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1 Introduction

Attempts by persons such as Robert Brown to understand the motion of pollen grains sus-
pended in a fluid (1828) and Bachelier to understand the stock market (1900) provided
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impetus for the development of a mathematical theory of Brownian motion during the twen-
tieth century [3, p. 301]. Today, the theory of Brownian motion has assumed a central role
in modern probability theory, and it has deep connections in other fields of mathematics as
well. Brownian motion is not only an applied tool, but also a concept of enormous theoretical
importance.

The purpose of this paper is to give a mathematical exposition on Brownian motion,
emphasizing the concept’s theoretical underpinnings and basic properties. We spend §2 re-
viewing the concepts from probability theory needed for the definition and construction of
Brownian motion. Since Brownian motion is a Gaussian process, it is useful to develop some
general facts about Gaussian distribution in §3. In §4 we define the Wiener process, which
is the mathematical model for Brownian motion, and prove some of its some elementary
properties. (Note that while the term “Wiener process” refers to a particular model for the
concept of Brownian motion, following tradition, we will sometimes be sloppy and refer to
both by the same name. When we refer to Brownian motion, we always have the Wiener
process in mind.) A construction for the Wiener process is provided in §5 . Finally §6 intro-
duces conditional expectation and stopping times, and proves two remarkable homogeneity
conditions satisfied by Brownian motion, known as the weak and strong Markov properties.

This paper does not cover the many applications of Brownian motion in mathematics and
various scientific fields. However, in writing this paper, we had applications to problems in
differential equations in mind. In particular, the Markov property of Brownian motion can
be utilized to obtain solutions to the Dirichlet problem on a very general class of domains
(see Bass [1, Chapter 2]). As such, this paper would provide most of the background needed
for this direction of study. Certainly other applications, found in for example [1] or [5], would
become accessible as well.

The most essential prerequisite for understanding this paper is a knowledge of measure
theory. Familiarity with (measure-theoretic) probability and the basics of Fourier analysis
is also important. While the results which we need from probability theory are presented in
§2, this section is intended as a review rather than a thorough introduction. We also rely on
results from Fourier analysis for several of our proofs, and these results are presented in the
Appendices.

This paper draws upon a number of different sources. Most of the basic material on
probability theory can be found in Durrett [3], and material on measure theory can be found
in Folland [4] and Rudin [7]. The construction we give for the Wiener process is presented
by Bass [1] and Roger and Williams [6] but is originally due to Ciesielski [2]. Our proofs of
the Markov properties more or less follow those of Bass [1], with some modifications.
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2 Preliminaries

2.1 Probability Theory: Basic Definitions

Let Ω is a set, F a σ-algebra of subsets of Ω, and P a measure on F. If P (Ω) = 1,
we call the measure space (Ω,F, P ) a probability space. Measurable functions on Ω
are called random variables, and are most commonly denoted by the letters X, Y, or Z.
The codomain of a random variable X will usually be R or Rn; however, it could be any
measurable space. Later in this paper, for example, we will study random variables taking
values in C([0,∞),Rn), the space of continuous functions from [0,∞) into Rn (equipped
with a certain σ-algebra to be defined later). If (M,M) is a measurable space, every random
variable X : Ω → M has an associated σ-algebra σ(X) ⊂ F, defined by σ(X) = {X−1A :
A ∈M}. It is called the σ-algebra generated by X.

Probabilistic terminology differs from the standard terminology in analysis in a number
of cases. For example, if A ∈ F, the function 1A, defined by 1A(x) = 1 if x ∈ A and
1A(x) = 0 if x /∈ A, is called the indicator function for A. In other fields of analysis,
this function would be called the characteristic function for A and would be denoted by
χA. A certain property T (ω), depending on the elements ω ∈ Ω, is said to hold almost
surely (abbreviated a.s.) if T holds true except on a P -null set, in contrast to the usual
term almost everywhere used in other fields of analysis. For this paper, we will use the
conventional probabilistic terms and notation when working with a probability space, and
use the usual analytical terms and notation when working with another measure space (for
example Rn with Lebesgue measure). This should not cause any serious confusion.

If a random variable X takes values in Rn, the integral of X with respect to P is called
the expected value of X and is denoted by E[X]. Integration over a set A ∈ F is denoted
EA[X]. However, if we happen to be working with multiple probability measures, to avoid
ambiguity we may instead use the usual integration notation

∫
XdP . Of course, the definition

of expected value only applies if X ≥ 0 or E|X| < ∞. If E|X| < ∞, we write X ∈ L1(P ).
More generally, if E|X|p <∞ for any for 0 < p <∞, we write X ∈ Lp(P ).

Among the primary objects of interest in probability theory are the distributions of
random variables. (This term should not to be confused with a related but distinct concept
of the same name, occurring in other fields of analysis and physics.) Given a random variable
X, taking values in a measurable space (M,M) (e.g. M = Rn and M = Bn, the Borel σ-
algebra) the law, or distribution, of X is the probability measure PX on M defined by

PX(B) = P (X ∈ B) for all B ∈M. (1)

If (M,M) = (Rn,Bn), sometimes the distribution of X is given by a density function, that
is a nonnegative function ρ on Rn such that PX(B) =

∫
B
ρdm, where m denotes Lebesgue

measure. If X and Y are random variables, the notation X =d Y means that PX = PY .
IfX1, ..., Xm are random variables taking values in measurable spaces (M1,M1), ..., (Mk,Mk)

respectively, we can regard the vector [X1, ..., Xk]
T as a random variable in the product space∏k

j=1Mj, equipped with the product σ-algebra
⊗k

j=1 Mj (see Folland [4, §1.2]). The joint

distribution of X1, ..., Xk is then defined to be the distribution of [X1, ..., Xk]
T in

⊗k
j=1Mj.

For example, if all of the Xj’s take values in R with the Borel σ-algebra B, then the joint dis-
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tribution of the Xj’s would be the distribution of [X1, .., Xk]
T in Rk with the Borel σ-algebra

Bk.

Remark 2.1. Because the measure P is finite, a probability space is often easier to work
with than more general measure spaces. For example, we have the especially simple situation
that Lq(P ) ⊂ Lp(P ) whenever q ≥ p. To prove this, suppose X ∈ Lq(P ), let A = {ω ∈ Ω :
|X| ≤ 1}, and let B = {ω ∈ Ω : |X| > 1}. Then EA|X|p ≤ P (A) <∞, while |X|p ≤ |X|q on
B so EB|X|p ≤ EB|X|q <∞. Therefore, E|X|p = EA|X|p + EB|X|p <∞.

Remark 2.2. In addition, verifying dominated convergence theorem is often easier in the
probabilistic setting. Specifically, suppose that Xk is a sequence of random variables such
that Xk → X a.s, and suppose we want to show that limk→∞E[Xk] = E[X]. The dominated
convergence theorem always applies when the sequence is bounded, say |Xk| < b for all k,
because we may take the constant random variable b as our dominating function. While in
other settings in analysis using the dominated convergence theorem may require a careful
argument, proofs in this paper will often just use the phrase “by dominated convergence”
with no further explanation, when it is obvious we are working with a bounded sequence of
random variables.

Before moving on, let us prove the following useful fact

Proposition 2.3 (Borel-Cantelli Lemma). Let (Ω,F, P ) be a probability space, and suppose
{An}∞n=1 is a sequence of sets in F such that

∑
P (An) <∞. Then P (∩∞n=1 ∪∞j=n An) = 0.

Proof. Observe that P (∩∞j=1 ∪∞n=j An) = limj→∞ P (∪∞n=jAj). If
∑
P (An) <∞, then

lim
j→∞

P (∪∞n=jAj) ≤ lim
j→∞

∞∑
n=j

P (An)→ 0 as j →∞. (2)

Hence, the result follows.

2.2 The Probabilistic Way of Thought

A notable characteristic of probability theory is that, in contrast to other fields of analysis,
the spaces on which functions (i.e. random variables) are defined, play a somewhat peripheral
role. If we want to understand some “space” K (e.g. a subset of Rn, a graph, a set continuous
functions, a collection of real world data, etc.), the probabilistic approach to the problem
is to study random variables X : Ω → K, taking advantage of their formal properties. We
draw conclusions about K itself by examining the joint and individual distributions of the
random variables, which weight objects in K in various ways.

Within this (somewhat over-simplified) paradigm, essentially any probability space will
do, provided that the random variables have the same formal properties, the same dis-
tributions, and the same joint distributions. This idea is made precise by the notion of
an extension of a probability space. Given a probability space (Ω,F, P ), a probability
space (Ω′,F′, P ′) is said to extend the original probability space if there exists a measur-
able mapping ϕ : Ω′ → Ω, such that the mapping ϕ−1 : F → F′ preserves probabilities,
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i.e. P (A) = P ′(ϕ−1(A)) for all A ∈ F. If (M,M) is a measurable space, let us temporar-
ily introduce the notation VΩ(M,M) to denote the set of all random variables from Ω into
(M,M). The next proposition says that probability space extensions are characterized by
the fact that they preserve distributions. Hence, from an abstract point of view, probability
theory can regarded as the study of properties of probability spaces which are preserved
under extensions.

Proposition 2.4. A probability space (Ω′,F′, P ′) extends a probability space (Ω,F, P ) if and
only if, for each measurable space (M,M), there exists a map Φ : VΩ(M,M) → VΩ′(M,M)
such that, for all X ∈ VΩ(M,M), X =d Φ(X).

Remark 2.5. Of course, the map Φ also preserves joint distributions, since the joint distri-
bution of a collection of random variables is the distribution of a particular random variable.

Proof. If (Ω′,F′, P ′) extends (Ω,F, P ) via the mapping ϕ : Ω′ → Ω, and (M,M) is a mea-
surable, space define Φ : VΩ(M,M) → VΩ′(M,M) by Φ(X) = X ◦ ϕ. Then for any A ∈ M,
P (X ∈ A) = P (X−1A) = P ′(ϕ−1X−1A) = P ′(X ◦ ϕ ∈ A). Hence X =d Φ(X).

Conversely, suppose such a map Φ exists for all measurable space (M,M). Take (M,M) =
(Ω,F), let I be the identity random variable on (M,M), and let ϕ = Φ(I). Then ϕ is a
measurable map from Ω′ into Ω. Moreover, if A ∈ F, then P (A) = P (I ∈ A) = P ′(Φ(I) ∈
A) = P ′(ϕ−1(A)). Hence ϕ−1 preserves probabilities. Hence (Ω′,F′, P ′) extends (Ω,F, P )
via the mapping ϕ.

2.3 Independence

One concept more or less unique to probability theory is that of independence. This concept
comes in a number of different guises, which we enumerate below.

• If (Ω,F, P ) is a probability space, two sets F1, F2 ∈ F are said to be independent if
P (F1 ∩ F2) = P (F1)P (F2).

• Two sub-σ-algebras F1,F2 ⊂ F are said to be independent if, for every F1 ∈ F1 and
every F2 ∈ F2, F1 and F2 are independent.

• Two random variables X1 and X2 are said to be independent if the σ-algebras which
they generate are independent.

• A finite collection of sets F1, F2, ..., Fn in F is said to be independent if, whenever
I ⊂ {1, 2, ..., n}, P (∩i∈IFi) =

∏
i∈I P (Fi).

• Independence of a finite collection of σ-algebras F1,F2, ...,Fn and independence of a
finite collection of random variables X1, X2, ...Xn are defined in obvious analogy to the
previous cases.

• Finally, an arbitrary collection {Fα}α∈A of sets in F is said to be independent if every
finite subcollection is independent, and similarly for arbitrary collections of σ-algebras
and of random variables.
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Independent random variables have excellent formal properties. For example, expectation
distributes over products of random variables.

Proposition 2.6. Suppose X1, ..., Xn is a collection of independent random variables in
L1(P ). Then

E[X1X2 · · ·Xn] = E[X1]E[X2] · · ·E[Xn]. (3)

Proof. First, suppose that Xj = 1Aj , 1 ≤ j ≤ n, where each Aj ∈ F. Note that each
Aj ∈ σ(Xj) and X1X2 · · ·Xn = 1A1∩···∩An . By independence

E[X1 · · ·Xn] = P (A1 ∩ · · · ∩ An) = P (A1) · · ·P (An) = E[X1] · · ·E[Xn]. (4)

Since the expected value operator is linear, it then follows that (3) holds whenever X1, ..., Xn

are simple functions. If we take X1, ..., Xn to be arbitrary elements of L1(P ), since the simple
functions are dense in L1(P ), for each 1 ≤ j ≤ n there exists a sequence of simple functions
{Xj,k}nk=1 such thatXj,k → Xj in L1. In fact, we may assume that |Xj,1| ≤ |Xj,2| ≤ · · · ≤ |Xj|
(see Folland [4, Theorem 2.10]). The equality (3) then follows by dominated convergence,
where |Xj| is our dominating function.

One reason why the concept of extensions for probability spaces is powerful is that it
allows us to easily obtain large collections of independent random variables. To show how
this may be accomplished, first we need to describe how the idea of product measure is
extended to arbitrary products of measure spaces. We will not present the full construction
here. For a detailed argument, see Williams [9] To sketch the key ideas of the construction, let
{(Ωα,Fα, Pα) : α ∈ A} be an arbitrary collection of probability spaces, and let Ω =

∏
α∈A Ωα.

For each α ∈ A, let πα : Ω→ Ωα be the projection map, and let F be the σ-algebra generated
by the projection maps πα (i.e. F is the smallest σ-algebra such that each πα is measurable).
Let A0 be the collection of all finite intersections ∩mj=1π

−1
αj

(Bj) where α1, ..., αm ∈ A and
each Bj ∈ Fαj . Let A be the set of all finite disjoint unions of sets in A0. Observe that the
σ-algebra generated by the sets in A is precisely F. Moreover, one can prove that A is an
algebra, i.e. is closed under finite intersections and the taking of complements. Now each
element R ∈ A takes the form

R =
n⋃
i=1

mi⋂
j=1

π−1
αi,j

(Si,j), (5)

where for each i, αi,1, ..., αi,mi are distinct elements of A, each each Si,j ∈ Fαi,j . Here we are
thinking of R is a union of n disjoint rectangles, with sides Si,j. We define a the set function
P0 on A by

P0(R) =
n∑
i=1

mi∏
j=1

Pαi,j(Si,j), (6)

which is just the sum of the “areas” of each rectangle. Note that in particular P0(Ω) = 1.
Of course, the representation (5) of elements of A is in general not unique, so one has to
check that P0 is well-defined. Having established this, one then proves

Lemma 2.7. P0 is a premeasure on the algebra A.
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We remark that even though as a product space Ω may have infinitely many factors, the
definition of P0 involves only finite products, and consequently the proof of the proposition
above follows essentially verbatim the typical argument that is given in the construction of
product measures on finite product spaces (see e.g. Folland [4, §2.5]). Using Carathéodory’s
extension theorem (see [4, Theorems 1.11 and 1.14]), one then can prove

Proposition 2.8. There exists a unique probability measure P on F such that P |A = P0.

In particular, the measure P is the outer measure on F induced by P0. In this construc-
tion, the σ-algebra F generated by the projection maps πα is called the product σ-algebra
on Ω, and the measure P is called the product measure on Ω. The concept of prod-
uct measure allows us to prove the following result, which will play an essential role in the
construction of Brownian motion.

Proposition 2.9. Suppose {Xα}α∈A is any (finite or infinite) collection of random vari-
ables on the probability space (Ω,F, P ). Then there exists an extension (Ω′,F′, P ′) and an
independent collection of random variables {Yα}α∈A on Ω′ such that Yα =d Xα for all α ∈ A.

Proof. Let Ω′ =
∏

α∈A Ω and let F′ be the corresponding product σ-algebra. For each α ∈ A,
let πα : Ω′ → Ω be the projection onto α’th factor of Ω′. As above, we define P ′ to be the
corresponding product measure on F′. Hence, for each α ∈ A and F ∈ F, P ′(π−1

α A) = P (A),
and if F1, ..., Fn ∈M, and α1, ..., αn are distinct elements of A, then

P ′(∩nj=1π
−1
αj
Fj) =

n∏
j=1

P (Fj). (7)

Moreover, it is clear that the probability space (Ω′,F′, P ′) is an extension of (Ω,F, P ), because
any one of the maps πα is a measurable map such that π−1

α preserves probabilities.
Let (M,M) be the measurable space which is the common codomain of the Xα’s. For each

α ∈ A, define Yα = Xα ◦ πα. Given distinct elements α1, ..., αn in A and sets B1, ..., Bn ∈M,
we have

P ′(Yαj ∈ Bj, for 1 ≤ j ≤ n) = P ′(∩nj=1π
−1
αj
X−1
αj
Bj)

=
n∏
j=1

P ′(π−1
αj
X−1
αj
Bj) =

n∏
j=1

P ′(Yαj ∈ Bj),
(8)

here using equation (7). This completes the proof.

2.4 Characteristic functions

Characteristic functions provide us with an efficient method to check when two random vari-
ables X and Y taking values in Rn have the same distribution. To describe these functions,
we begin by defining the Fourier transform of a finite measure. If µ is a finite measure
(think probability measure), the Fourier transform of µ is simply the function

µ̂(ξ) =

∫
e−2πix·ξdµ(x) (ξ ∈ Rn). (9)
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(This is of course in direct analogy to the definition of the usual Fourier transform of a
function f on Rn, denoted by f̂ . See Appendix B.)

If X is a random variable taking values in Rn, let PX denote the distribution of X. The
characteristic function of X is the function ϕ = ϕX defined to be the Fourier transform
of the measure PX , i.e.

ϕX = P̂X . (10)

A simple but useful observation is that, for any random variable X,

ϕX(ξ) =

∫
e−2πiξ·xdPX(x) = E[e−2πiξ·X ]. (11)

Further, in the special case where the distribution of X is given by a density function ρ, then

ϕX(ξ) =

∫
e−2πix·ξdPX(x) =

∫
e−2πix·ξρ(x)dx = ρ̂(ξ). (12)

Characteristic functions are useful because of the following result, which we will prove
using the Fourier inversion theorem (see Theorem 7.6),

Theorem 2.10. Any finite measure µ on Bn is uniquely determined by its Fourier transform
µ̂.

To prove this fact, first we need a lemma.

Lemma 2.11. Suppose µ is a finite measure on Bn, and suppose f ∈ L1(Rn). Then∫
f̂(x)dµ(x) =

∫
f(ξ)µ̂(ξ)dξ. (13)

Proof. This is simply a matter of applying Fubini’s Theorem. We have∫
f̂(x)dµ(x) =

∫∫
e−2πix·ξf(ξ)dξdµ(x)

=

∫
f(ξ)

∫
e−2πix·ξdµ(x)dξ =

∫
f(ξ)µ̂(ξ)dξ,

(14)

as required.

Proof of Theorem 2.10. Suppose µ1 and µ2 are two finite Borel measures such that µ̂1 = µ̂2.
Since the closed rectangles in Rn generate the Borel sets, to prove that µ1 = µ2, it is enough
to prove that µ1(R) = µ2(R) for any closed rectangle R ⊂ Rn. Let f = χR, and note that
f ∈ L1. Further, |f∨(x)| ≤

∫
|f(x)|dx = m(R) <∞, where m is Lebesgue measure on Bn),

so f∨ is bounded. Then, by Corollary 7.9, there exists a sequence of smooth L1 functions
{fj} such that fj → f a.e., and each f∨j ∈ L1. By the inversion theorem (Theorem 7.6),

f̂∨j = fj. Thus by Lemma 2.11 and equality of µ̂1 and µ̂2,∫
fj(x)dµ1(x) =

∫
f∨j (ξ)µ̂1(ξ)dξ =

∫
f∨j (ξ)µ̂2(ξ)dξ =

∫
fj(x)dµ2(x). (15)

By dominated convergence, this equality implies

µ1(R) = lim
j→∞

∫
fj(x)dµ1(x) = lim

j→∞

∫
fj(x)dµ2(x) = µ2(R). (16)

This completes the proof.
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The uniqueness of the Fourier transform of finite measures clearly implies

Corollary 2.12. Suppose X and Y are two random variable in Rn. Then ϕX = ϕY iff
X =d Y .

The situation where we need to check that two random variables have equal distributions
will come up quite often in this paper. Corollary 2.12 will therefore be an indispensable
result.

2.5 Stochastic Processes

Stochastic process is a broad term which may refer to anything we think of as a random
quantity evolving over time. As the main stochastic process of interest in this paper is
Brownian motion (see §4.1), we will use this subsection to present some basic results about
stochastic processes which can be easily proved in general, and we will provide further
refinements later in the paper.

In its most basic definition, a stochastic process is parametrized family of random vari-
ables {Xt}t∈T taking values in a measurable space (M,M), where T ⊂ [0,∞). For this paper,
we will almost always take T = [0,∞) and (M,M) = (Rn,Bn). Note a stochastic process
{Xt} is associated with two collections of functions. First, for each fixed t ∈ T , there is the
random variable

Xt : Ω→M, ω 7→ Xt(ω), (17)

and second, for each fixed ω ∈ Ω, there is the function

X(ω) : T →M, t 7→ Xt(ω). (18)

The later function is called the sample path (or sometimes just path) of X corresponding
to ω.

According to the basic definition of a stochastic process given above, {Xt} is simply
an indexed collection of random variables which may not be related to each other in any
meaningful way. In order to put greater emphasis on the sample paths, it is useful to
specialize definition of a stochastic process as follows. Let MT denote the set functions
f : T → M . For each t ∈ T , let πt : MT → M be the projection map onto the t’th factor,
i.e. πt(f) = f(t) for all f ∈M . We define MT to be the product σ-algebra generated by the
projection maps πt. In other words, MT is the smallest σ-algebra such that all the maps πt
are measurable. We now make the following official definition.

Definition 2.13 (Stochastic process). A stochastic process is a random variable X from Ω
into the space (MT ,MT ).

Having established this definition, we will fix T and M for the discussion that follows.
The usual notation πt for projection maps is not quite adequate for our needs, so we introduce
following notation.

Notation 2.14.

• If t ∈ T , as before πt : MT →M denotes the projection map onto the t’th factor, that
is πt(f) = f(t) for f ∈MT .
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• If U ⊂ T , we define πU : MT →MU by πU(f) = f |U for f ∈MT .

• If t ∈ U , we define πUt : MU →M by πUt = f(t) for f ∈MU .

• Finally, if V ⊂ U , we define πUV : MU →MV by πUV (f) = f |V for f ∈MU .

For the discussion that follows, for any U ⊂ T , we will assume that the product space MU

is equipped with the product σ-algebra MU , generated by the projection maps πUt . Hence
each projection map πUt is measurable. Moreover, we have

Proposition 2.15. Suppose V ⊂ U ⊂ T . Then πUV is measurable.

Proof. Observe that, for any t ∈ U , πUt = πVt ◦ πUV . Now MV is generated by sets of form
A = (πVt )−1B, where B ∈ M. Observe that (πUV )−1A = (πVt ◦ πUV )−1B = (πUt )−1B ∈ MU ,
because MU is generated by sets of this form. Therefore πUV is measurable.

Define a cylinder of MT to be a set of form C = π−1
S E, where S ⊂ T is finite and

E ∈ MS. Note that a cylinder C ∈ MT because πS is measurable by Proposition 2.15. Let
CT ⊂MT denote the set of all cylinders of MT . When working with the σ-algebra MT , the
following fact is sometimes useful.

Proposition 2.16. The collection CT is an algebra. Moreover, CT is a generating set for
MT

Proof. The latter statement is clear, because CT is a subset of MT and contains the collection
of sets {π−1

t B : t ∈ T and B ∈ M} which generates MT . As for the rest of the claim, let
S ⊂ T be finite, and let E ∈MS. Then

(π−1
S E)c = π−1

S (Ec) ∈ CT . (19)

Hence CT is closed under the taking of complements. Moreover, if S ′ ⊂ T is another finite
set and F ∈MS′ , observe that

π−1
S E ∩ π−1

S′ F = π−1
S∪S′G, (20)

where G = {f ∈MS∪S′ : f |S ∈ E and f |S′ ∈ F} = (πS∪S
′

S )−1E∩(πS∪S
′

S′ )−1F . Since the maps
πS∪S

′
S and πS∪S

′

S′ are measurable, it follows that G ∈MS∪S′ . Therefore, π−1
S E∩π−1

S′ F ∈MS∪S′ .
We conclude that CT is closed under finite intersections. This completes the proof.

Note that with definition (2.13), it makes sense to speak of the law, or distribution,
of a stochastic process. If X is a stochastic process, this is simply the measure PX on
MT defined by

PX(E) = P (X ∈ E) (E ∈MT ). (21)

In practice, rather than working directly with the law, or distribution of a stochastic
process, it is often easier to work with the finite dimensional distributions, which are defined
as follows. Since the maps πS are measurable, the function

πS ◦X (22)
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is a random variable taking values in the measurable space (MS,MS). Let us denote the
law of such a random variable by µS. We then define the collection

{µS : S ⊂ T is finite} (23)

to be the finite-dimensional distributions of X. Explicitly, if say S = {s1, ..., sm} ⊂ T ,
and A = A1 × · · · × An ⊂MS, then

µS(A) = P (Xs1 ∈ A1, ..., Xsn ∈ An). (24)

This is simply the joint distribution of the random variables Xs1 , ..., Xsn .
To understand the distribution of a stochastic process, it turns out that the finite-

dimensional distributions tell us everything.

Proposition 2.17. The finite-dimensional distributions of a stochastic process uniquely de-
termine its law.

Proof. Let X be a stochastic process. By the Carathéodory extension theorem and the fact
that the cylinders CT form an algebra which generates MT (see Folland [4, Theorems 1.11
and 1.14]), the measure PX is uniquely determined by its values on sets of form π−1

S E, where
S ⊂ T is finite and E ∈MS. But

PX(π−1
S E) = P (X ∈ π−1

S E) = P (πS ◦X ∈ E) = µS(E). (25)

Thus PX is uniquely determined by the finite-dimensional distributions µS.

Finally, we restrict our attention to the case of a stochastic process X = {Xt}t∈T , where
T = [0,∞) and M = Rn with the Borel σ-algebra. A rather important case of this situation
is the following.

Definition 2.18 (Continuous stochastic process). Suppose that X = {Xt}t≥0 is a stochastic
process in Rn.

i. We say that X is continuous if the paths of X are continuous, i.e. t 7→ Xt(ω) is
continuous for all ω ∈ Ω.

ii. We say that X is almost surely continuous if there exists a null set N ∈ F such that
t 7→ Xt(ω) is continuous for all ω ∈ N c.

Note that since stochastic processes are just random variables, it makes sense to speak
of two stochastic processes being independent, and we may apply Proposition 2.9 to obtain
(possibly large) collections of stochastic processes with given distributions. However, even if
we start with continuous stochastic processes, there is no reason that the resulting indepen-
dent processes should still be continuous. Later in this paper, it will be essential to be able
to obtain independent continuous stochastic processes, and with this end in mind we prove
the following proposition. The proof is very similar to the proof of Proposition 2.9.

Proposition 2.19. Suppose X = {Xt}t≥0 and Y = {Yt}t≥0 are stochastic processes taking
values in Rn. Then (after possibly extending the probability space) there exist stochastic
processes X ′ = {X ′t}t≥0 and Y ′ = {Y ′t }t≥0, such that
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a. For all t ≥ 0, Xt =d X ′t and Yt =d Y ′t .

b. For all s, t ≥ 0, X ′s and Y ′t are independent.

c. Moreover, if X and Y are almost surely continuous, X ′ and Y ′ may be chosen to be
almost surely continuous.

Proof. If X and Y are initially defined on the probability space (Ω,F, P ), define a new
probability space (Ω′,F′, P ′) by letting Ω′ = Ω × Ω and letting F′ and P ′ be the induced
product σ-algebra and product measure on Ω′. For t ≥ 0 and (ω1, ω2) ∈ Ω′ = Ω × Ω, we
define

X ′t(ω1, ω2) = Xt(ω1), and

Y ′t (ω1, ω2) = Yt(ω2).
(26)

Given a Borel set B ⊂ Rn, let E = X−1
t B. Clearly X ′−1

t B = E × Ω. Therefore, P ′(X ′t ∈
B) = P ′(E × Ω) = P (E)P (Ω) = P (E) = P (Xt ∈ B). Thus Xt =d X ′t. Similarly Yt =d Y ′t .

Given s, t ≥ 0, to see that X ′s and Y ′t are independent, let B,A ⊂ Rn be a Borel sets,
let E = X−1

s B and F = Y −1
t A. Then X ′−1

s B = E × Ω and Y ′−1
t A = Ω × F . Hence

P ′(X ′s ∈ B, Y ′s ∈ A) = P ′(E × F ) = P ′(E)P ′(F ) = P ′(X ′t ∈ B)P (Y ′t ∈ A).
Finally suppose that X has almost surely continuous paths. Then there exists N ⊂ Ω

such that P (N) = 0, and for all ω1 ∈ N c, Xt(ω1) is continuous in t. Then it is clear from the
definition (26) that X ′t(ω1, ω2) is continuous for all (ω1, ω2) ∈ N c ×Ω. Since P ′(R×Ω) = 1,
this shows that X ′t is almost surely continuous. Similarly, if Y has almost surely continuous
paths, then so does Y ′. This completes the proof.

3 Gaussian Distribution

The first ingredient needed for the mathematical description of Brownian motion is Gaussian
distribution.

Basic definitions and results

A random variable X has Gaussian or normal distribution (the names are entirely inter-
changeable) if its distribution is given by dPX(x) = b−1e−π(x−a)2/b2dx, where a, b real numbers
b > 0. However, it is convenient to include in our definition degenerate distribution, where
the variance of X is zero. We therefore take the following as our official definition of normal
distribution.

Definition 3.1 (normal distribution). A random variable X, taking values in R, is said to
be normally distributed, if either the variance of X is zero, or the distribution of X is given
by the density function

ρ(x) = b−1e−π(x−a)2/b2 , (27)

for some a, b ∈ R and b > 0.

12



Remark 3.2. If the distribution of X is given by (27), then a and b2 are respectively the
mean and variance of X. This may be checked by writing

E[X] =

∫
b−1xe−π(x−a)2/b2dx and Var(X) =

∫
b−1(x− a)2e−π(x−a)2/b2dx, (28)

and applying standard integration techniques.

The next result is trivial, but it is important since it will allow us to streamline many
arguments to come.

Proposition 3.3. The distribution of a Gaussian random variable is uniquely determined
by its mean and variance.

Proof. Let X be a Gaussian random variable, let a = E[X] and b = Var(X). If b > 0, the
result is immediate from the definition of Gaussian distribution and the previous remark. If
b = 0, then X = a a.s. In this case, the distribution of X is defined by PX(B) = 1 if a ∈ F
and PX(B) = 0 otherwise, for all Borel sets B.

This justifies the following notation.

Notation 3.4. To indicate the distribution of a Gaussian random variable, we write X ∈
N(a, b2), where a = E[X] and b2 = Var(X).

Using Proposition 7.8 in Appendix B, we have

Proposition 3.5. If X ∈ N(a, b2), then the characteristic function of X is

ϕ(ξ) = e−πb
2ξ2e−2πiaξ, (29)

Proof. By (12), if b > 0 and ρ is the density function of X, then ϕX = ρ̂. Using Proposition
7.8, we compute

ρ̂(ξ) = b−1

∫
e−2πixξe−π(x−a)2/b2dx = b−1e−2πiaξ

∫
e−2πiyξe−πy

2/b2dy

= e−2πiaξ

∫
e−2πibzξe−πz

2

dz = e−πb
2ξ2e−2πiaξ,

(30)

which is the desired result. If on the other hand, b = 0, then X = a a.s., and so ϕX(ξ) =
E[e−2πiξX ] = e−2πiaξ.

The next proposition illustrates how Gaussian distribution behaves well under the image
of linear maps.

Proposition 3.6. Suppose {Xj}mj=1 is a collection of independent Gaussian random vari-
ables, such that each Xj ∈ N(aj, b

2
j), for some real numbers aj and bj. Let Y =

∑m
1 cjXj be

a linear combination of the Xj’s, where each cj ∈ R. Then Y ∈ N(
∑
cjaj,

∑
c2
jb

2
j).
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Proof. Note that E[cjXj] = cjE[Xj] = cjaj and Var(cjXj) = c2
jVar(Xj) = c2

jb
2
j . Hence

each cjXj ∈ N(cjaj, c
2
jb

2
j). Therefore, using the previous proposition and Proposition 2.6, we

compute

ϕY (ξ) = E[e−2πiξY ] = E[
m∏
j=1

e−2πiξcjXj ] =
m∏
j=1

E[e−2πiξcjXj ]

=
m∏
j=1

ϕcjX(ξ) =
m∏
j=1

e−πc
2
j b

2
jξ

2

e−2πicjajξ = e−π(
∑
c2j b

2
j )ξ

2

e−2πi(
∑
cjaj)ξ.

(31)

But by the previous proposition this is the characteristic function of a random variable in
N(
∑
cjaj,

∑
c2
jb

2
j). The result follows by uniqueness in Corollary 2.12.

The following simple estimate will be needed later.

Proposition 3.7. Suppose Z ∈ N(0, 1) and r ≥ 1/2π. Then

P (Z ≥ r) ≤ e−πr
2

. (32)

Proof. Indeed,

P (Z ≥ r) =

∫ ∞
r

e−πx
2

dx ≤
∫ ∞
r

x

r
e−πx

2

dx

= (− 1

2πr
e−πx

2

)|∞r ≤ e−πr
2

,

(33)

as claimed.

Multidimensional Gaussian distribution

Proposition 3.6 motivates the following definition for Gaussian distribution in Rn.

Definition 3.8 (Multinormal distribution). A random variable X in Rn is said to be nor-
mally distributed if its image ϕ(X) under any linear functional φ : Rn → R is a Gaussian
random variable in R.

Other names for such a distribution are (multi)normal distribution or Gaussian
distribution. If the components of X are given explicitly, say X = [X1, X2, ..., Xn]T , we
say that the Xj’s are jointly Gaussian to mean that X is Gaussian.

Remark 3.9. Gaussian distribution is preserved by linear maps. Indeed, if T : Rn → Rm is
a linear map, and X is a Gaussian random variable in Rn, then TX is a Gaussian random
variable in Rm, because if φ is a linear functional on Rm, then φ ◦ T is a linear functional on
Rn.

If X is a Gaussian random variable in Rn, the analogue for the one-dimensional concept of
variance is the covariance of X, defined to be the matrix Cov(X) = E[XXT ]. Proposition
3.3 turns out to still be essentially true in higher dimensions.
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Proposition 3.10. The distribution of a Gaussian random variable in Rn is uniquely de-
termined by its mean and covariance.

Proof. Suppose X and Y are two Gaussian random variables in Rn such that E[X] = E[Y ]
and Cov(X) = Cov(Y ). By replacing X and Y with X − a and Y − a, where a = E[X] =
E[Y ], we may assume that E[X] = E[Y ] = 0. By definition of Gaussian distribution in
Rn, for any ξ ∈ Rn, ξ · X and ξ · Y are Gaussian random variables in R. Also E[ξ · X] =
E[ξ·Y ] = 0 sinceX and Y are mean-zero. Moreover, Var(ξ·X) = E[(ξ·X)2] = E[ξTXXT ξ] =
ξTCov(X)ξ. Similarly Var(ξ · Y ) = ξTCov(Y )ξ. Hence Var(ξ · X) = Var(ξ · Y ). Thus by
Proposition 3.3 ξ ·X =d ξ · Y . Thus by Corollary 2.12 ϕξ·X = ϕξ·Y . Observe that

ϕξ·X(1) = E[e−2πiξ·X ] = ϕX(ξ). (34)

Similarly, ϕξ·Y (1) = ϕY (ξ). Therefore, ϕX(ξ) = ϕY (ξ). It then follows by Corollary 2.12
again that X =d Y .

This proposition justifies introducing the following notation for the distribution of a
Gaussian random variable.

Notation 3.11. To indicate the distribution of a Gaussian random variable in Rn, we write
X ∈ Nn(a, S), where a = E[X] and S = Cov(X).

The most fundamental example of an n-dimensional Gaussian random variable is Z =
[Z1, ..., Zn]T , where the Zj’s are independent N(0, 1) random variables. The fact that Z is
Gaussian follows from Proposition 3.6, which shows that a linear combination of indepen-
dent Gaussian random variables is Gaussian. We call Z (or any random variable with the
same distribution) a standard normal random variable in Rn. Observe that, using
the notation introduced above, Z ∈ Nn(0, I), where I is the n × n identity matrix. The
next proposition shows that any n-dimensional Gaussian random variable is the affine linear
image of a standard normal random variable.

Proposition 3.12. If X is a Gaussian random variable in Rn, then X =d BZ + a, for
some B ∈ Mn(R), a ∈ Rn, and standard normal random variable Z in Rn. Furthermore,
E[X] = a and Cov(X) = BBT .

First we need a lemma.

Lemma 3.13. Suppose S is a symmetric, positive semidefinite matrix in Mn(R). Then
S = BBT for some B ∈ Rn.

Proof. Since S is symmetric, by the spectral theorem for real matrices, we may write S =
GDGT for some orthogonal matrix G and diagonal matrix D. Since S is positive semidefinite,
the diagonal entries of D are nonnegative. Therefore, we may write D = H2, where H is
the diagonal matrix whose diagonal entries are the nonnegative square roots of the diagonal
entries of D. Thus, if we set B = GH, then S = BBT , as required.

Proof of Proposition 3.12. We may assume EX = 0 and prove that X =d BZ, because
otherwise we may set a = EX and replace X with X − a. Let S = Var(X) = E[XXT ],
and observe that S is a symmetric, positive semidefinite matrix. Indeed, given a nonzero
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z ∈ Rn, zTX is a Gaussian random variable in R, by definition of Gaussian distribution in
Rn. Expected value commutes with linear maps, so zTSz = E[zTXXT z] = E[(zTX)2] ≥ 0.
Thus by the lemma we may write S = BBT for some B ∈ Mn(R). Let Z be a standard
normal random variable in Rn, and observe that E[BZ] = BE[Z] = 0 and Cov(BZ) =
E[BZZTBT ] = BCov(Z)BT = BBT = S. Thus the mean and covariance of BZ agree with
those of X. Thus by 3.10, X =d BZ, as required.

Corollary 3.14. Suppose X is a Gaussian random variable in Rn. Let S = Cov(X) and
a = E[X]. Then

ϕX(ξ) = e−πξ
TSξe−2πiξ·a. (35)

Proof. By the previous proposition, X =d BZ + a, where a = E[X] and BBT = S. If
u ∈ Rn, then uTZ = u1Z1 + u2Z2 + · · ·+ unZn. Hence by Proposition 3.6 uTZ ∈ N(0, uTu).
Then by Proposition 3.5

ϕuTZ(1) = Ee−2πiuTZ = e−πu
Tu. (36)

Substituting u = BT ξ, where ξ ∈ Rn, yields

Ee−2πiξTBZ = e−πξ
TBBT ξ. (37)

Therefore, the characteristic of function of X is

Ee−2πiξ·X = E[e−2πiξTBZe−2πiξ·a] = e−πξ
TBBT ξe−2πiξ·a, (38)

as required.

We close this section with a result showing that Gaussian random variables behave nicely
with respect to limits. This result will be useful to have on hand when we construct the
Wiener process in §4.

Proposition 3.15. Suppose {Xk}∞k=1 is a sequence of Gaussian random variables in Rn

such that Xk → X a.s., and the components of X are in L2(P ). Then X is also a Gaussian
random variable.

Proof. Set ak = E[Xk] and a = E[X]. Set Sk = Cov(Xk) = E[XkX
T
k ] and let S = Cov(X) =

E[XXT ]. We claim that ak → a and Sk → S as k → ∞. These assertions follow by
dominated convergence applied to the components of ak and Sk. Indeed, by assumption the
components of X are in L2(P ) (and hence in L1(P ) by Remark 2.1). The components of each
Xk are in L2(P ) since these are Gaussian. Thus, for 1 ≤ j ≤ n, (ak)j = E[(Xk)j]→ E[Xj] =
aj, by taking 2|Xj| as our dominating function. For 1 ≤ i, j ≤ n, (Sk)i,j = E[(Xk)i(Xk)j]→
E[XiXj] = Si,j, by taking 2|XiXj| as our dominating function.

We also observe S is symmetric positive semidefinite. Indeed, S is symmetric because
this is true of any covariance matrix. Let v be an eigenvector of S, and let λ be the
corresponding eigenvalue. Then vTMkv ≥ 0 for all k, because each Mk is the covariance
matrix of a Gaussian random variable and hence is positive semidefinite. Hence λ|v|2 =
vTMv = limk→∞ v

TMkv ≥ 0. This shows λ ≥ 0, so S is positive semidefinite.
Next, we compute the characteristic functions. By Corollary 3.14, and the fact that each

of the Xk’s are normal, we have

ϕXk(ξ) = Ee−2πiξ·Xk = e−πξ
TSkξe−2πiξak → e−πξ

TSξe−2πiξa, (39)
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as k →∞. On the other hand, by dominated convergence,

ϕXk(ξ) = Ee−2πiξ·Xk → Ee−2πiξ·X = ϕX(ξ), (40)

as k → ∞. Therefore, ϕX(ξ) = e−πξ
TSξe−2πiξa. Since S is symmetric positive definite, by

Lemma 3.13, S = BBT for some B ∈ Mn(R). Hence ϕX is the characteristic function of
the Gaussian random variable BZ + a, where Z ∈ N(0, I). Thus X is Gaussian, and in
particular X ∈ N(a, S).

4 Wiener Process

The Weiner process is the mathematical model for Brownian motion. This section defines the
Wiener process, first in R and then in Rn, and establishes several key invariance properties.
Proof of the existence of the Wiener process is deferred to the next section.

Definition 4.1 (Weiner process in R). Suppose X = {Xt}t≥0 is a real valued stochastic
process. We say that X is a Wiener process if the following four conditions are satisfied.

i. X0 = 0 a.s.

ii. If 0 ≤ t0 < · · · < tm, then, for 1 ≤ j ≤ m, the increments Xtj −Xtj−1
are independent.

iii. If 0 ≤ s < t, then Xt −Xs ∈ N(0, t− s).

iv. The paths of X are almost surely continuous (i.e. there exists a measurable set A ⊂ Ω
such that P (A) = 1 and for all ω ∈ A, the map t 7→ Xt(ω) is continuous).

More generally, if we replace condition (i) with the requirement that X0 = x a.s. for some
x ∈ R, we say that X is a Wiener process starting from x.

A stochastic process Y is said to be a Gaussian process if the finite-dimensional-
distributions of Y are Gaussian. Since by condition (iii), for t ≥ 0, Xt ∈ N(0, t), it follows
that the Wiener process is an example of a Gaussian process.

Remark 4.2. While strictly speaking the term Wiener process refers to the mathematical
model for the physical phenomenon of Brownian motion, in practice the term Brownian
motion is more common and in a mathematical context is understood to refer to the Wiener
process. In this paper, we typically use the term Wiener process, but sometimes use the
term Brownian motion in more informal discussions.

The next two propositions gives us equivalent characterizations for a Wiener process
which are often easier to verify than Definition 4.1.

Proposition 4.3. Suppose that Y = {Y }t≥0 is a stochastic process with almost surely con-
tinuous paths (as in condition (iv) of Definition 4.1). Then Y is a Wiener process starting
from x if and only if its finite-dimensional distributions agree with those of a Wiener process
starting from x.
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Proof. The direction (⇒) is immediate. Conversely, suppose the finite-dimensional distri-
butions of Y agree with those of a Wiener process X starting from x. Then P (Y0 = x) =
P (X0 = x) = 1, so Y satisfies (i). If 0 ≤ t1 < t2 < · · · < tm, with m ≥ 2, then the
distribution of [Yt1 , ..., Ytm ]T in Rm agrees with that of [Xt1 , ..., Xtm ]T . Thus, if T : Rm → Rm

is the linear map defined by

T ([x1, x2, ..., xm]T ) = [x1, x2 − x1, ..., xn − xn−1]T , (41)

then the distribution of T ([Yt1 , ..., Ytm ]T ) in Rm agrees with that of T ([Xt1 , ..., Xtm ]T ). Since
X is a Wiener process, it follows that the Ytj −Ytj−1

’s are independent and have N(tj− tj−1)
distribution, so (ii) and (iii) are satisfied. Since the paths of Y are almost surely continuous,
it follows that Y is a Wiener process.

Proposition 4.4. Suppose Y = {Yt}t≥0 is a Gaussian process with almost surely continuous
paths (as in condition (iv) of Definition 4.1). Then Y is a Wiener process if and only if, for
all s, t ∈ [0,∞), EYs = 0 and EYsYt = min{s, t}.

Proof. Suppose Y is a Wiener process, and s, t ∈ [0,∞). Assume without loss of generality
that s < t. Since Ys ∈ N(0, s), EYs = 0, and independence of increments in condition (ii)
gives us

E[YsYt] = E[Ys(Yt − Ys)] + E[Y 2
s ] = E[Ys]E[Yt − Ys] + E[Y 2

s ] = s. (42)

Conversely, suppose for all s, t ∈ [0,∞), EYs = 0 and EYsYt = min{s, t}. Note that X is a
Gaussian process, and as we have already shown E[XsXt] = min{s, t}. Suppose t0, ..., tq are
distinct times in [0,∞). Then [Yt0 , ..., Ytq ]

T and [Xt0 , ..., Xtq ]
T are Gaussian random variables

in Rq, and, for 1 ≤ i, j ≤ q, E[XtiXtj ] = E[YtiYtj ] = min{ti, tj}. Hence, [Yt0 , ..., Ytq ]
T and

[Xt0 , ..., Xtq ]
T have equal covariance matrices. So, by Proposition 3.10, X and Y have the

same finite-dimensional distributions. The result then follows by Proposition 4.4.

Brownian motion process possesses a number of interesting symmetries. Some basic
results on the symmetries of Brownian are enumerated in the following proposition.

Proposition 4.5. Let X be a Wiener process starting from 0. Then

a. (Space translation) For all h ∈ R, {Xt + h}t≥0 is a Wiener process starting from h.

b. (Time translation) For all a > 0, {Xt+a −Xa}t≥0 is a Wiener process.

c. (Scaling property) For all c 6= 0, {cXt/c2}t≥0 is a Wiener process.

Proof. (a) follows easily from Definition 4.1: We have X0 + h = h a.s. because X starts
from 0. (ii) and (iii) hold because translation does not change the increments Xt − Xs,
s, t ∈ [0,∞). And (iv) holds because translation is a continuous operation.

With regard to (b) and (c), we make the following observation. If Z = {Zt}t≥0 is a
Gaussian process, then so is {Zf(t)}, whenever f is an injective function from [0,∞) into
[0,∞). For, if t1, ..., tq are distinct points in [0,∞), then so are f(t1), ..., f(tq), and hence
the distribution of (Zf(t1), ..., Zf(tq)) is Gaussian, since {Zt} is a Gaussian process. Thus, the
processes (b) and (c) are Gaussian.
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Processes (b) and (c) are almost surely continuous since X is. Moreover, if 0 ≤ s < t,
then E[Xs+a − Xs] = 0 − 0 = 0 and E[cXt/c2 ] = c0 = 0. Using Proposition 4.4, we also
compute

E[(Xt+a −Xa)(Xs+a −Xa)] = (s+ a)− 2a+ a = s, (43)

and
E[(cXt/c2)(cXs/c2) = c2 s

c2
= s. (44)

Thus by Proposition 4.4, processes (b) and (c) are Wiener processes.

The definition of multidimensional Wiener process is simply the following.

Definition 4.6 (n-dimensional Weiner process). Suppose X = {Xt}t≥0 is a Wiener process
taking values in Rn. We say that X is an (n-dimensional) Wiener process if the components
are independent, and each component is a Wiener process in R.

Note that all of the symmetries enumerated in Proposition 2.3 extend in obvious ways
to multidimensional Wiener processes. For example, if {Xt} is an n-dimensional Wiener
process, then so is {cXt/c2}, for any c 6= 0, where scaler multiplication is defined component-
wise. In fact, the n-dimensional Wiener process is more symmetric than first meets the eye.
Fundamental to applications to the Dirichlet problem is the following result.

Proposition 4.7 (Rotational symmetry). Suppose that X is an n-dimensional Wiener pro-
cess starting from x ∈ Rn, and A ∈ SO(n). Then AX a Wiener process starting at Ax.

Proof. By replacing X with X − x, we may assume that x = 0. Then AX0 = 0 a.s. since
X0 = 0 a.s. Also, the paths of AX are almost surely continuous, since this is true of X. Hence
AX satisfies conditions (i) and (iv) of Definition 4.1. In addition, if 0 ≤ t0 < t1 < · · · tm,
then the increments Xtj − Xtj−1

are independent. Hence the increments AXtj − AXtj−1

are independent, so AX satisfies condition (ii). Finally, suppose that 0 ≤ s < t. Then, for
1 ≤ i ≤ n, the component (Xt)i−(Xs)i ∈ N(0, t−s). Since the components are independent,
Xt −Xs is a mean-zero n-dimensional Gaussian random variable, and its covariance matrix
is

Cov(Xt −Xs) = E[(Xt −Xs)(Xt −Xs)
T ] = (t− s)I.

In addition, AXt − AXs is an n-dimensional Gaussian random variable. Since the expected
value operator commutes with linear maps and A is orthogonal, the covariance matrix of
AXt − AXs is

Cov(AXt − AXs) = E[(AXt − AXs)(AXt − AXs)
T ]

= AE[(Xt −Xs)(Xt −Xs)
T ]AT

= (t− s)AAT = (t− s)I.

Since the covariance matrices are equal, Proposition 3.10 implies that Xt−Xs and AXt−AXs

are equally distributed. This proves that AX satisfies condition (iii) of Definition 4.1, so we
are done.
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5 Construction of the Wiener process

We have deduced some basic properties of the Wiener process, but so far it is not obvious
that such a process should even exist. To emphasize this fact, suppose we modified Definition
4.1 of the Wiener process, by replacing condition (iii) with

(iii)’ If 0 ≤ s < t, then Xt −Xs ∈ N(0, (t− s)p),

for some real number p 6= 1. If 0 ≤ s < t, then, on the one hand, by (iii)’ E[(Xt −Xs)
2] =

(t− s)p. On the other hand, using independence of increments in condition (ii) of Definition
4.1, we have

E[(Xt −Xs)
2] = E[X2

t ] + E[X2
s ]− 2E[XtXs]

= tp + sp − 2(E[Xs(Xt −Xs)] + E[X2
s ])

= tp + sp − 2(E[Xs]E[Xt −Xs] + E[X2
s ])

= tp + sp − 2sp = tp − sp.

(45)

This gives us a contradiction, because in general (t− s)p 6= tp − sp.
The construction of Brownian motion we present is due to Ciesielski [2]. Note that we

only need to construct the one-dimensional Wiener process, since the n-dimensional Wiener
process is defined in terms of the one-dimensional process. While our construction is one
of the easiest ways to obtain the Wiener process, it is still somewhat technical, so before
getting our hands dirty, let us sketch our plan.

(1) Our first task is to define a special collection of functions {ϕij : i ≥ 0, and 0 ≤ j ≤
2i−1− 1}, known as Haar functions, in the real Hilbert space L2[0, 1]. We will prove
that this collection of functions is in fact an orthonormal set in the L2[0, 1].

(2) For each ϕij, define ψij(t) =
∫ t

0
ϕij, where t ∈ [0, 1], and let {Yij} be an collection of

independent N(0, 1) random variables. Define V0(t) = Y00ψ00, and for each i ≥ 1 define

Vi(t) =
2i−1∑
j=1

Yijψij(t). (46)

Our prototype of for Brownian motion will be the process

Xt =
∞∑
i=0

Vi(t). (47)

The difficult part of our argument will be verifying that Xt converges almost surely
to a continuous function in t. Once we have proven this result, we will show that X
satisfies conditions (i)-(iv) of the Definition 4.1 of the Wiener process. This task will
be greatly simplified by the tools of Hilbert space theory applied to the orthonormal
set {ϕij}.
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(3) The process Xt, obtained in step (2), satisfies all the requirements of Definition 4.1,
except that it is only defined for t ∈ [0, 1]. However, using time inversion (see Propo-
sition 4.5(d)), we will be able extend Xt to the interval [0,∞) by defining Xt = tY1/t

for t ≥ 1, where Ys is an independent copy of Xs, for s ∈ [0, 1].

5.1 Haar functions

While Haar functions are conceptually simple, their definition is awkward to write out, and
hence we devote a whole subsection to them. [I hope to include some pictures in this section.]
We begin with an indexed collection of subintervals of the unit interval I = {Iij : 0 ≤ i <
∞, and 0 ≤ j ≤ 2i−1}, with elements defined as follows. Let I00 = [0, 1). Let I10 = [0, 1/2)
and I11 = [1/2, 1). Let I20 = [0, 1/4), I21 = [1/4, 1/2), I22 = [1/2, 3/4), and I23 = [3/4, 1).
Continuing inductively, we let each Ii0 = 1

2
Ii−1,0 = {x/2 : x ∈ Ii−1,0} and we let each

Iij = Ii0 + j2−i = {x+ j2−i : x ∈ Iij}.
A useful decomposition of each interval Iij is obtained as follows. For each i and j,

observe that Iij = Ii+1,2j ∪ Ii+1,2j+1. Reasoning inductively, we obtain for each integer k ≥ 0,

Iij = Ii+k,2kj ∪ Ii+k,2kj+1 ∪ · · · ∪ Ii+k,2kj+2k−1. (48)

Note that the intervals making up the union in the above expression are disjoint. Further,
the intersection of Iij with any other interval in I of form Ii+k,m not appearing in the above
expression is empty. We will refer back to decomposition given by (48) a number of times.

For 0 ≤ i <∞ and 0 ≤ j ≤ 2i−1 − 1, we define functions ϕij : [0, 1]→ R as follows. Let
ϕ00 ≡ 1, and for i ≥ 1 define

ϕij(x) =


2(i−1)/2 x ∈ Ii,2j
−2(i−1)/2 x ∈ Ii,2j+1

0 otherwise.

(49)

Hence the support of each function ϕij is Ii,2j∪Ii,2j+1 = Ii−1,j. Functions taking this form are
called Haar functions. The great utility of Haar functions comes from the following result.

Proposition 5.1. The collection of Haar functions {ϕij : 0 ≤ i < ∞, and 0 ≤ j ≤ 2i − 1}
is a complete orthonormal system for the Hilbert space L2[0, 1].

Proof. First, we prove that the collection {ϕij} is orthonormal in L2[0, 1]. By construc-
tion, each interval Ii−1,j = supp(ϕij) has width 2−(i−1), and we have ||φij||22 = 〈ϕij, ϕij〉 =∫

2i−1χIi+1,j
= 1. Further, if (i, j) 6= (p, q), we claim that 〈ϕij, ϕpq〉 = 0. To see this, note

that this is clearly true if i = p because then supp(ϕij) = Ii−1,j and supp(ϕpq) = Ii−1,q are
disjoint. If i 6= p, assume without loss of generality that i < p, and write p = i + k, for
some positive integer k. Either supp(ϕpq) and supp(ϕij) are disjoint, in which case clearly
〈ϕij, ϕpq〉 = 0; or supp(ϕpq) and supp(ϕij) are not disjoint – that is, Ip−1,q = Ii−1+k,q and
Ii−1,j are not disjoint. Then by the decomposition given by equation (48) Ip−1,q ⊂ Ii−1,j, and
further we observe that either Ip−1,q is a subset of Ii,2j or Ip−1,q is a subset of Ii,2j+1. Hence,

either ϕijϕpq = 2(i−1)/2ϕpq or ϕijϕpq = −2(i−1)/2ϕpq. In both cases, 〈ϕij, ϕpq〉 =
∫ 1

0
ϕijϕpq = 0.

Thus, we have shown that the collection {ϕij} is orthonormal.
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To prove completeness of the collection {ϕij}, we observe that any half-open interval
J = [a, b), with endpoints in the dyadic rationals in [0, 1], may be written as

J =
n⋃

j=m

Iij, (50)

for some positive integers i,m, and n, with 0 ≤ m ≤ n ≤ 2i − 1. In addition, note that by
definition ϕ00 = χI00 , and for i ≥ 1 and 0 ≤ j ≤ 2i−1 − 1 we have

χIi,2j =
1

2
(χIi−1,j

+ 2−(i−1)ϕi−1,j), (51)

and

χIi,2j+1
=

1

2
(χIi−1,j

− 2−(i−1)ϕi−1,j). (52)

These two equations just come from the definition of ϕi−1,j and the fact that Ii−1,j = Ii,2j ∪
Ii,2j+1. Induction on i then gives us the following result: Every characteristic function
χIij may be written as a linear combination of Haar functions. Since χJ =

∑m
j=n χIij ,

it follows that χJ may be written as a linear combination of Haar functions. Since the
collection of linear combinations of functions of form χJ , where as above J ⊂ [0, 1] a half-
open interval with end-points in the dyadic rationals, is dense in L2[0, 1], we conclude that
linear combinations of Haar functions are also dense in L2[0, 1]. This shows that the collection
{ϕij} is complete.

5.2 The Main Construction

Start with the collection of Haar functions {ϕij : 0 ≤ i < ∞, and 0 ≤ j ≤ 2i−1}, and, for
each ϕij, define the function ψij on [0, 1] by

ψij(t) =

∫ t

0

ϕij(s)ds. (53)

We record a useful set of bounds for the functions ψij.

Lemma 5.2. For all i, j, 0 ≤ ψij ≤ 2−(i+1)/2 and supp(ϕij) = Ii−1,j.

Proof. This is simply a matter of writing down an explicit expression for ψij. By definition,
ϕij(x) = 2(i−1)/2 on Ii,2j = [(2j)2−i, (2j + 1)2−i], ϕij(x) = −2(i−1)/2 on Ii,2j+1 = [(2j +
1)2−i, (2j + 2)2−i], and ϕij(x) = 0 otherwise. Hence,

ψij(t) =


2(i−1)/2(t− (2j)2−i) t ∈ [(2j)2−i, (2j + 1)2−i]

2(i−1)/2 − 2(i−1)/2(t− (2j + 1)2−i) t ∈ [(2j + 1)2−i, (2j + 2)2−i]

0 otherwise.

(54)

Therefore, ψij ≥ 0, and ψij attains its maximum value at t = (2j+1)2−i, and this maximum
value is ψij((2j + 1)2−i) = 2(i−1)/22−i = 2−(i+1)/2. Note that (54) also shows supp(ϕij) =
[(2j)2−i, (2j + 2)2−i] = Ii−1,j.
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Next, let {Yij} be a collection of independent N(0, 1) random variables. (By Proposition
2.9 such a collection exists.) As described in our outline, we define V0(t) = Y00ψ00, and

Vi(t) =
2i−1∑
j=1

Yijψij(t), (55)

for each i ≥ 1. Our prototype for the Wiener process is

Xt =
∞∑
i=0

Vi(t). (56)

Our next objective is to show that this series indeed converges almost surely to a continuous
function in t.

Lemma 5.3. With probability 1,
∑∞

i=0 Vi(t) converges uniformly to a continuous function
on [0, 1].

Proof. The main ingredient is the Borel-Cantelli Lemma (Proposition 2.3). Consider the
sequence of sets {Ai}∞i=1 defined by Ai = (|Vi(t)| > i−2 for some t ∈ [0, 1]). It is not imme-
diately clear that the sets Ai are measurable. To see that in fact they are, observe that:
|Vi(t)| > i−2 for some t ∈ [0, 1] if and only if |Vi(t)| > i−2 for some t ∈ [0, 1]∩Q, by continuity
of Vi(t) for each fixed ω. Therefore, for each i ≥ 1, Ai =

⋃
t∈[0,1]∩Q{ω : |Vi(t)| > i−2}, which

is a countable union of measurable sets and hence measurable.
For i ≥ 1, notice that if |Vi(t)| > i−2, then |Yij|ψij(t) > i−2 for some 1 ≤ j ≤ 2i−1,

because |Vi(t)| ≤
∑

j |Yij|ψij(t) and the ψij’s have disjoint support by Lemma 5.2. Then

|Yij|2−(i+1)/2 > i−2 for some 1 ≤ j ≤ 2i−1 by the bound obtained in Lemma 5.2. It follows
that, for each i ≥ 1,

P (Ai) ≤ P (|Yij|2−(i+1)/2 > i−2 for some 1 ≤ j ≤ 2i−1)

≤ 2i−1P (|Z| ≥ 2(i+1)/2i−2)

≤ 2i−1 exp(−2ii−4).

(57)

Here Z =d Yij is an N(0, 1) random variable, and the last line of (57) is obtained from
Proposition 3.7. It is easy to see that

∑
2i−1 exp(−2ii−4) converges by, for example, the root

test.
Thus

∑∞
i=1 P (Ai) <∞, and by the Borel-Cantelli Lemma, P (∩∞k=0∪∞i=kAi) = 0. In other

words, with probability 1, there are only finitely many i ≥ 1 such that for some t ∈ [0, 1],
|Vi(t)| ≥ i−2. Hence, with probability 1,

∑∞
i=0 Vi(t) converges uniformly on [0, 1]. Since each

of the Vi(t)’s is continuous in t, uniform convergence implies that
∑∞

i=0 Vi(t) is continuous
in t. This completes the proof.

Let Xt =
∑∞

i=0 Vi(t). In the next two lemmas, we first show that Xt has finite variance
(i.e. Xt ∈ L2(P ) for each fixed t), and then we obtain more precise result.

Lemma 5.4. For all t ∈ [0, 1], Var(X2
t ) <∞.
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Proof. To begin, observe that for any integer N > 0 and t ∈ [0, 1],(
N∑
i=0

Vi(t)

)2

=
N∑

i,k=0

Vi(t)Vk(t) =
N∑

i,k=0

∑
0≤j≤2i−1−1,
0≤l≤2k−1−1

YikYjlψik(t)ψjl(t). (58)

Note that E[YijYkl] = 1 if (i, j) = (k, l), by standard normal distribution, and otherwise
E[YijYkl] = 0, by independence. Thus, taking expected values yields

E

(
N∑
i=0

Vi(t)

)2

=
N∑
i=0

2i−1−1∑
j=0

(ψij(t))
2 ≤

N∑
i=0

2−(i+1), (59)

here using Lemma 5.2. Therefore, by Fatou’s Lemma, E[X2
t ] ≤ lim infN→∞E[(

∑N
i=0 Vi(t))

2] ≤∑
2−(i+1) <∞, as required.

Lemma 5.5. For all s, t ∈ [0, 1], E[XsXt] = min(s, t).

This is the one step of our proof that requires tools from Hilbert space theory. The space
L2[0, 1] may be equipped with the real Hilbert space inner product

〈f, g〉 =

∫ 1

0

f(t)g(t)dt, where f, g ∈ L2[0, 1]. (60)

Note that, if {ej}∞j=1 is a complete orthonormal system in L2[0, 1], then for any function
f ∈ L2[0, 1]

N∑
j=1

〈f, ej〉ej → f in L2 as N →∞. (61)

We will apply this result to the collection of Haar functions {ϕij}, which by Proposition 5.1
is a complete orthonormal system for L2[0, 1].

Proof of Lemma 5.5. Let s, t ∈ [0, 1]. First, we claim

E[XsXt] =
∑
i,j

〈1[0,s], ϕij〉〈1[0,t], ϕij〉. (62)

To justify this equality, observe that for any integer N > 0

E

[(
N∑
i=0

Vi(s)

)(
N∑
k=0

Vk(t)

)]
=

N∑
i,k=0

E[Vi(s)Vk(t)]

=
N∑

i,k=0

∑
0≤j≤2i−1−1,
0≤l≤2k−1−1

E[YijYklψij(s)ψkl(t)] =
N∑
i=0

2i−1−1∑
j=0

ψij(s)ψij(t),

(63)

where the last equality follows from the fact that the Yij’s are independent standard normal
random variables, so E[YijYkl] = 1 if (i, j) = (k, l) and equals 0 otherwise. For i ≥ 0
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and 0 ≤ j ≤ 2i−1 − 1, observe that by definition ψij(t) = 〈1[0,t], ϕij〉. Thus equality (62)

will be proved if we can show that limN→∞E[(
∑N

i=0 Vi(s))(
∑N

k=0 Vk(t))] = E[XsXt]. Note

that limN→∞(
∑N

i=0 Vi(s))(
∑N

k=0 Vk(t)) = XsXt. Thus, if we take 2|XsXt| as our dominating
function (and we can because Xs, Xt ∈ L2(P ) by Lemma 5.4), this result is implied by
dominated convergence.

Next, using bilinearity of the inner product and applying (61) to equation (62), we
compute

E[XsXt] =

〈
1[0,t],

∑
i,j

〈1[0,s], ϕij〉ϕij

〉
= 〈1[0,t], 1[0,s]〉 = min(s, t).

(64)

This completes the proof.

For t ≥ 1, define Yt = tX1/t. Let X ′ = {Xt}t∈[0,1] be an independent copy with a.s.
continuous paths of the process X, as in Proposition 2.19. (In other words, X ′ is a process
with a.s. continuous paths such that, for all s, t ≥ 0, X ′t =d Xt, and X ′s and Xt are
independent.) For t ∈ [0,∞), define

Zt =

{
X ′t t ∈ [0, 1]

X ′1 + Yt − Y1 t ∈ (0,∞).
(65)

Our final step is to show

Theorem 5.6. Z = {Zt}t≥0 is a Wiener process.

Proof. By Proposition 4.4, it is enough to prove that (i) the paths of Z are almost surely
continuous, (ii) Z is a Gaussian process, and (iii) for all s, t ∈ [0,∞), E[Zs] = 0 and
E[ZsZt] = min(s, t).

(i) By Lemma 5.3 and the definitions of X ′t and Yt, the paths of Z are, with probability
1, continuous at all t 6= 1. To see that the paths of Z are almost surely continuous at 1,
observe that limt→1− Zt = limt→1− X

′
t = X ′1 = Z1 a.s., by a.s. continuity of the paths of X ′.

Also, limt→1+ Zt = limt→1+(X ′1 + Yt − Y1) = X ′1 = Z1 a.s., by a.s. continuity of the paths of
Y . Hence Z almost surely continuous at t = 1. This shows that the paths of Z are almost
surely continuous.

(ii) For each fixed t, Zt is a linear combination of Gaussian random variables and hence
is Gaussian by Proposition 3.6. Given distinct times, t0, ..., tm ∈ [0,∞), the components
of the random vector [Zt1 , ..., Ztm ]T are Gaussian, and hence [Zt1 , ..., Ztm ]T is multivariate
Gaussian. This shows that the finite-dimensional distributions of Z are Gaussian, so Z is a
Gaussian process.

(iii) Suppose s, t ∈ [0,∞). We may assume without loss of generality that s < t. If
s, t ≤ 1, the result just follows by Lemma 5.5. There are two cases left to check.

Case 1: s ≤ 1 and t > 1. Then ZsZt = X ′s(X
′
1 + Yt − Y1) = X ′sX

′
1 + tX ′sX1/t − X1.

Thus, using independence and Lemma 5.5, we have

E[ZsZt] = E[X ′sX
′
1] + tE[X ′s]E[X1/t]− E[X1] = E[X ′sX

′
1] = s. (66)
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Case 2: 1 < s < t. Then ZsZt = (X ′1 + sX1/s −X1)(X ′1 + tX1/t −X1) = (X ′1)2 + tX ′1X1/t −
X ′1X1 + sX1/sX

′
1 + stX1/sX1/t − sX1/sX1 − X1X

′
1 − tX1X1/t + X2

1 . By independence and
Lemma 5.5, E[X1X

′
1] = E[X ′1X1/t] = E[X1/sX

′
1] = 0. Hence,

E[ZsZt] = E[(X ′1)2] + stE[X1/sX1/t]− sE[X1/sX1]− tE[X1X1/t] + E[X2
1 ]

= 1 + st
1

t
− s1

s
− t1

t
+ 1 = s.

(67)

Hence, in all cases E[ZsZt] = min(s, t) = s, and this completes the proof.

6 Markov Property

6.1 Conditional Expectation

The Markov property is essentially a statement about the conditional expectation of Brownian
motion with respect to certain σ-algebras. We first therefore need to define conditional
expectation and describe its basic properties.

Definition 6.1 (Conditional expectation). Let (Ω,F, P ) be a probability space, X an F-
measurable random variable, and G ⊂ F a sub-σ-algebra. If X ∈ L1(P ), the conditional
expectation of X given F, denoted by E[X|G], is a G-measurable random variable Y ∈ L1(P ),
which satisfies ∫

G

XdP =

∫
G

Y dP for all G ∈ G. (68)

This definition is of little value if we do not prove.

Proposition 6.2. If X ∈ L1(P ) and G ⊂ F is a sub-σ-field, then (i) the conditional expec-
tation of X given G exists, and (ii) it is unique up to almost sure equivalence.

Remark 6.3. Proposition 6.2 expresses the fact that conditional expectation is defined up
to almost sure equivalence. Hence, technically any equality involving E[X|G] will only hold
up to almost sure equivalence. However, the standard convention is to write Y = E[X|G]
with almost sure equivalence understood, rather than to write Y = E[X|G] a.s., even though
the latter is perhaps more correct.

We can establish uniqueness (ii) immediately.

Proof of Proposition 6.2(ii). Suppose Y, Y ′ are two G-measurable functions in L1(P ) satis-
fying (68). Let ε > 0, and let A = {ω : Y − Y ′ ≥ ε}. Then H ∈ G, and

0 =

∫
A

(X −X)dP =

∫
A

(Y − Y ′)dP ≥ εP (A). (69)

Hence P (A) = 0. Since ε is arbitrary, it follows Y ≥ Y ′ a.s. Reversing the roles of Y and
Y ′, we get Y ′ ≥ Y a.s. Hence Y = Y ′ a.s.
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The existence of conditional expectation is a somewhat deeper matter, which relies on the
Radon-Nikodym theorem from analysis. If µ and ν are two σ-finite measures on a σ-algebra
F, we say that µ is absolutely continuous with respect to ν (write µ � ν) if, for any
N ∈ F, ν(N) = 0 implies µ(N) = 0. The special case of Radon-Nikodym theorem which we
need is the following result.

Theorem 6.4 (Radon-Nikodym theorem). Suppose µ and ν are σ-finite measures on F such
that µ� ν. Then there exists a real-valued F-measurable function f such that∫

fdν = µ(F ) for all F ∈ F. (70)

For proof of this result, we refer the reader to Durrett [3, Theorem A.4.6], or Rudin
[7, Theorem 6.10], or Folland [4, Theorem 3.8]. Using this result, the proof of first part of
Proposition 6.2 is fairly simple.

Proof of Proposition 6.2(i). First, let us assume that X ≥ 0. We define the set function µ
on G by

µ(G) =

∫
G

XdP (G ∈ G). (71)

One easily verifies that µ is a measure on G: µ(∅) = 0 by definition of the integral, and count-
able additivity follows from dominated convergence. Also, by basic properties of integrals,
if P (G) = 0 for some G ∈ G, then µ(G) = 0. Hence µ is abolutely continuous with respect
to the measure P |G. Hence, by the Radon-Nikodym theorem, there exists a G-measurable
random variable Y such that∫

G

XdP = µ(G) =

∫
G

Y dP for all G ∈ G, (72)

Hence Y = E[X|G].
To obtain the result in general, write X = X+−X−, where X+ = X if X ≥ 0 and X+ = 0

otherwise, and X− = |X| −X+. Let Y+ = E[X+|G] and Y− = E[X−|G]. Let Y = Y+ − Y−.
Then, for any G ∈ G,∫

G

XdP =

∫
G

X+dP −
∫
G

X−dP =

∫
G

Y+dP −
∫
G

Y−dP =

∫
G

Y dP. (73)

Hence Y = E[X|G], which is what we needed to show.

Next we prove some basic properties of conditional expectation. In the statement of the
next proposition, we will use the notation X ∈ L1(G), where G is any sub-σ-field of F, to
indicate that X is an integrable, G-measurable random variable.

Proposition 6.5. Suppose G is a sub-σ-algebra of F. Then

a. Conditional expectation is linear, i.e. E[aX + bY |G] = aE[X|G] + bE[Y |G] for all
scalers a, b and all X, Y ∈ L1(F).

b. Suppose X ∈ L1(G) and Y ∈ L1(F). Then E[XY |G] = XE[Y |G].
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c. If X ∈ L1(G), then E[X|G] = X.

d. If X ∈ L1(F) is independent of G, then E[X|G] = E[X].

e. Suppose H is a sub-σ-algebra of G, and X ∈ L1(F). Then E[E[X|G]|H] = E[E[X|H]|G] =
E[X|H].

The fact (e) is sometimes stated informally as “the smallest σ-algebra always wins.”

Proof. (a) Let Z1 = E[X|G] and Z2 = E[Y |G]. Then, for any G ∈ G,∫
G

(aX + bY )dP = a

∫
G

XdP + b

∫
G

Y dP

= a

∫
G

Z1dP + b

∫
G

Z2dP =

∫
G

(aZ1 + bZ2)dP,

(74)

as required.
(b) First, suppose X = 1A for some A ∈ G, and let Z = E[XY |G] and Z ′ = E[Y |G].

Then, for any G ∈ G ∫
G

ZdP =

∫
G∩A

Y dP =

∫
G∩A

Z ′dP =

∫
G

XZ ′dP. (75)

Since XZ ′ is G-measurable, this shows that Z = XZ ′. Hence, by linearity of conditional
expectation, E[XY ] = XE[Y ] whenever X is a G-measurable simple function. Now take X
to be an arbitrary random variable in L1(G). By a basic fact from integration theory, there
exists a sequence of G-measurable simple functions Xj such that Xj → X as j →∞. Then
by dominated convergence, if we let Z and Z ′ be taken as above, then∫

G

ZdP =

∫
G

XY dP = lim
j→∞

∫
G

XjY dP = lim
j→∞

∫
G

XjZ
′dP =

∫
G

XZ ′dP, (76)

as required.
(c) This is a special case of (b), with Y ≡ 1.
(d) For any G ∈ G, X and 1G are independent random variables, and hence by Proposition

2.6 ∫
G

XdP = E[X1G] = E[X]E[1G] =

∫
G

E[X]dP, (77)

as required.
(e) The fact that E[E[X|G]|H] = E[X|H] follows from the fact that any G-measurable

random variable is H-measurable. As for the second inequality, let H ∈ H, and observe that
since H ∈ G ∫

H

E[E[X|H]|G]dP =

∫
H

E[X|H]dP =

∫
H

XdP, (78)

This shows that E[E[X|H]|G] = E[X|H].
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6.2 Stopping Times

We will need to know about stopping times in order to describe the strong Markov property.
To define stopping times, first we must introduce filtrations, which are also be needed to
define the Markov properties.

Definition 6.6 (Filtration). Let (Ω,F, P ) is a probability space, a filtration is a collection
of σ-algebras {Ft}t≥0 such that

Fs ⊂ Ft ⊂ F whenever s ≤ t. (79)

In addition, we say that a filtration {Ft}t≥0 is right-continuous if, for all t ≥ 0, Ft = ∩s≥tFs.

Example 6.7 (Filtration of a stochastic process). A common way in which filtrations arise
is as follows. If Y = {Yt}t≥0 is a stochastic process, one defines Ft to be the σ-algebra
generated by the collection of random variables {Ys : 0 ≤ s ≤ t} (i.e. Ft is the smallest
σ-algebra for which each Ys, for s ≤ t, is measurable). The collection {Ft}t≥0 clearly satisfies
the above definition. Intuitively Ft represents the package of “potential information” we
may extract from X by the time t.

We are now ready to define stopping times. Let {Ft}t≥0, be a fixed filtration of σ-algebras.

Definition 6.8 (Stopping time). A random variable T : Ω→ [0,∞) is said to be a stopping
time if, for all t ≥ 0, {ω : T (ω) < t} ∈ Ft.

Next we prove some elementary properties of stopping times.

Proposition 6.9.

a. T is a stopping time if and only if {ω : T (ω) ≤ t} ∈ Ft for all t ≥ 0.

b. Any fixed a ≥ 0 is a stopping time.

c. If T and T ′ are stopping times, then TM = max(T, T ′) and Tm = min(T, T ′) are
stopping times.

d. If {Tn} is a sequence of stopping times, then T = supn Tn is a stopping time, and
T = infn Tn.

e. If S and T are stopping times, then so is S + T .

Proof. (a) Observe that T ≤ t if and only if T < q for all rational numbers q > t. Hence if T
is a stopping time, then {ω : T (ω) ≤ t} = ∩q∈(t,∞){ω : T (ω) < q} ∈ Ft. Conversely, suppose
{ω : T (ω) ≤ t} ∈ Ft for all t ≥ 0. Observe that T < t if and only if T ≤ q for some rational
q < t. Hence {ω : T (ω) < t} = ∪q∈[0,t){ω : T (ω) ≤ q} ∈ Ft. Thus T is a stopping time.

(b) For any t ≥ 0, {ω : a < t} is equal to ∅ or Ω, which are both contained in Ft.
(c) Observe that {ω : TM(ω) < t} = {ω : T (ω) < t} ∩ {ω : T ′(ω) < t} ∈ Ft, and

{ω : Tm(ω) < t} = {ω : T (ω) < t} ∪ {ω : T ′(ω) < t} ∈ Ft
(d) Observe that T ≤ t if and only if Tn ≤ t for all n. Hence T = ∩n{ω : Tn(ω) ≤ t} ∈ Ft

by (a). Also, T < t if and only if Tn < t for some n. Hence {ω : T < t} = ∪n{ω : Tn(ω) <
t} ∈ Ft.
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(e) Observe that

{ω : S(ω) + T (ω) < t} =
⋃

q∈Q∩[0,∞)

{ω : q + T (ω) < t} ∩ {S(ω) < q} (80)

Note that {ω : q + T (ω) < t} = {ω : T (ω) < t− q} ∈ Ft (if q > t, then this set is the empty
set). Hence {ω : S(ω) + T (ω) < t} ∈ Ft.

6.3 The Wiener Process as a random variable taking values in
C([0,∞),Rn)

Let us now introduce another point of view from which to consider the Wiener process.
Suppose X = {Xt}t≥0 is a Wiener process in Rn starting from a point x. While before we had
avoided assigning any definite meaning to the measure space (Ω,F, P ) on which X is defined,
we will see that a rather nice situation arises when we identify Ω with C = C([0,∞),Rn),
the set of continuous functions from [0,∞) into Rn. This identification is accomplished as
follows:

For each t ≥ 0, let πt : C → Rn be the usual projection map (i.e. πt(f) = f(t) for all
f ∈ C). Let C be the σ-algebra of subsets of C generated by the projection maps πt. If X
is a Wiener process in Rn starting from x, define a set function P x on C by

P x(A) = P (X ∈ A) (A ∈ C). (81)

To show that the set {ω : X(ω) ∈ A} = X−1A ∈ F, it is enough to prove X−1A ∈ F when A
is in a generating set for C. The σ-algebra C is generated by sets of form π−1

t B, where t ≥ 0
and B ∈ Bn. Hence X−1(π−1

t B) = (πt ◦ X)−1B = X−1
t B ∈ F, because Xt is a measurable

random variable from Ω into Rn. Thus the definition above for P x makes sense.
The fact that P x is a measure is easy to see, because first P x(∅) = P (∅) = 0. Second,

if {Aj}nj=1 is a countable disjoint collection of sets in C, then P x(∪Aj) = P (∪{ω : X ∈
Aj}) =

∑∞
j=1 P (X ∈ Aj), here using countable additivity of P and the fact that the sets

{ω : X ∈ Aj} are disjoint.
For each t ∈ [0,∞), let Yt = πt be the projection map on C defined above.

Proposition 6.10. The process Y = {Yt}t≥0, defined on the probability space (C,C, P x), is
a Wiener process in Rn starting from x.

Remark 6.11. We can regard Y as a random variable from C into the product space MT ,
where M = Rn and T = [0,∞), and MT is equipped with the product σ-algebra MT , where
M = Bn is the collection of Borel sets (see §2.5). Indeed, the σ-algebra MT is generated by
sets of form π−1

t B where B ∈ M and t ≥ 0. Hence {f ∈ C : Y (f) ∈ π−1
t B} = {f ∈ C :

f(t) ∈ B} = π−1
t B ∈MT , and it follows that Y is measurable. In particular, it is clear that

Y satisfies the official Definition 2.13 of a stochastic process.

Proof. The paths of Y are just the elements of C and hence continuous. To see that the
finite-dimensional distributions of Y agree with those of X, suppose {t1, ..., tm} are distinct
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elements of [0,∞), and suppose B1, ..., Bm are Borel subsets of Rn. Then

P x(Yt1 ∈ B1, ..., Ytm ∈ Bm) = P x(∩mj=1Y
−1
tj
Bj) = P (X ∈ ∩mj=1Y

−1
tj
Bj)

= P (Ytj(X(ω)) ∈ Bj for j = 1, ...,m)

= P (Xt0 ∈ B1, ..., Xtm ∈ Bm).

(82)

Thus the finite dimensional distributions of X and Y agree, and the result follows by Propo-
sition 4.3.

The content of Proposition 6.10 is that to understand the Wiener process, the probability
space (Ω,F, P ), on which the Wiener process X starting from x is defined, may be replaced
by a probability space (C,C, P x), on which the Wiener process takes an especially simple
form as a collection of evaluation maps. The features of the original process X could be
quite complicated depending on the measure P , with respect to which it was constructed.
Within the new framework, arbitrary features arising from P are hidden away.

This new point of view is so convenient that we will work with it exclusively for the rest
of this paper. Rather than breaking with our previous notation for the Wiener process, and
using Y , C, and C from now on, we establish the following

Convention. From now on, we will use Ω to denote the space C = C([0,∞),Rn) de-
fined above, and we will use F to denote the σ-algebra C. The elements ω ∈ Ω are thus
continuous functions from [0,∞) into Rn. A Wiener process starting from x ∈ Rn will be
understood to be the pair (X,P x), where P x is the measure defined above and X = {Xt}t≥0

where each Xt is the evaluation map ω 7→ ω(t) (ω ∈ Ω).

6.4 The Weak Markov Property

Let X be a Wiener process in Rn. We associate with X two filtrations. First, for t ≥ 0, we
define

F0
t = σ(Xs : s ≤ t). (83)

that is, the σ-algebra generated by the collection of random variables Xs such that s ≤ t.
Second, for t ≥ 0, we define the σ-algebras

Ft =
⋂
ε>0

Ft+ε. (84)

Clearly the collections of σ-algebras {F0
t }t≥0 and {Ft}t≥0 are both filtrations, and the latter

is a right-continuous filtration. To paraphrase Durrett, the σ-algebra F0
t represents the

information about X we will know by time t, and Ft represents the information about X we
will know by time t if we are allowed “an infinitesimal peak into the future” [3, p. 307].

The weak Markov property is the following result.

Theorem 6.12 (Weak Markov property). Suppose f is a bounded, Borel measurable func-
tion, and define a process Y = f(X). Then

Ex[Y ◦ τs|Fs] = EXsY P x-a.s. (85)
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To explain the notation, EXsY is the random variable ϕ(Xs), where ϕ(y) = EyY . To
prove the theorem, we first prove the result for when f is a complex exponential function.
We then extend this result to a larger class of functions using the Fourier inversion theorem.
Finally, we obtain the general result using a simple dominated convergence argument.

Lemma 6.13. If f(x) = e−2πiξ·x for some ξ ∈ Rn, then the conclusion of Theorem 6.12
holds true.

Proof. First, we show the result holds if we replace the σ-algebra Fs with F0
s . Indeed,

Ex[Y ◦ τs|F0
s ] = Ex[e−2πiξ·Xt+s|F0

s ]

= Ex[e−2πiξ·Xt+s−Xse−2πiξ·Xs|F0
s ]

= E[e−2πiξ·(Xt+s−Xs)]e−2πiξ·Xs

= e−π|ξ|
2te−2πiξ·Xs .

(86)

The second to last line above follows from independence of increments together with Propo-
sition 6.5(b) and (d), and the last line follows from Corollary 3.14. On the other hand, by
the same corollary, for any y ∈ Rn,

EyY = Eye−2πiξ·Xt = e−π|ξ|
2te−2πiξ·y. (87)

Thus, setting y = Xs and comparing with (86), we see that Ex[Y ◦ τs|F0
s ] = EXsY .

To obtain the same result for the σ-algebra Fs, we must show that, for any F ∈ Fs,∫
F

Y ◦ τsdP x =

∫
F

EXsY. (88)

If F ∈ Fs, then for all ε > 0, F ∈ F0
s+ε. Hence, by the result we just established, for all

ε > 0, ∫
F

Y ◦ τs+εdP x =

∫
F

EXs+ε [Y ]dP x. (89)

Note that Y ◦ τs+ε = e−2πiξ·Xs+t+ε → e−2πiξ·Xs+t pointwise as ε → 0, by continuity. Hence,
by dominated convergence, the left side of equation (89) approaches

∫
F
Y ◦ τsdP x as ε→ 0.

On the other hand, by equation (87), EXs+ε [Y ] = e−π|ξ|
2te−2πiξ·Xs+ε → e−π|ξ|

2te−2πiξ·Xs =
EXs+ε [Y ] pointwise as ε → 0. Hence, by dominated convergence, the right hand side of
equation (89) approaches

∫
F
EXs [Y ]dP x as ε→ 0. Thus the equality (88) is proved.

Lemma 6.14. If f is bounded and has compact support, then the conclusion of Theorem
6.12 holds true.

Proof. Let K = supp(f). By assumption |f | ≤ c for some c > 0, so
∫
|f | ≤ cm(K) < ∞.

Thus f ∈ L1. Moreover, taking the inverse Fourier transform of f , we have |f∨| ≤
∫
|f | ≤

cm(K) < ∞, so f∨ is also bounded. Therefore, by Corollary 7.9 there exists a sequence
{fj}∞j=1 of smooth L1 functions such that fj → f a.e., each f∨j ∈ L1, and f∨j → f∨ pointwise.

Moreover, by the inversion formula (Theorem 7.6), for all j, (̂f∨j ) = fj a.e.
Define Yj = fj(X). Then Yj → Y P x-a.s. By this we mean that, except for ω in P x-null

set, Yj(ω)→ Y (ω) pointwise as a sequence of continuous functions on [0,∞). To justify this
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statement, let N ∈ Bn be the null set where fj 6→ f . Observe that Yj(ω) 6→ Y (ω) if and
only if, for some t ∈ [0,∞), Xt(ω) ∈ N . If t > 0, since the distribution of Xt is given by a
normal density function, it follows that P x(Xt ∈ N) = 0. By possibly redefining the fj’s on
a null set, we may assume that x /∈ N , in which case we also have P x(Xt ∈ N) = 0 when
t = 0.

Given F ∈ F and s ≥ 0, we use the fact that fj = f̂∨j and apply Fubini’s theorem several
times to compute∫

F

Yj ◦ τsdP x =

∫
F

fj(τsX)dP x =

∫
F

∫
Rn
e−2πiξ·τsXf∨j (ξ)dξdP x

=

∫
Rn

(∫
F

e−2πiξ·τsXdP x

)
f∨j (ξ)dξ

=

∫
Rn

(∫
F

EXs [e−2πiξ·X ]dP x

)
f∨j (ξ)dξ (by Lemma 6.13)

=

∫
F

∫
Rn
EXs [e−2πiξ·X ]f∨j (ξ)dξdP x

=

∫
F

EXs

[∫
Rn
e−2πiξ·Xf∨j (ξ)dξ

]
dP x

=

∫
F

EXsfj(X)dP x =

∫
F

EXsYjdP
x.

(90)

Note that by dominated convergence limEyYj = EyY for any y ∈ Rn. Hence limEXsYj =
EXsY . Thus again by dominated convergence the first and last quantities appearing in (90)
converge to

∫
F
Y ◦ τsdP x and

∫
F
EXsY dP x respectively, as j → ∞, and this proves the

lemma.

With these two results on hand, the theorem then follows relatively easily.

Proof of Theorem 6.12. Let f be any bounded measurable function, and for each integer
n ≥ 0, let Bn be the ball of radius n centered at zero. Let fn = fχBn , and let Yn = fn(X).
Then fn → f pointwise, and hence Yn → Y pointwise. Given F ∈ F and s ≥ 0, since each
fn is bounded and has compact support, by the previous lemma we have∫

F

Yn ◦ τsdP x =

∫
F

EXsYndP
x. (91)

Note that by dominated convergence limEyYn = EyY for any y ∈ Rn, and in particular
limEXsYn = EXsY . Thus again by dominated convergence, the quantities on the right and
left in equation (91) converge to

∫
F
Y ◦τsdP x and

∫
F
EXsY dP x respectively, and the theorem

is proved.

6.5 The Strong Markov Property

Let {Ft} be the filtration defined in the previous section. Let T be a fixed stopping time
with respect to this filtration. We define

FT = {A ∈ F∞ : A ∩ (T ≤ t) ∈ Ft, for all t > 0}. (92)
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Proposition 6.15. (i) FT is a σ-algebra. (ii) T is FT -measurable. (iii) XT is FT measurable.

Proof. (i) Suppose {Aj}∞1 ⊂ FT . Then, for any t > 0, (∪∞1 Aj) ∩ (T ≤ t) = ∪∞1 (Aj ∩ (T ≤
t)) ∈ Ft, since each Aj ∩ (T ≤ t) ∈ Ft. If B ∈ FT , then B ∩ (T ≤ t) ∈ Ft and (T ≤ t) ∈ Ft.
Hence (T ≤ t)\(B∩ (T ≤ t)) = Bc∩ (T ≤ t) ∈ Ft. Thus FT is closed under countable unions
and complementation, so FT is a σ-algebra.

(ii) Since the intervals [0, s], s > 0, generate the Borel sets in [0,∞), it is enough to
show that, for any s > 0, (T ≤ s) ∈ FT . But this is clearly the case, because, for all t > 0,
(T ≤ s) ∩ (T ≤ t) = (T ≤ min(s, t)) ∈ Ft.

(iii) XT is the composition of functions

XT : (Ω,FT )
g−→ ([0,∞)× Ω,B[0,∞) × F∞)

f−→ (Rn,Bn), (93)

where f(t, ω) = Xt(ω), g(ω) = (T (ω), ω), and B[0,∞) × F∞ is the product σ-algebra. The
function f is measurable because it is an F∞-measurable function in ω and a continuous
function in t. That g is measurable follows from the fact that T is FT -measurable.

Some additional notation: We define the maps θT and XT by θT (ω)(t) = ω(T (ω) + t)
and XT (ω) = XT (ω)(ω). We are now ready to state the strong Markov property.

Theorem 6.16 (Strong Markov Property). Suppose Y = f(X), where f is a bounded, Borel
measurable function, and (X,P x) is a Wiener process. Then

Ex[θTY |FT ] = EXT [Y ]. (94)

Proof. We must prove that, for any A ∈ FT ,∫
A

f(θTX)dP x =

∫
A

EXT [f(X)]dP x. (95)

Since the continuous functions are dense in the space of Borel-measurable functions on Rn,
we may assume that f is continuous. The general result then follows by taking a sequence
of continuous functions and applying the dominated convergence theorem.

Define a sequence of stopping times Tn by

Tn(ω) = k/2n if T (ω) ∈ [(k − 1)/2n, k/2n) k = 1, 2, 3, ... (96)

Then Tn decreases monotonically to T . If A ∈ FT , then A ∈ FTn and hence, if we let
Ak = A ∩ {ω : Tn(ω) = k/2n}, then Ak ∈ Fk/2n . By the weak Markov property∫

Ak

f(θTnX)dP x =

∫
Ak

f(θk/2nX)dP x =

∫
Ak

EXk/2n [f(X)]dP x

=

∫
Ak

EXTn [f(X)]dP x.

(97)

Since ∪∞k=1Ak = A, it follows that∫
A

f(θTnX)dP x =
∞∑
k=1

∫
Ak

EXTn [f(X)]dP x =

∫
A

EXTn [f(X)]dP x. (98)

34



By continuity, for any t ≥ 0 and ω ∈ Ω, limn→∞ f((θTnX)t(ω)) = limn→∞ f(XTn(ω)+t(ω)) =
f((θTX)t(ω)). Hence, by dominated convergence, the quantity on the left in (98) approaches∫
A
f(θTX)dP x as n → ∞. As for the quantity on the right, note that the function ϕ(y) =

Ey[f(X)] is continuous. This is because Ey[f(X)] = E0[f(X+y)], and since f is continuous,
continuity of ϕ follows by dominated convergence. Thus, applying dominated convergence to
the quantity on the right in (98) yields that limn→∞

∫
A
EXTn [f(X)]dP x =

∫
A
EXT [f(X)]dP x.

This completes the proof.

7 Appendices

Appendix A: Convolutions and Approximate Identities

If f and g are two measurable functions on Rn, the convolution of f and g is defined to be
the function

(f ∗ g)(x) =

∫
f(x− y)g(y)dy (x ∈ Rn), (99)

whenever the above integral is defined.
Convolutions have a number of nice analytical and algebraic properties. These include

Proposition 7.1. Suppose f, g, h are measurable functions on Rn. Then, whenever the
respective convolutions are defined,

a. f ∗ g = g ∗ f .

b. f ∗ (g ∗ h) = (f ∗ g) ∗ h.

c. If f, g ∈ L1, then f ∗ g ∈ L1, and ||f ∗ g||1 ≤ ||f ||1||g||1.

d. Let f, g ∈ L1(Rn). Suppose g ∈ Ck(U) for some U ⊂ Rn and each of the derivatives
∂αg is bounded for |α| ≤ k. Then f ∗ g ∈ Ck(U) and ∂α(f ∗ g) = f ∗ ∂αg..

Proof. (a) This is just a change variables:

f ∗ g(x) =

∫
f(x− y)g(y)dy =

∫
f(z)g(x− z)dz = g ∗ f(x) (100)

where we have made the substitution z = x− y.
(b) By Fubini’s Theorem and (a)

f ∗ (g ∗ h)(x) =

∫
f(y)

∫
g(z − x+ y)h(z)dzdy

=

∫
h(z)

∫
g(y − x+ z)f(y)dydz = (f ∗ g) ∗ h(x).

(101)

(c) Using Tonelli’s Theorem, we have∫∫
|f(y)g(x− y)|dydx =

∫
|f(y)|

∫
|g(x− y)|dxdy = ||f ||1||g||1, (102)
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which is finite by assumption. It then follows that f ∗ g is defined almost everywhere, and

||f ∗ g||1 =

∫ ∣∣∣∣∫ f(y)g(x− y)dy

∣∣∣∣ dx ≤ ∫∫ |f(y)g(x− y)|dydx = ||f ||1||g||1, (103)

as required.
(d) By boundedness of the partial derivatives, it is clear that f(y)∂αg(x−y) is integrable

for |α| ≤ k and x ∈ U . It follows that for |α| ≤ k and x ∈ U we can differentiate under the
integral to obtain

∂αf ∗ g(x) =

∫
f(y)∂αg(x− y)dy = f ∗ ∂αg. (104)

(For justification of differentiating under the integral, see e.g. Folland [4, Theorem 2.27].)

Convolutions allow us to approximate a given function by well-behaved functions. Sup-
pose that φ ∈ L1(Rn), and

∫
φ = 1. For t > 0, define φt(x) = t−nφ(t−1x). Notice that by

changing variables we still have
∫
φt = 1. The collection of functions {φt}t>0 is known as an

approximate identity. The reason for this name comes from the following result.

Theorem 7.2. Suppose f ∈ L1. Then f ∗ φt → f in L1 as t→ 0.

Remark 7.3. One can obtain other forms of convergence, such as uniform convergence or
uniform convergence on compact sets, by imposing stronger conditions on f . See for example
Theorem 8.14 in Folland [4].

If g is a function on Rn and y ∈ Rn, we define τyg(x) = g(x − y). The operator τy is
sometimes called the translation operator. To prove Theorem 7.2, we will need the following

Fact. If g ∈ L1(Rn), then limy→0 ||τyg − g||1 = 0.

To avoid a somewhat lengthy digression, we refer the reader to Folland [4, Proposition
8.5] for a justification of this fact. The proof of Theorem 7.2 then proceeds as follows.

Proof. We start with the following calculation.

f ∗ φt(x)− f(x) =

∫
[f(x− y)− f(x)]φt(y)dy =

∫
[f(x− tz)− f(z)]φ(z)dz

=

∫
[τtzf(x)− f(x)]φ(z)dz.

(105)

Using Fubini’s Theorem, this allows us to obtain the following estimate.

||f ∗ φt − f ||1 ≤
∫∫
|τtzf(x)− f(x)||φ(z)|dzdx

=

∫ (∫
|τtzf(x)− f(x)|dx

)
|φ(z)|dz

=

∫
||τtzf − f ||1|φ(z)|dz.

(106)

Note that ||τtzf − f ||1 ≤ 2||f ||1. Hence applying dominated convergence to the estimate
above shows that ||f ∗ φt − f ||1 → 0 as t→ 0, as desired.
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Example 7.4. For x ∈ Rn, define φ(x) = e−π|x|
2
. We can write

e−π|x|
2

=
n∏
j=1

e−πx
2
j . (107)

By a well-known fact from calculus, each
∫
e−πx

2
jdxj = 1. Hence by Fubini’s theorem

∫
φ = 1.

Thus by Theorem 7.2,
f ∗ φt → f in L1. (108)

But we can say more: Each φt is a smooth L1 function, and hence by Propositions 7.1(c)
and (d), f ∗ φt is a smooth L1 function. In fact, by choosing an appropriate sequence {tj},
where each tj > 0 and tj ↓ 0, and defining fj = f ∗ φtj , we obtain a sequence of smooth
L1 functions {fj} such that fj → f a.e. (This follows from the fact that any sequence of
functions gj → g in L1 has a subsequence which converges to g almost everywhere. See
Corollary 2.32 in Folland [4])

Appendix B: The Fourier Transform

Given a function f ∈ L1(Rn), the Fourier transform of f is the function

f̂(ξ) =

∫
e−2πix·ξf(x)dx (ξ ∈ Rn). (109)

Typically, the Fourier transform of a function has better smoothness properties than the
original function. In particular, by dominated convergence (take |f | as the dominating
function), the Fourier transform of the function f in (109) is continuous. Additional mild
hypotheses on the function f allow one to differentiate under the integral in (109) multiple
times to show that f̂ ∈ Ck. Another useful fact is that, under the Fourier transform,
convolution becomes multiplication. More precisely, we have

Proposition 7.5. Let f and g be L1 functions (whose convolution is well-defined, by Propo-

sition 7.1(c)). Then f̂ ∗ g = f̂ ĝ.

Proof. The proof is just a matter of applying Fubini’s Theorem. For x ∈ Rn,

f̂ ∗ g(x) =

∫∫
e−2πix·ξf(ξ − y)g(y)dydξ

=

∫∫
e−2πix·(ξ−y)f(ξ − y)e−2πix·yg(y)dydξ

=

∫ (∫
e−2πix·(ξ−y)f(ξ − y)dξ

)
e−2πix·yg(y)dy

=

∫
f̂(x)e−2πix·yg(y)dy = f̂(x)ĝ(x),

(110)

as required.
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To recover the original function from its Fourier transform, we introduce inverse Fourier
transform of a function g ∈ L1. This is the function

g∨(x) = ĝ(−x) =

∫
e2πix·ξg(ξ)dξ (x ∈ Rn). (111)

Observe that, due to the simple relationship above between g∨ and ĝ, Proposition 7.5 also
holds for the inverse Fourier transform. The inversion formula is the following result.

Theorem 7.6 (Inversion of the Fourier transform). If f ∈ L1(Rn) and f̂ ∈ L1(Rn), let
g = (f̂)∨. Then g, h ∈ C0(Rn), and f = g = h a.e.

Remark 7.7. The same result still holds if we replace f̂ by f∨ and let g = (̂f∨).

For a proof of Theorem 7.6, see for example Theorem 8.26 in Folland [4] or Theorem 9.5
in Rudin [7].

The next result says that the function defined in Example 7.4 is a kind of eigenfunction of
the Fourier transform. This result will give us a useful approximate identity. It also provides
us with the characteristic function for Gaussian distribution (see Proposition 3.5).

Proposition 7.8. For x ∈ Rn, let φ(x) = e−π|x|
2
. Then φ̂ = φ.

Proof. The proof has two steps
Step 1. First we show that result holds for dimension n = 1. In this case, by definition,

φ̂(ξ) =

∫
e−2πixξe−πx

2

dx. (112)

The derivative of e−2πixξe−πx
2

with respect to ξ is −2πixe−2πixξe−πx
2
, which is bounded by

g(x) = 2π|x|e−πx2 , which is integrable. Hence we may differentiate under the integral (see
Folland [4, Proposition 2.27(b)]) to obtain

φ̂′(ξ) =

∫
−2πixe−2πixξe−πx

2

dx

= e−2πixξie−πx
2 |∞−∞ −

∫
(ie−πx

2

)(−2πiξe−2πixξ)dx

= 0− 2πξ

∫
e−2πixξe−πx

2

dx

= −2πξφ̂(ξ).

(113)

(The second line above is obtained by integration by parts with u = e−2πixξ and dv =
−2πixe−πx

2
dx.) Thus we have obtained an ODE φ̂′(ξ) = −2πφ̂(ξ). To solve it, observe that

by (113)
d

dξ
[φ̂(ξ)eπξ

2

] = φ̂′(ξ)eπξ
2

+ 2πξφ̂(ξ)eπξ
2

= 0. (114)

Therefore, φ̂(ξ)eπξ
2

= φ̂(0) =
∫
e−πx

2
dx = 1. So indeed φ̂(ξ) = e−πξ

2
.
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Step 2. Now we generalize dimension n ≥ 1. For x ∈ Rn, |x|2 =
∑n

j=1 x
2
j . Hence, by

Fubini’s Theorem,

φ̂(ξ) =

∫
e−2πix·ξe−π|x|

2

dx =

∫
(
n∏
j=1

e−2πixjξje−πx
2
j )dx1dx2 · · · dxj

=
n∏
j=1

∫
e−2πixjξje−πx

2
jdxj =

n∏
j=1

e−πξ
2
j = e−π|ξ|

2

,

(115)

here using the result from Step 1. This completes the proof.

Corollary 7.9. Suppose f ∈ L1. Then there exists a sequence {fj}∞j=1 of smooth L1 functions

such that fj → f a.e. and f̂j → f̂ pointwise. In addition, if f̂ is bounded, then the sequence

may be chosen so that each f̂j ∈ L1.

Proof. Let φ and {fj} be chosen as in Example 7.4. Then as shown in the example, {fj}
is a sequence of smooth L1 functions such that fj → f a.e. Moreover, by Proposition 7.5,

f̂j = f̂ φ̂tj . Given t > 0, using the previous proposition, we compute

φ̂t(ξ) = t−n
∫
e−2πix·ξe−πt

−2|x|2dx =

∫
e−2πiy·ξ/te−π|y|

2

dy

= φ̂(ξ/t) = e−π|ξ|
2/t2 .

(116)

Thus φ̂t → 1 as t → 0, and hence f̂j → f̂ pointwise as j → ∞. Moreover, φ̂t ∈ L1. So if f̂

is bounded, then each f̂j ∈ L1.

Remark 7.10. The result also holds if we replace f̂j with f∨j and f̂ with f∨.
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