing more information when working with
the combinatorics of the lines than when working with their projective geometry
gives rise to the heart of the theorem. In other words, it provides much of the
subtlety, difficulty, and intrigue in finding the appropriate action of G on P4\ΣL.

Rather than working directly with cubic surfaces containing the labeled line
quintet L, we need to study cubic surfaces that have an addition line specified
to play the role of E5.

Definition: For each cubic surface S ∈ P4 \ ΣL, fix a labeling

φS : LS →̃ L

of its specified line quintet and an extension of this labeling

ΦS : LS →̃ L.

We define a set Z := {(S, r) | ΦS(r) ∈ {E5, E6}} ⊂ (P4 \ ΣL) × Gr(2, 4),
where Gr(k, n) denotes the Grassmannian variety of k-dimensional subspaces of
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an n-dimensional vector space (so in this case, projective lines in P3). Now for
each z = (S, r) ∈ Z, let

Φz :=

{
ΦS if ΦS(r) = E5

σ ◦ ΦS if ΦS(r) = E6

Thus Φz is the unique way to extend the labeling on LS to all the lines of S in
such a way that r is labeled E5, where z = (S, r).

Remark: By looking at the incidence table it is easy to see that ΦS(r) ∈
{E5, E6} if and only if r intersects l4 and l5 but r does not intersect l1, l2 or l3,
where LS = (l1, . . . , l5). This gives a way to define Z entirely from incidence
relations.

By definition G is the automorphism group of the graph of labels L. Now
that we have a way to choose a well-defined labeling of the lines of S, we can
extend this action of G so that it acts as automorphisms of LS itself.

Definition: Given z = (S, r) ∈ Z and g ∈ G, we define a graph homomor-
phism gz : LS → LS by gz := Φ−1

z ◦ g ◦ Φz.

Proposition: For each z = (S, r) ∈ Z, the map l 7→ gz(l) is an action of G
on LS . Moreover, fixing such a z induces a group homomorphism

G = Aut(L) → Aut(LS)

given by g 7→ gz.

Proof : If z = (S, r) ∈ Z, l ∈ LS , and g, h ∈ G then

gz(hz(l)) = Φ−1
z (g(Φz(Φ−1

z (h(Φz(l)))))) = Φ−1
z (g(h(Φz(l)))) = (gh)z(l).

It is clear that each gz is a bijective graph map (i.e. a graph isomorphism) since
it is the composition of such maps, so we certainly have a set map Aut(L) →
Aut(LS), but the previous line shows that in fact this is a group homomorphism.
¤

We can now begin to develop the important bridge between the geometry
we are interested in, namely projectivities, and the combinatorics we are devel-
oping, namely automorphisms and labelings of the lines on cubic surfaces.

Definition: Let g ∈ G and z = (S, r) ∈ Z. We define g̃z ∈ PGL4 to be the
unique projectivity given by the Quintet Lemma that satisfies

g̃z · l = gz(l)

for each l ∈ LS . Note that g̃z sends lines of S to lines of g̃z · S and it preserves
incidence relations, so we can interpret g̃z as a graph isomorphism LS →̃ Lg̃z·S .

13



As a useful reminder of how all the objects we have thus far defined relate,
the reader may find it helpful to verify that the following diagram of graph
homomorphisms commutes:

g(LS) ⊂ - Lg̃z·S

LS

g

6

⊂ - LS

g̃z

6

gz - LS

L

φS

?
⊂ - L

Φz

? g - L

Φ−1
z

6

We can now define an action of G on the space Z which we will later descend
via projection π : (P4 \ ΣL)× Gr(2, 4) → P4 \ ΣL to an action on the space of
smooth cubic surfaces containing L.

Definition-Lemma: Given g ∈ G and z = (S, r) ∈ Z, write

g(z) := (g̃z
−1 · S, g̃z

−1 · gz(r))

This defines a right action of G on Z.

Proof : First, we need to verify that g(z) ∈ Z. Indeed, g̃z
−1 · S is a smooth

cubic surface and because S contains the line quintet gz(L) we know that g̃z
−1 ·S

contains g̃z
−1 · gz(L) = L, so we just need to see that g̃z

−1 · gz(r) intersects
l4, l5 and is skew with l1, l2, l3. This is quite straightforward: r must intersect
l4, because (S, r) ∈ Z, so gz(r) intersects gz(l4), hence g̃z

−1 · gz(r) intersects
g̃z
−1 · gz(l4) = l4, and the rest of the necessary incidence relations follow in

exactly the same manner.
Let us now verify that this is an action, i.e. that

(gh)(z) = h(g(z)),

or expanding out this expression according to the definition, we need to show

(g̃hz

−1 · S, g̃hz

−1 · (gh)z(r)) = (h̃g(z)

−1 · g̃z
−1 · S, h̃g(z)

−1 · hg(z)(g̃z
−1 · gz(r))).

The first step is showing that

g̃hz = g̃z ◦ h̃g(z).

By the Quintet Lemma we just need to show that these two projectivities agree
on each line of LS . On the one hand we have

g̃hz · l1 = (gh)z(l1) = Φ−1
z (gh(Φz(l1))) = Φ−1

z (gh(E1)).
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On the other hand,

g̃z · h̃g(z) · l1 = g̃z · hg(z)(l1) = g̃z · Φ−1
g(z)(h(Φg(z)(l1))) = g̃z · Φ−1

g(z)(h(E1)).

We claim that for each l ∈ L the following expression holds:

g̃z · Φ−1
g(z)(l) = Φ−1

z (g(l))

Assuming this for the moment, we quickly have that

g̃z · Φ−1
g(z)(h(E1)) = Φ−1

z (g(h(E1))) = Φ−1
z (gh(E1)),

and the similar statement holds for the other lines li ∈ LS , so indeed we will
have that g̃hz = g̃z ◦ h̃g(z) once we verify the claim.

We prove the claim in stages. The first step is to verify it for labels l ∈ L.
This is quite simple:

g̃z · Φ−1
g(z)(E1) = g̃z · l1 = gz(l1) = Φ−1

z (g(Φz(l1))) = Φ−1
z (g(E1)),

and similarly for E2, E3, G3, and G4. Next we show that it holds for E5:

g̃z · Φ−1
g(z)(E5) = g̃z · (g̃z

−1 · gz(r)) = gz(r) = Φ−1
z (g(Φz(r))) = Φ−1

z (g(E5)).

Finally, using the fact that all labels of L can be obtained from L∪E5 using the
Ll′

l construction, we will be done once we show that for any intersecting labels
l, l′ ∈ L such that the equality in the claim holds, i.e.

g̃z · Φ−1
g(z)(l) = Φ−1

z (g(l)) and g̃z · Φ−1
g(z)(l

′) = Φ−1
z (g(l′)),

then we also have
g̃z · Φ−1

g(z)(L
l′
l ) = Φ−1

z (g(Ll′
l )).

Indeed, given l, l′ with this hypothesis, a little thought easily shows that

g̃z ·Φ−1
g(z)(L

l′
l ) = g̃z · (g̃z

−1 ·S)
Φ−1

g(z)(l
′)

Φ−1
g(z)(l)

= S
g̃z·Φ−1

g(z)(l
′)

g̃z·Φ−1
g(z)(l)

= S
Φ−1

z (g(l′))
Φ−1

z (g(l))
= Φ−1

z (g(Ll′
l )).

This completes the proof of the claim and hence completes the proof of the
lemma. ¤

Definition-Lemma: Consider the natural projection

π : (P4 \ ΣL) × Gr(2, 4) → P4 \ ΣL.

Given a cubic surface S ∈ P4 \ ΣL, let z ∈ π−1(S) be an element in the fiber
over S. The only other element in this fiber is σ(z). More importantly, if we
write

g · S := π(g−1(z)),
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then this defines a left action of G on P4 \ ΣL.

Proof : If z = (S, r) is in the fiber over S, we want to see that π−1(S) =
{z, σ(z)}. We already know that π has degree 2, so it enough to show that
π(σ(z)) = S. This is equivalent to showing that σ̃z is the identity transfor-
mation, and by the Quintet Lemma we only need to verify that it acts as the
identity on LS . Indeed,

σ̃z · l1 = σz(l1) = Φ−1
z (σ(Φz(l1))) = Φ−1

z (σ(E1)) = Φ−1
z (E1) = l1,

and similarly for the other elements of LS . From this it immediately follows
that the purported action is at least well-defined.

We now want to show that

(gh) · S = g · (h · S).

Let z ∈ π−1(S) and z′ ∈ π−1(π(h−1(z))). By the preceding paragraph we know
that z′ = h−1(z) or z′ = σ(h−1(z)). Thus,

g · (h · S) = g · π(h−1(z)) = π(g−1(z′)) =

{
π(g−1(h−1(z))), or
π(g−1(σ(h−1(z))))

which in the first case is clearly π((h−1g−1)(z)) = π((gh)−1(z)) = (gh) ·S, since
the action of G on Z is a right action. In the latter case it is enough to recall
that σ̃x is the identity transformation for any x ∈ Z, so the extra term of σ
does not have any effect once we project down with π, and so the same equality
holds. ¤

Having verified the definition of this action, we will have completed the proof
of the main theorem as soon as we show that the orbits of this action are in
bijective correspondence with projectivity classes of smooth cubic surfaces.

Theorem: Suppose S, S′ are two smooth cubic surfaces. There exists a pro-
jectivity T ∈ PGL4 satisfying T ·S = S′ if and only if there is an automorphism
g ∈ G satisfying g · S = S′.

Proof : From what we have discussed previously in this paper regarding line
quintets, it is enough to show this for cubic surfaces S, S′ ∈ P4 \ ΣL. Suppose
S and S′ are in the same orbit, i.e. S′ = g−1 · S = π(g(z)), where z = (S, r) ∈
π−1(S). Then g(z) = (g̃z

−1 · S, g̃z
−1 · gz(r)), so S′ = π(g(z)) = g̃z

−1 · S and
hence S′ is projectively equivalent to S.

Conversely, suppose that S′ = T · S for some T ∈ PGL4. Let z ∈ π−1(S)
and z′ ∈ π−1(S′). Consider the map L→ L given by the composition:

L
Φ−1

z′−−−→ LS′
T−1

−−−→ LS
Φz−−→ L
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i.e. l 7→ Φz(T−1 ·Φ−1
z′ (l)). This is certainly an automorphism because each map

in the composition is a graph isomorphism, hence there exists g ∈ G such that

g(l) = Φz(T−1 · Φ−1
z′ (l)).

We claim that the projectivity gz induces is precisely T−1. By the Quintet
Lemma it is enough to show that g̃z sends each li ∈ LS to T−1 · li. Indeed,

g̃z·l1 = gz(l1) = Φ−1
z (g(Φz(l1))) = Φ−1

z (Φz(T−1·Φ−1
z′ (Φz(l1)))) = T−1·Φ−1

z′ (E1) = T−1·l1,

and similarly for the other li ∈ LS . Thus g̃z = T−1.
Using this allows us to see that

g(z) = (g̃z
−1 · S, g̃z

−1 · gz(r)) = (T · S, T · gz(r)),

and so S′ = T · S = π(g(z)) = g−1 · S, as desired. ¤

17



References

[1] M. Brundu and A. Logar, “Parametrization of the orbits of cubic surfaces”,
Transformation Groups 3 (1993), 209-239.

[2] M. Brundu and A. Logar, “Classification of cubic surfaces with computa-
tional methods”, available at http://www.dmi.units.it/ brundu/.

[3] M. Reid, Undergraduate Algebraic Geometry, Cambridge University Press
(1988).

[4] R. Hartshorne, Algebraic Geometry, Springer-Verlag (1977).

[5] Yu. Manin, Cubic Forms, Elsevier Science Publishers (1986).

18


