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Chapter 1

To Knot or Not to Knot

Here is a picture of a knot:

Figure 1.1: A Knot Shadow

Unfortunately, the picture doesn’t show which strand is on top and which
strand is below, at each intersection. So the knot in question could be any
one of the following eight possibilities.

Figure 1.2: Resolutions of Figure 1.1
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Ursula and King Lear decide to play a game with Figure 1.1. They take
turns alternately resolving a crossing, by choosing which strand is on top. If
Ursula goes first, she could move as follows:

King Lear might then respond with

For the third and final move, Ursula might then choose to move to

Figure 1.3: The final move

Now the knot is completely identified. In fact, this knot can be untied as
follows, so mathematically it is the unknot :
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Because the final knot was the unknot, Ursula is the winner - had it been
truly knotted, King Lear would be the winner.

A picture of a knot like the ones in Figures 1.2 and 1.3 is called a knot
diagram or knot projection in the field of mathematics known as Knot The-
ory. The generalization in which some crossings are unresolved is called a
pseudodiagram - every diagram we have just seen is an example. A pseudo-
diagram in which all crossing are unresolved is called a knot shadow. While
knot diagrams are standard tools of knot theory, pseudodiagrams are a recent
innovation by Ryo Hanaki for the sake of mathematically modelling electron
microscope images of DNA in which the elevation of the strands is unclear,
like the following1:

Figure 1.4: Electron Microscope image of DNA

Once upon a time, a group of students in a Research Experience for

1Image taken from http://www.tiem.utk.edu/bioed/webmodules/dnaknotfig4.jpg on
July 6, 2011.
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Undergraduates (REU) at Williams College in 2009 were studying properties
of knot pseudodiagrams, specifically the knotting number and trivializing
number, which are the smallest number of crossings which one can resolve to
ensure that the resulting pseudodiagram corresponds to a knotted knot, or
an unknot, respectively. One of the undergraduates2 had the idea of turning
this process into a game between two players, one trying to create an unknot
and one trying to create a knot, and thus was born To Knot or Not to Knot
(TKONTK), the game described above.

In addition to their paper on knotting and trivialization numbers, the
students in the REU wrote an additional Shakespearean-themed paper A
Midsummer Knot’s Dream on To Knot or Not to Knot and a couple
of other knot games, with names like “Much Ado about Knotting.” In their
analysis of TKONTK specifically, they considered starting positions of the
following sort:

For these positions, they determined which player wins under perfect play:

• If the number of crossings is odd, then Ursula wins, no matter who
goes first.

• If the number of crossings is even, then whoever goes second wins.

They also showed that on a certain large class of shadows, the second player
wins.

1.1 Some facts from Knot Theory

In order to analyze TKONTK, or even to play it, we need a way to tell
whether a given knot diagram corresponds to the unknot or not. Unfortu-

2Oliver Pechenik, according to http://www.math.washington.edu/~reu/papers/
current/allison/UWMathClub.pdf
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nately this problem is very non-trivial, and while algorithms exist to answer
this question, they are very complicated.

One fundamental fact in knot theory is that two knot diagrams corre-
spond to the same knot if and only if they can be obtained one from the
other via a sequence of Reidemeister moves, in addition to mere distortions
(isotopies) of the plane in which the knot diagram is drawn. The three types
of Reidemeister moves are

1. Adding or removoing a twist in the middle of a straight strand.

2. Moving one strand over another.

3. Moving a strand over a crossing.

These are best explained by a diagram:

Figure 1.5: The three Reidemeister Moves

Given this fact, one way to classify knots is by finding properties of knot
diagrams which are invariant under the Reidemeister moves. A number of
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surprising knot invariants have been found, but none are known to be com-
plete invariants, which exactly determine whether two knots are equivalent.

Although this situation may seem bleak, there are certain families of knots
in which we can test for unknottedness easily. One such family is the family
of alternating knots. These are knots with the property that if you walk along
them, you alternately are on the top or the bottom strand at each successive
crossing. Thus the knot weaves under and over itself perfectly. Here are
some examples:

The rule for telling whether an alternating knot is the unknot is simple:
color the regions between the strands black and white in alternation, and
connect the black regions into a graph. Then the knot is the unknot if
and only if the graph can be reduced to a tree by removing self-loops. For
instance,

is not the unknot, while
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is.
Now it turns out that any knot shadow can be turned into an alternating

knot - but in only two ways. The players are unlikely to produce one of these
two resolutions, so this test for unknottedness is not useful for the game.

Another family of knots, however, works out perfectly for TKONTK.
These are the rational knots, defined in terms of the rational tangles. A
tangle is like a knot with four loose ends, and two strands. Here are some
examples:

The four loose ends should be though of as going off to infinity, since
they can’t be pulled in to unknot the tangle. We consider two tangles to be
equivalent if you can get from one to the other via Reidemeister moves.

A rational tangle is one built up from the following two
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via the following operations:

Now it can easily be seen by induction that if T is a rational tangle, then
T is invariant under 180o rotations about the x, y, or z axes:
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Because of this, we have the following equivalences,

In other words, adding a twist to the bottom or top of a rational tangle
has the same effect, and so does adding a twist on the right or the left. So
we can actually build up all rational tangles via the following smaller set of
operations:
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John Conway found a way to assign a rational number (or ∞) to each
rational tangle, so that the tangle is determined up to equivalence by its
number. Specifically, the initial tangles

have values 0 and∞ = 1/0. If a tangle t has value p
q
, then adding a twist

on the left or right changes the value to p+q
q

if the twist is left-handed, or p−q
q

if the twist is right handed. Adding a twist on the top or bottom changes the
value to p

q−p if the twist is left-handed, or p
q+p

if the twist is right-handed.
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Figure 1.6: Sample rational tangles

Reflecting a tangle over the 45◦ diagonal plane corresponds to taking the
reciprocal:
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Figure 1.7: Reflection over the diagonal plane corresponds to taking the
reciprocal. Note which strands are on top in each diagram.

Using these rules, it’s easy to see that a general rational tangle, built up
by adding twists on the bottom or right side, has its value determined by a
continued fraction. For instance, the following rational tangle

has value

4 +
1

2 + 1
3+ 1

2

=
71

64
.

Now a basic fact about continued fractions is that if n1, . . . , nk are positive
integers, then the continued fraction

n1 +
1

n2 + 1

...+ 1
nk
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almost encodes the sequence (n1, . . . , nk). So this discussion of continued
fractions might sound like an elaborate way of saying that rational tangles
are determined by the sequence of moves used to construct them.

But our continued fractions can include negative numbers. For instance,
the following tangle

has continued fraction

3 +
1

−5 + 1
−2+ 1

3

= 79/28 = 2 +
1

1 + 1
4+ 1

1+ 1

1+1
2

,

so that we have the following nontrivial equivalence of tangles:
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Given a rational tangle, its numerator closure is obtained by connecting
the two strands on top and connecting the two strands on bottom, while the
denominator closure is obtained by joining the two strands on the left, and
joining the two strands on the right:

Figure 1.8: the numerator closure (left) and denominator closure (right) of
a tangle.

In some cases, the result ends up consisting of two disconnected strands,
making it a link rather than a knot :

As a general rule, one can show that the numerator closure is a knot as
long as the numerator of p/q is odd, while the denominator closure is a knot
as long as the denominator of p/q is odd.

Even better, it turns out that the numerator closure is an unknot exactly
if the value p/q is the reciprocal of an integer, and the denominator closure
is an unknot exactly if the value p/q is an integer.

The upshot of all this is that if we play TKONTK on a “rational shadow,”
like the following:
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then at the game’s end the final knot will be rational, and we can check
who wins by means of continued fractions.

The twist knots considered in A Midsummer Knot’s Dream are instances
of this, since they are the denominator closures of the following rational
tangle-shadows:

1.2 Sums of Knots

Now that we have a basic set of analyzable positions to work with, we can
quickly extend them by the operation of the connected sum of two knots.

Here are two knots K1 and K2:
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and here is their connected sum K1#K2

This sum may look arbitrary, because it appears to depend on the places
where we chose to attach the two knots. However, we can move one knot
along the other to change this, as shown in the following picture:
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So the place where we choose to join the two knots doesn’t matter.3

Our main interest is in the following fact:

Fact 1.2.1. If K1 and K2 are knots, then K1#K2 is an unknot if and only
if both K1 and K2 are unknots.

In other words, two non-unknots can never be added and somehow cancel
each other. There is actually an interesting theory here, with knots decom-
posing uniquely as sums of “prime knots.” For more information, and proofs
of 1.2.1, I refer the reader to Colin Adams’ The Knot Book.

Because of this fact, we can play To Knot or Not to Knot on sums
of rational shadows, like the following

and actually tell which player wins at the end. In fact, the winner will
be King Lear as long as he wins in any of the summands, while Ursula needs
to win in every summand.

3Technically, the definition is still ambiguous, unless we specify an orientation to each
knot. When adding two “noninvertible” knots, where the choice of orientation matters,
there are two non-equivalent ways of forming the connected sum. We ignore these techni-
calities, since our main interest is in Fact 1.2.1.
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Figure 1.9: On the left, Ursula has won every subgame, so she wins the
connected sum. On the right, King Lear has won only one subgame, but this
is still enough to make the overall figure knotted, so he wins the connected
sum.

Indeed, this holds even when the summands are not rational, though it
is harder to tell who wins in that case.

When TKONTK is played on a connected sum of knot shadows, each
summand acts as a fully independent game. There is no interaction between
the components, except that at the end we pool together the results from
each component to see who wins (in an asymmetric way which favors King
Lear). We can visualize each component as a black box, whose output gets
fed into a logical OR gate to decide the final winner:
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The way in which we can add positions of To Knot or Not to Knot
together, or decompose positions as sums of multiple non-interacting smaller
positions, is highly reminiscent of the branch of recreational mathematics
known as combinatorial game theory. Perhaps it can be applied to To Knot
or Not to Knot?

The rest of this work is an attempt to do so. We begin with an overview
of combinatorial game theory, and then move on to the modifications to
the theory that we need to analyze TKONTK. We proceed by an extremely
roundabout route, which may perhaps give better insight into the origins of
the final theory.

For completeness we include all the basic proofs of combinatorial game
theory, though many of them can be found in John Conway’s book On Num-
bers and Games, and Guy, Berlekamp, and Conway’s book Winning Ways.
However ONAG is somewhat spotty in terms of content, not covering Nor-
ton multiplication or many of the other interesting results of Winning Ways,
while Winning Ways in turn is generally lacking in proofs. Moreover, the
proofs of basic combinatorial game theory are the basis for our later proofs
of new results, so they are worth understanding.
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Part I

Combinatorial Game Theory
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Chapter 2

Introduction

2.1 Combinatorial Game Theory in general

Combinatorial Game Theory (CGT) is the study of combinatorial games. In
the losse sense, these are two-player discrete deterministic games of perfect
information:

• There must be only two players. This rules out games like Bridge or
Risk.

• The game must be discrete, like Checkers or Bridge, rather than con-
tinuous, like Soccer or Fencing.

• There must be no chance involved, ruling out Poker, Risk, and Candy-
land. Instead, the game must be deterministic.

• At every stage of the game, both players have perfect information on the
state of the game. This rules out Stratego and Battleship. Also, there
can be no simultaneous decisions, as in Rock-Paper-Scissors. Players
must take turns.

• The game must be zero-sum, in the sense of classical game theory. One
player wins and the other loses, or the players receive scores that add
to zero. This rules out games like Chicken and Prisoner’s Dilemma.

While these criteria rule out most popular games, they include Chess, Check-
ers, Go, Tic-Tac-Toe, Connect Four, and other abstract strategy games.
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By restricting to combinatorial games, CGT distances itself from the clas-
sical game theory developed by von Neuman, Morgenstern, Nash, and others.
Games studied in classical game theory often model real-world problems like
geopolitics, market economics, auctions, criminal justice, and warfare. This
makes classical game theory a much more practical and empirical subject
that focuses on imperfect information, political coalitions, and various sorts
of strategic equilibria. Classical game theory starts begins its analyses by
enumerating strategies for all players. In the case of combinatorial games,
there are usually too many strategies too list, rendering the techniques of
classical game theory somewhat useless.

Given a combinatorial game, we can ask the question: who wins if both
players play perfectly? The answer is called the outcome (under perfect
play) of the game. The underlying goal of combinatorial game theory is
to solve various games by determining their outcomes. Usually we also want
a strategy that the winning player can use to ensure victory.

As a simple example, consider the following game: Alice and Bob sit on
either side of a pile of beans, and alternately take turns removing 1 or 2
beans from the pile, until the pile is empty. Whoever removes the last bean
wins.

If the players start with 37 beans, and Alice goes first, then she can
guarantee that she wins by always ending her turn in a configuration where
the number of beans remaining is a multiple of three. This is possible on her
first turn because she can remove one bean. On subsequent turns, she moves
in response to Bob, taking one bean if he took two, and vice versa. So every
two turns, the number of beans remaining decreases by three. Alice will
make the final move to a pile of zero beans, so she is guaranteed the victory.
Because Alice has a perfect winning strategy, Bob has no useful strategies at
all, and so all his strategies are “optimal,” because all are equally bad.

On the other hand, if there had been 36 beans originally, and Alice had
played first, then Bob would win by the same strategy, taking one or two
beans in response to Alice taking two or one beans, respectively. Now Bob
will always end his turn with the number of beans being a multiple of three,
so he will be the one to move to the position with no beans.

The general solution is as follows:

• If there are 3n + 1 or 3n + 2 beans on the table, then the next player
to move will win under perfect play.

• If there are 3n beans on the table, then the next player to move will
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lose under perfect play.

Given this solution, Alice or Bob can consider each potential move, and
choose the one which results in the optimal outcome. In this case, the optimal
move is to always move to a multiple of three. The players can play perfectly
as long as they are able to tell the outcome of an arbitrary position under
consideration.

As a general principle, we can say that

In a combinatorial game, knowing the outcome (under perfect
play) of every position allows one to play perfectly.

This works because the players can look ahead one move and choose the move
with the best outcome. Because of this, the focus of CGT is to determine the
outcome (under perfect play) of positions in arbitrary games. Henceforth, we
assume that the players are playing perfectly, so that the “outcome” always
refers to the outcome under perfect play, and “Ted wins” means that Ted
has a strategy guaranteeing a win.

Most games do not admit such simple solutions as the bean-counting
game. As an example of the complexities that can arise, consider Wythoff’s
Game In this game, there are two piles of beans, and the two players (Alice
and Bob) alternately take turns removing beans. In this game, a player
can remove any number of beans (more than zero) on her turn, but if she
removes beans from both piles, then she must remove the same number from
each pile. So if it is Alice’s turn, and the two piles have sizes 2 and 1, she
can make the following moves: remove one or two beans from the first pile,
remove one bean from the second pile, or remove one bean from each pile.
Using (a, b) to represent a state with a beans in one pile and b beans in the
other, the legal moves are to states of the form (a − k, b) where 0 < k ≤ a,
(a− k, b− k), where 0 < k ≤ min(a, b), and (a, b− k), where 0 < k ≤ b. As
before, the winner is the player who removes the last bean.

Equivalently, there is a lone Chess queen on a board, and the players
take turns moving her south, west, or southwest. The player who moves
her into the bottom left corner is the winner. Now (a, b) is the queen’s grid
coordinates, with the origin in the bottom left corner.

Wythoff showed that the following positions are the ones you should move
to under optimal play - they are the positions for which the next player to
move will lose: (

bnφc, bnφ2c
)
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and (
bnφ2c, bnφc

)
where φ is the golden ratio 1+

√
5

2
and n = 0, 1, 2, . . .. (As an aside, the two

sequences an = bnφc and bn = bnφ2c:

{an}∞n=0 = {0, 1, 3, 4, 6, 8, 9, . . .}

{bn}∞n=0 = {0, 2, 5, 7, 10, 13, 15, . . .}

are examples of Beatty sequences, and have several interesting properties.
For example, bn = n + an for every n, and each positive integer occurs in
exactly one of the two sequences. These facts play a role in the proof of the
solution of Wythoff’s game.)

Much of combinatorial game theory consists of results of this sort - in-
dependent analyses of isolated games. Consequently, CGT has a tendency
to lack overall coherence. The closest thing to a unifying framework within
CGT is what I will call Additive Combinatorial Game Theory1, by which
I mean the theory begun and extended by Sprague, Grundy, Milnor, Guy,
Smith, Conway, Berlekamp, Norton, and others. Additive CGT will be the
focus of most of this thesis.2

2.1.1 Bibliography

The most famous books on CGT are John Conway’s On Numbers and Games,
Conway, Guy, and Berlekamp’s four-volume Winning Ways For your Mathe-
matical Plays (referred to as Winning Ways), and three collections of articles
published by the Mathematical Sciences Research Institute: Games of No
Chance, More Games of No Chance, and Games of No Chance 3. There are

1I thought I heard this name once but now I can’t find it anywhere. I’ll use it anyways.
The correct name for this subject may be Conway’s combinatorial game theory, or partizan
theory, but these seem to specifically refer to the study of disjunctive sums of partizan
games.

2Computational Complexity Theory has also been used to prove many negative results.
If we assume the standard conjectures of computational complexity theory (like P 6= NP),
then it is impossible to efficiently evaluate positions of generalized versions of Gomoku,
Hex, Chess, Checkers, Go, Philosopher’s Football, Dots-and-Boxes, Hackenbush, and many
other games. Many puzzles are also known to be intractable if P6=NP. This subfield of
combinatorial game theory is called algorithmic combinatorial game theory. In a sense it
provides another theoretical framework for CGT. We will not discuss it further, however.
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also over a thousand articles in other books and journals, many of which are
listed in the bibliographies of the Games of No Chance books.

Winning Ways is an encyclopedic work: the first volume covers the core
theory of additive CGT, the second covers ways of bending the rules, and the
third and fourth volumes apply these theories to various games and puzzles.
Conway’s ONAG focuses more closely on the Surreal Numbers (an ordered
field extending the real numbers to also include all the transfinite ordinals),
for the first half of the book, and then considers additive CGT in the second
half. Due to its earlier publication, the second half of ONAG is generally
superseded by the first two volumes of Winning Ways, though it tends to
give more precise proofs. The Games of No Chance books are anthologies of
papers on diverse topics in the field.

Additionally, there are at least two books applying these theories to spe-
cific games: Berlekamp’s The Dots and Boxes Game: Sophisticated Child’s
Play and Wolfe and Berlekamp’s Mathematical Go: Chilling Gets the Last
Point. These books focus on Dots-and-Boxes and Go, respectively.

2.2 Additive CGT specifically

We begin by introducing a handful of example combinatorial games.
The first is Nim, in which there are several piles of counters (as in Fig-

ure 2.1), and players take turns alternately removing pieces until none remain.
A move consists of removing one or more pieces from a signle pile. The player
to remove the last piece wins. There is no set starting position.

Figure 2.1: A Nim position containing piles of size 6, 1, 3, 2, and 4.
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A game of Hackenbush consists of a drawing made of red and blue edges
connected to each other, and to the “ground,” a dotted line at the edge of
the world. See Figure 2.2 for an example. Roughly, a Hackenbush poition is
a graph whose edge have been colored red and blue.

Figure 2.2: A Hackenbush position.

On each turn, the current player chooses one edge of his own color, and
erases it. In the process, other edge may become disconnected from the
ground. These edges are also erased. If the current player is unable to move,
then he loses. Again, there is no set starting position.

Figure 2.3: Four successive moves in a game of Hackenbush. Red goes first,
and Blue makes the final move of this game. Whenever an edge is deleted, all
the edges that become disconnected from the ground disappear at the same
time.

In Domineering, invented by Göran Andersson, a game begins with an
empty chessboard. Two players, named Horizontal and Vertical, place domi-
noes on the board, as in Figure 2.4. Each domino takes up two directly
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adjacent squares. Horizontal’s dominoes must be aligned horizontally (East-
West), while Vertical’s must be aligned vertically (North-South). Dominoes
are not allowed to overlap, so eventually the board fills up. The first player
unable to move on his turn loses.

Figure 2.4: Three moves in a game of Domineering. The board starts empty,
and Vertical goes first.

A pencil-and-paper variant of this game is played on a square grid of dots.
Horizontal draws connects adjacent dots with horizontal lines, and vertical
connects adjacent dots with vertical lines. No dot may have more than one
line out of it. The reader can easily check that this is equivalent to placing
dominoes on a grid of squares.

Clobber is another game played on a square grid, covered with White and
Black checkers. Two players, White and Black, alternately move until some-
one is unable to, and that player loses. A move consists of moving a piece of
your own color onto an immediately adjacent piece of your opponent’s color,
which gets removed. The game of Konane (actually an ancient Hawaiian
gambling game), is played by the same rules, except that a move consists of
jumping over an opponent’s piece and removing it, rather than moving onto
it, as in Figure 2.5. In both games, the board starts out with the pieces in an
alternating checkerboard pattern, except that in Konane two adjacent pieces
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are removed from the middle, to provide room for the initial jumps.

Figure 2.5: Example moves in Clobber and Konane. In Clobber (top), the
capturing piece displaces the captured piece. In Konane (bottom), the cap-
turing piece instead jumps over to the captured piece, to an empty space on
the opposite side. Only vertical and horizontal moves are allowed in both
games, not diagonal.

The games just described have the following properties in common, in
addition to being combinatorial games:

• A player loses when and only when he is unable to move. This is called
the normal play convention.

• The games cannot go on forever, and eventually one player wins. In ev-
ery one of our example games, the number of pieces or parts remaining
on the board decreases over time (or in the case of Domineering, the
number of empty spaces decreases.) Since all these games are finite,
this means that a game can never loop back to a previous position.
These games are all loopfree.

• Each game has a tendency to break apart into independent subcompo-
nents. This is less obvious but the motivation for additive CGT. In the
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Hackenbush position of Figure 2.2, the stick person, the tree, and the
flower each functions as a completely independent subgame. In effect,
three games of Hackenbush are being played in parallel.

Similarly, in Domineering, as the board begins to fill up, the remaining
empty spaces (which are all that matter from a strategic point of view)
will be disconnected into separate clusters, as in Figure 3.1. Each
cluster might as well be on a separate board. So again, we find that
the two players are essentially playing several games in parallel.

In Clobber and Konane, as the pieces disappear they begin to fragment
into clusters, as in Figure 2.6. In Clobber, once two groups of checkers
are disconnected they have no future way of interacting with each other.
So in Figure 2.7, each of the red circled regions is an independent sub-
game. In Konane, pieces can jump into empty space, so it is possible
for groups of checkers to reconnect, but once there is sufficient sepa-
ration, it is often possible to prove that such connection is impossible.
Thus Konane splits into independent subgames, like Clobber.

In Nim, something more subtle happens: each pile is an independent
game. As an isolated position, an individual pile is not interesting be-
cause whoever goes first takes the whole pile and wins. In combination,
however, nontrivial things occur.

In all these cases, we end up with positions that are sums of other
positions. In some sense, additive combinatorial game theory is the
study of the nontrivial behavior of sums of game.

The core theory of additive CGT, the theory of partizan games, focuses
on loopfree combinatorial games played by the normal play rule. There is no
requirement for the games under consideration to decompose as sums, but
unless this occurs, the theory has no a priori reason to be useful. Very few
real games (Chess, Checkers, Go, Hex) meet these requirements, so Additive
CGT has a tendency to focus on obscure games that nobody plays. Of course,
this is to be expected, since once a game is solved, it loses its appeal as a
playable game.

In many cases, however, a game which does not fit these criteria can be
analyzed or partially analyzed by clever applications of the core theory. For
example, Dots-and-Boxes and Go have both been studied using techniques
from the theory of partizan games. In other cases, the standard rules can
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Figure 2.6: Subidivision of Clobber positions: Black’s move breaks up the
position into a sum of two smaller positions.

Figure 2.7: A position of Clobber that decomposes as a sum of independent
positions. Each circled area functions independently from the others.
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be bent, to yield modified or new theories. This is the focus of Part 2 of
Winning Ways and Chapter 14 of ONAG, as well as Part II of this thesis.

2.3 Counting moves in Hackenbush

Consider the following Hackenbush position:

Since there are only blue edges present, Red has no available moves, so
as soon as his turn comes around, he loses. On the other hand, Blue has at
least one move available, so she will win no matter what. To make things
more interesting, lets give Red some edges:

Now there are 5 red edges and 8 blue edges. If Red plays wisely, moving
on the petals of the flower rather than the stem, he will be able to move
5 times. However Blue can similarly move 8 times, so Red will run out of
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moves first and lose, no matter which player moves first. So again, Blue is
guaranteed a win.

This suggests that we balance the position by giving both players equal
numbers of edges:

Now Blue and Red can each move exactly 8 times. If Blue goes first, then
she will run out of moves first, and therefore lose, but conversely if Red goes
first he will lose. So whoever goes second wins.

In general, if we have a position like

which is a sum of non-interacting red and blue components, then the
player with the greater number of edges will win. In the case of a tie, whoever
goes second wins. The players are simply seeing how long they can last before
running out of moves.

But what happens if red and blue edges are mixed together, like so?
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We claim that Blue can win in this position. Once all the blue edges
are gone, the red edges must all vanish, because they are disconnected from
the ground. So if Red is able to move at any point, there must be blue
edges remaining in play, and Blue can move too. Since no move by Red can
eliminate blue edges, it follows that after any move by Red, blue edges will
remain and Blue cannot possibly lose. This demonstrates that the simple
rule of counting edges is no longer valid, since both players have eight edges
but Blue has the advantage.

Let’s consider a simpler position:

Figure 2.8: How many moves is this worth?

Now Red and Blue each have 1 edge, but for similar reasons to the pre-
vious picture, Blue wins. How much of an advantage does Blue have? Let’s
add one red edge, giving a 1-move advantage to Red:
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Figure 2.9: Figure 2.8 plus a red edge.

Now Red is guaranteed a win! If he moves first, he can move to the
following position:

Figure 2.10: A red edge and a blue edge. This position is balanced, so
whoever goes next loses. This is a good position to move to.

which causes the next player (Blue) to lose, and if he moves second,
he simply ignores the extra red edge on the left and treats Figure 2.9 as
Figure 2.10.

So although Figure 2.8 is advantageous for Blue, the advantage is worth
less than 1 move. Perhaps Figure 2.8 is worth half a move for Blue? We can
check this by adding two copies of Figure 2.8 to a single red edge:

You can easily check that this position is now a balanced second-player
win, just like Figure 2.10. So two copies of Figure 2.8 are worth the same as
one red edge, and Figure 2.8 is worth half a red edge.
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In the same way, we can show for

that (a) is worth 3/4 of a move for Blue, and (b) is worth 2.5 moves for
Red, because the following two positions turn out to be balanced:

We can combine these values, to see that (a) and (b) together are worth
2.5− 3/4 = 7/4 moves for Red.

The reader is probably wondering why any of these operations are legit-
imate. Additive CGT shows that we can assign a rational number to each
Hackenbush position, measuring the advantage of that position to Blue. The
sign of the number determines the outcome:

• If positive, then Blue will win no matter who goes first.

• If negative, then Red will win no matter who goes first.

• If zero, then whoever goes second will win.
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And the number assigned to the sum of two positions is the sum of the
numbers assigned to each position. With games other than Hackenbush, we
can assign values to positions, but the values will no longer be numbers.
Instead they will live in a partially ordered abelian group called Pg. The
structure of Pg is somewhat complicated, and is one of the focuses of CGT.
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Chapter 3

Games

3.1 Nonstandard Definitions

An obvious way to mathematically model a combinatorial game is as a set
of positions with relations to specify how each player can move. This is not
the conventional way of defining games in combinatorial game theory, but
we will use it at first because it is more intuitive in some ways:

Definition 3.1.1. A game graph is a set S of positions, a designated start-

ing position start(S) ∈ S, and two relations
L→ and

R→ on S. For any x ∈ S,

the y ∈ S such that x
L→ y are called the left options of x, and the y ∈ S

such that x
R→ y are called the right options of x.

For typographical reasons that will become clear in the next section, the
two players in additive CGT are almost always named Left and Right.1 The

two relations
L→ and

R→ are interpreted as follows: x
L→ y means that Left

can move from position x to position y, and x
R→ y means that Right can

move from position x to position y. So if the current position is x, Left can
move to any of the left options of x, and Right can move to any of the right

options of x. We use the shorthand x→ y to denote x
L→ y or x

R→ y.
The game starts out in the position s0. We intentionally do not specify

who will move first. There is no need for a game graph to specify which

1As a rule, Blue, Black, and Vertical are Left, while Red, White, and Horizontal are
Right. This tells which player is which in our sample partizan games.
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player wins at the game’s end, because we are using the normal play rule:
the first player unable to move loses.

But wait - why should the game ever come to an end? We need to add
an additional condition: there should be no infinite sequences of play

a1
L→ a2

R→ a3
L→ a4

R→ · · · .

Definition 3.1.2. A game graph is well-founded or loopfree if there are no
infinite sequences of positions a1, a2, . . . such that

a1 → a2 → a3 → · · · .

We also say that the game graph satisfies the ending condition.

This property might seem like overkill: not only does it rule out

a1
L→ a2

R→ a3
L→ a4

R→ · · ·

and
a1

R→ a2
L→ a3

R→ a4
L→ · · ·

but also sequences of play in which the players aren’t taking turns correctly,
like

a1
R→ a2

R→ a3
R→ a4

L→ a5
R→ a6

L→ · · · .

The ending condition is actually necessary, however, when we play sums of
games. When games are played in parallel, there is no guarantee that within
each component the players will alternate. If Left and Right are playing a
game A+B, Left might move repeatedly in A while Right moved repeatedly
in B. Without the full ending condition, the sum of two well-founded games
might not be well-founded. If this is not convincing, the reader can take
this claim on faith, and also verify that all of the games described above are
well-founded in this stronger sense.

The terminology “loopfree” refers to the fact that, when there are only
finitely many positions, being loopfree is the same as having no cycles x1 →
x2 → · · · → xn → x1, because any infinite series would necessarily repeat
itself. In the infinite case, the term loopfree might not be strictly accurate.

A key fact of well-foundedness, which will be fundamental in everything
that follows, is that it gives us an induction principle
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Theorem 3.1.3. Let S be the set of positions in a well-founded game graph,
and let P some subset of S. Suppose that P has the following property: if
x ∈ S and every left and right option of x is in P , then x ∈ P . Then P = S.

Proof. Let P ′ = S \ P . Then by assumption, for every x ∈ P ′, there is some
y ∈ P ′ such that x → y. Suppose for the sake of contradiction that P ′ is
nonempty. Take x1 ∈ P ′, and find x2 ∈ P ′ such that x1 → x2. Then find
x3 ∈ P ′ such that x2 → x3. Repeating this indefinitely we get an infinite
sequence

x1 → x2 → · · ·

contradicting the assumption that our game graph is well-founded.

To see the similarity with induction, suppose that the set of positions is
{1, 2, . . . , n}, and x→ y iff x > y. Then this is nothing but strong induction.

As a first application of this result, we show that in a well-founded game
graph, somebody has a winning strategy. More precisely, every position in a
well-founded game graph can be put into one of four outcome classes :

• Positions that are wins2 for Left, no matter which player moves next.

• Positions that are wins for Right, no matter which player moves next.

• Positions that are wins for whichever player moves next.

• Positions that are wins for whichever player doesn’t move next (the
previous player).

These four possible outcomes are abbreviated as L, R, 1 and 2.

Theorem 3.1.4. Let S be the set of positions of a well-founded game graph.
Then every position in S falls into one of the four outcome classes.

Proof. Let L1 be the set of positions that are wins for Left when she goes
first, R1 be the set of positions that are wins for Right when he goes first,
L2 be the set of positions that are wins for Left when she goes second, and
R2 be the set of positions that are wins for Right when he goes second.

The reader can easily verify that a position x is in

• L1 iff some left option is in L2.

2Under optimal play by both players, as usual
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• R1 iff some right option is in R2.

• L2 iff every right option is in L1.

• R2 iff every left option is in R1.

These rules are slightly subtle, since they implicitly contain the normal play
convention, in the case where x has no options.

If Left goes first from a given position x, we want to show that either Left
or Right has a winning strategy, or in other words that x ∈ L1 or x ∈ R2.
Similarly, we want to show that every position is in either R1 or L2. Let P be
the set of positions for which x is in exactly one of L1 and R2 and in exactly
one of R1 and L2. By the induction principle, it suffices to show that when
all options of x are in P , then x is in P . So suppose all options of x are in
P . Then the following are equivalent:

• x ∈ L1

• some option of x is in L2

• some option of x is not in R1

• not every option of x is in R1

• x is not in R2.

Here the equivalence of the second and third line follows from the inductive
hypothesis, and the rest follows from the reader’s exercise. So x is in exactly
one of L1 and R2. A similar argument shows that x is in exactly one of R1

and L2. So by induction every position is in P .
So every position is in one of L1 and R2, and one of R1 and L2. This

yields four possibilities, which are the four outcome classes:

• L1 ∩R1 = 1.

• L1 ∩ L2 = L.

• R2 ∩R1 = R.

• R2 ∩ L2 = 2.
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Definition 3.1.5. The outcome of a game is the outcome class (1, 2, L, or
R) of its starting position.

Now that we have a theoretical handle on perfect play, we turn towards
sums of games.

Definition 3.1.6. If S1 and S2 are game graphs, we define the sum S1+S2 to
be a game graph with positions S1×S2 and starting position start(S1 +S2) =

(start(S1), start(S2)). The new
L→ relation is defined by

(x, y)
L→ (x′, y′)

if x = x′ and y
L→ y′, or x

L→ x′ and y = y′. The new
R→ is defined similarly.

This definition generalizes in an obvious way to sums of three or more
games. This operation is essentially associative and commutative, and has
as its identity the zero game, in which there is a single position from which
neither player can move.

In all of our example games, the sum of two positions can easily be con-
structed. In Nim, we simply place the two positions side by side. In fact this
is literally what we do in each of the games in question. In Clobber, one needs
to make sure that the two positions aren’t touching, and in Konane, the two
positions need to be kept a sufficient distance apart. In Domineering, the
focus is on the empty squares, so one needs to “add” the gaps together, again
making sure to keep them separated. And as noted above, such composite
sums occur naturally in the course of each of these games.

Figure 3.1: The Domineering position on the left decomposes as a sum of
the two positions on the right.

Another major operation that can be performed on games: is negation:
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Definition 3.1.7. If S is a game graph, the negation −S has the same set

of positions, and the same starting position, but
L→ and

R→ are interchanged.

Living up to its name, this operation will turn out to actually produce
additive inverses, modulo Section 3.3. This operation is easily exhibited in
our example games (see Figure 3.2 for examples):

• In Hackenbush, negation reverses the color of all the red and blue edges.

• In Domineering, negation corresponds to reflecting the board over a 45
degree line.

• In Clobber and Konane, it corresponds to changing the color of every
piece.

• Negation has no effect on Nim-positions. This works because
L→ and

R→ are the same in any position of Nim.

So in general, negation interchanges the roles of the two players.

Figure 3.2: Negation in its various guises.

We also define subtraction of games by letting

G−H = G+ (−H).

3.2 The conventional formalism

While there are no glaring problems with “game graphs,” a different conven-
tion is used in literature. We merely included it here because it is slightly
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more intuitive than the actual definition we are going to give later in this
section. And even this defintion will be lacking one last clarification, namely
Section 3.3.

To motivate the standard formalism, we turn to an analogous situation
in set theory: well-ordered sets.

A well-ordered set is a set S with a relation > having the following prop-
erties:

• Irreflexitivity: a > a is never true.

• Transitivity: if a > b and b > c then a > c.

• Totality: for every a, b ∈ S, either a > b, a = b, or a < b.

• Well-orderedness: there are no infinite descending chains

x1 > x2 > x3 > · · ·

These structures are very rigid, and there is a certain canonical list of well-
ordered sets called the von Neumann ordinals. A von Neumann ordinal is
rather opaquely defined as a set S with the property that S and all its
members are transitive. Here we say that a set is transitive if it contains all
members of its members.

Given a von Neumann ordinal S, we can define a well-ordering on S be
letting x > y mean y ∈ x. Moreover each well-ordered set is isomorphic to
a unique von Neuman ordinal. The von Neumann ordinals themselves are
well-ordered by ∈, and the first few are

0 = {} = ∅

1 = {{}} = {0}

2 = {{}, {{}}} = {0, 1}

3 = {{}, {{}}, {{}, {{}}}} = {0, 1, 2}
...

In general, each von Neumann ordinal is the set of preceding ordinals - for
instance, the first infinite ordinal number is ω = {0, 1, 2, . . .}.
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In some sense, the point of (von Neumann) ordinal numbers is to provide
canonical instances of each isomorphism class of well-ordered sets. Well-
ordered sets are rarely considered in their own right, because the theory
immediately reduces to the theory of ordinal numbers. Something similar
will happen with games - each isomorphism class of game graphs will be
represented by a single game. This will be made possible through the magic
of well-foundedness.

Analogous to our operations on game graphs, there are certain ways one
can combine well-ordered sets. For instance, if S and T are well-ordered
sets, then one can produce (two!) well-orderings of the disjoint union S

∐
T ,

by putting all the elements of S before (or after) T . And similarly, we can
give S × T a lexicographical ordering, letting (s1, t1) < (s2, t2) if t1 < t2 or
(s1 < s2 and t1 = t2). This also turns out to be a well-ordering.

These operations give rise to the following recursively-defined operations
on ordinal numbers, which don’t appear entirely related:

• α + β is defined to be α if β = 0, the successor of α + β′ if β is the
successor of β′, and the supremum of {α + β′ : β′ < β} if β is a limit
ordinal.

• αβ is defined to be 0 if β = 0, defined to be αβ′+α if β is the successor
of β′, and defined to be the supremum of {αβ′ : β′ < β} if β is a limit
ordinal.

In what follows, we will give recursive definitions of “games,” and also of
their outcomes, sums, and negatives. These definitions might seem strange,
so we invite the reader to check that they actually come out to the right
things, and agree with the definitions given in the last section.

The following definition is apparently due to John Conway:

Definition 3.2.1. A (partizan) game is an ordered pair (L,R) where L and
R are sets of games. If L = {A,B, . . .} and R = {C,D, . . .}, then we write
(L,R) as

{A,B, . . . |C,D, . . .}.

The elements of L are called the left options of this game, and the elements
of R are called its right options. The positions of a game G are G and all
the positions of the options of G.
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Following standard conventions in the literature, we will always denote
direct equality between partizan games with ≡, and refer to this relation as
identity.3

Not only does the definition of “game” appear unrelated to combinatorial
games, it also seems to be missing a recursive base case.

The trick is to begin with the empty set, which gives us the following
game

0 ≡ (∅, ∅) ≡ {|}.
Once we have one game, we can make three more:

1 ≡ {0|}

−1 ≡ {|0}
∗ ≡ {0|0}

The reason for the numerical names like 0 and 1 will become clear later.
In order to avoid a proliferation of brackets, we use || to indicate a higher

level of nesting:
{w, x||y|z} ≡ {w, x|{y|z}}
{a|b||c|d} ≡ {{a|b}|{c|d}}

The interpretation of (L,R) is a position whose left options are the ele-
ments of L and right options are the elements of R. In particular, this shows
us how to associate game graphs with games:

Theorem 3.2.2. Let S be a well-founded game graph. Then there is a unique
function f assigning a game to each position of S such that for every x ∈ S,
f(x) ≡ (L,R), where

L = {f(y) : x
L→ y}

R = {f(y) : x
R→ y}

In other words, for every position x, the left and right options of f(x) are
the images of the left and right options of x under f .

Moreover, if we take a partizan game G, we can make a game graph S by
letting S be the set of all positions of G, start(S) = G, and letting

(L,R)
L→ x ⇐⇒ x ∈ L

3The reason for this will be explained in Section 3.3.
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(L,R)
R→ x ⇐⇒ x ∈ R

Then the map f sends each element of S to itself.

This theorem is a bit like the Mostowski collapse lemma of set theory,
and the proof is similar. Since we will make no formal use of game graphs,
we omit the proof, which mainly consists of set theoretic technicalities.

As an example, for Hackenbush positions we have

where

where

and so on. Also see Figure 3.3 for examples of 0, 1, −1, and ∗ in their
various guises in our sample games.

The terms “game” and “position” are used interchangeably4 in the lit-
erature, identifying a game with its starting position. This plays into the
philosophy of evaluating every position and assuming the players are smart
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Figure 3.3: The games 0, 1, −1, and ∗ in their various guises in our sample
games. Some cases do not occur - for instance ∗ cannot occur in Hackenbush,
and 1 cannot occur in Clobber. We will see why in Sections 4.3 and 5.1.

enough to look ahead one move. Then we can focus on outcomes rather than
strategies.

Another way to view what’s going on is to consider {·|·} as an extra
operator for combining games, one that construct a new game with specified
left options and specified right options.

We next define the “outcome” of a game, but change notation, to match
the standard conventions in the field:

• G ≥ 0 means that Left wins when Right goes first.

• GC 0 means that Right wins when Right goes first.

• G ≤ 0 means that Right wins when Left goes first.

4Except for the technical sense in which one game can be a “position” of another game.
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• GB 0 means that Left wins when Right goes first.

The B and C are read as “greater than or fuzzy with” and “less than or
fuzzy with.”

These are defined recursively and opaquely as:

Definition 3.2.3. If G is a game, then

• G ≥ 0 iff every right option GR satisfies GL B 0.

• G ≤ 0 iff every left option GL satisfies GR C 0.

• GB 0 iff some left option GL satisfies GL ≥ 0.

• GC 0 iff some right option GR satisfies GR ≤ 0.

One can easily check that exactly one of G ≥ 0 and G C 0 is true, and
exactly one of G ≤ 0 and GB 0 is true.

We then define the four outcome classes as follows:

• G > 0 iff Left wins no matter who goes first, i.e., G ≥ 0 and GB 0.

• G < 0 iff Right wins no matter who goes first, i.e., G ≤ 0 and GC 0.

• G = 0 iff the second player wins, i.e., G ≤ 0 and G ≥ 0.

• G||0 (read G is incomparable or fuzzy with zero) iff the first player
wins, i.e., GB 0 and GC 0.

Here is a diagram summarizing the four cases:
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The use of relational symbols like > and < will be justified in the next
section.

If you’re motivated, you can check that these definitions agree with our
definitions for well-founded game graphs.

As an example, the four games we have defined so far fall into the four
classes:

0 = 0

1 > 0

−1 < 0

∗||0

Next, we define negation:

Definition 3.2.4. If G ≡ {A,B, . . . |C,D, . . .} is a game, then its negation
−G is recursively defined as

−G ≡ {−C,−D, . . . | − A,−B, . . .}

Again, this agrees with the definition for game graphs. As an example,
we note the negations of the games defined so far

−0 ≡ 0

−1 ≡ −1

−(−1) ≡ 1

−∗ ≡ ∗

In particular, the notation −1 remains legitimate.
Next, we define addition:

Definition 3.2.5. If G ≡ {A,B, . . . |C,D, . . .} and H ≡ {E,F, . . . |X, Y, . . .}
are games, then the sum G+H is recursively defined as

G+H = {G+ E,G+ F, . . . , A+H,B +H, . . . |

G+X,G+ Y, . . . , H + C,H +D, . . .}
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This definition agrees with our definition for game graphs, though it may
not be very obvious. As before, we define subtraction by

G−H = G+ (−H).

The usual shorthand for these definitions is

−G ≡ {−GR| −GL}

G+H ≡ {GL +H,G+HL|GR +H,G+HR}
G−H ≡ {GL −H,G−HR|GR −H,G−HL}

Here GL and GR stand for “generic” left and right options of G, and represent
variables ranging over all left and right options of G. We will make use of
this compact and useful notation, which seems to be due to Conway, Guy,
and Berlekamp.

We close this section with a list of basic identities satisfied by the opera-
tions defined so far:

Lemma 3.2.6. If G, H, and K are games, then

G+H ≡ H +G

(G+H) +K ≡ G+ (H +K)

−(−G) ≡ G

G+ 0 ≡ G

−(G+H) ≡ (−G) + (−H)

−0 ≡ 0

Proof. All of these are intuitively obvious if you interpret them within the
context of Hackenbush, Domineering, or more abstractly game graphs. But
the rigorous proofs work by induction. For instance, to prove G+H ≡ H+G,
we proceed by joint induction on G and H. Then we have

G+H ≡ {GL +H,G+HL|GR +H,G+HR}

≡ {H +GL, HL +G|H +GR, HR +G} ≡ H +G,

where the outer identities follow by definition, and the inner one follows by
the inductive hypothesis. These inductive proofs need no base case, because
the recursive definition of “game” had no base case.
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On the other hand, G−G 6≡ 0 for almost all games G. For instance, we
have

1− 1 ≡ 1 + (−1) ≡ {1L + (−1), 1 + (−1)L|1R + (−1), 1 + (−1)R}

≡ {0 + (−1)|1 + 0} ≡ {−1|1}
Here there are no 1R or (−1)L, since 1 has no right options and −1 has no
left options.

Definition 3.2.7. A short game is a partizan game with finitely many posi-
tions.

We will assume henceforth that all our games are short. Many of the
results hold for general partizan games, but a handful do not, and we have
no interest in infinite games.

3.3 Relations on Games

So far, we have done nothing but give complicated definitions of simple con-
cepts. In this section, we begin to look at how our operations for combining
games interact with their outcomes.

Above, we defined G ≥ 0 to mean that G is a win for Left, when Right
moves first. Similarly, GB 0 means that G is a win for Left when Left moves
first. From Left’s point of view, the positions ≥ 0 are the good positions to
move to, and the positions B0 are the ones that Left would like to receive
from her opponent. In terms of options,

• G is ≥ 0 iff every one of its right option GR is B0

• G is B0 iff at least one of its left option GL is ≥ 0.

One basic fact about outcomes of sums is that if G ≥ 0 and H ≥ 0, then
G+H ≥ 0. That is, if Left can win both G and H as the second player, then
she can also win G + H as the second player. She proceeds by combining
her strategy in each summand. Whenever Right moves in G she replies in G,
and whenever Right moves in H she replies in H. Such responses are always
possible because of the assumption that G ≥ 0 and H ≥ 0.

Similarly, if GB 0 and H ≥ 0, then G+H B 0. Here left plays first in G,
moving to a position GL ≥ 0, and then notes that GL +H ≥ 0.

Properly speaking, we prove both statements together by induction:
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• If G,H ≥ 0, then every right option of G + H is of the form GR + H
or G + HR by definition. Since G and H are ≥ 0, GR or HR will be
B0, and so every right option of G+H is the sum of a game ≥ 0 and a
game B0. By induction, such a sum will be B0. So every right option
of G+H is B0, and therefore G+H ≥ 0.

• If G B 0 and H ≥ 0, then G has a left option GL ≥ 0. Then GL + H
is the sum of two games ≥ 0. So by induction GL +H ≥ 0. But it is a
left option of G+H, so G+H B 0.

Now one can easily see that

G ≤ 0 ⇐⇒ −G ≥ 0 (3.1)

and
GC 0 ⇐⇒ GB 0. (3.2)

Using these, it similarly follows that if G ≤ 0 and H ≤ 0, then G + H ≤ 0,
among other things.

Another result about outcomes is that G+(−G) ≥ 0. This is shown using
what Winning Ways calls the Tweedledum and Tweedledee Strategy5.

Here we see the sum of a Hackenbush position and its negative. If Right
moves first, then Left can win as follows: whenever Right moves in the first
summand, Left makes the corresponding move in the second summand, and
vice versa. So if Right initially moves to GR + (−G), then Left moves to
GR + (−(GR)), which is possible because −(GR) is a left option of −G. On

5The diagram in Winning Ways actually looks like Tweedledum and Tweedledee.

55



the other hand, if Right initially moves to G+ (−(GL)), then Left responds
by moving to GL + (−(GL)). Either way, Left can always move to a position
of the form H + (−H), for some position H of G.

More precisely, we prove the following facts

• G+ (−G) ≥ 0

• GR + (−G)B 0 if GR is a right option of G.

• G+ (−(GL))B 0 if GL is a left option of G.

together jointly by induction:

• For any game G, every Right option of G+ (−G) is of the form GR +
(−G) or G + (−(GL)), where GR ranges over right options of G and
GL ranges over left options of G. This follows from the definitions of
addition and negation. By induction all of these options are B0, and
so G+ (−G) ≥ 0.

• If GR is a right option of G, then −(GR) is a left option of −G, so GR+
(−(GR)) is a left option of GR+(−G). By induction GR+(−(GR)) ≥ 0,
so GR + (−G)B 0.

• If GL is a left option of G, then GL + (−(GL)) is a left option of
G+(−(GL)), and by induction GL+(−(GL)) ≥ 0. So G+(−(GL))B0.

We summarize our results in the following lemma.

Lemma 3.3.1. Let G and H be games.

(a) If G ≥ 0 and H ≥ 0, then G+H ≥ 0.

(b) If GB 0 and H ≥ 0, then G+H B 0.

(c) If G ≤ 0 and H ≤ 0, then G+H ≤ 0.

(d) If GC 0 and H ≤ 0, then G+H C 0.

(e) G+ (−G) ≤ 0 and G+ (−G) ≥ 0, i.e., G+ (−G) = 0.

(f) If GL is a left option of G, then GL + (−G)C 0.

(g) If GR is a right option of G, then GR + (−G)B 0.
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These results allow us to say something about zero games (not to be
confused with the zero game 0).

Definition 3.3.2. A game G is a zero game if G = 0.

Namely, zero games have no effect on outcomes:

Corollary 3.3.3. If H = 0, then G + H has the same outcome as G for
every game H.

Proof. Since H ≥ 0 and H ≤ 0, we have by part (a) of Lemma 3.3.1

G ≥ 0⇒ G+H ≥ 0.

By part (b)
GB 0⇒ G+H B 0.

By part (c)
G ≤ 0⇒ G+H ≤ 0.

By part (d)
GC 0⇒ G+H C 0.

So in every case, G+H has whatever outcome G has.

This in some sense justifies the use of the terminology H = 0, since this
implies that G+H and G+ 0 ≡ G always have the same outcome.

We can generalize this sort of equivalence:

Definition 3.3.4. If G and H are games, we write G = H (read G equals
H) to mean G −H = 0. Similarly, if � is any of || <, >, ≥, ≤, C, or B,
then we use G�H to denote G−H�0.

Note that since G + (−0) ≡ G, this notation does not conflict with our
notation for outcomes. The interpretation of ≥ is that G ≥ H if G is at
least as good as H, from Left’s point of view, or that H is better than G,
from Right’s point of view. Similarly, G = H should mean that G and H are
strategically equivalent. Further results will justify these intuitions.

These relations have the properties that one would hope for. It’s clear
that G = H iff G ≤ H and G ≥ H, or that G ≥ H iff G > H or G = H.
Also, GBH iff G 6≤ H. Somewhat less obviously,

G ≤ H ⇐⇒ G+(−H) ≤ 0 ⇐⇒ −(G+(−H)) ≡ H+(−G) ≥ 0 ⇐⇒ H ≥ G
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and

GCH ⇐⇒ G+(−H)C0 ⇐⇒ −(G+(−H)) ≡ H+(−G)B0 ⇐⇒ HBG

using equations (3.1-3.2). So we see that G = H iff H = G, i.e., = is
symmetric.

Moreover, part (e) of Lemma 3.3.1 shows that G = G, so that = is
reflexive. In fact,

Lemma 3.3.5. The relations =, ≥, ≤, >, and < are transitive. And if
G ≤ H and H C K, then G C K. Similarly if G C H and H ≤ K, then
GCK.

Proof. We first show that ≥ is transitive. If G ≥ H and H ≥ K, then by
definition G+ (−H) ≥ 0 and H + (−K) ≥ 0. By part (a) of Lemma 3.3.1,

(G+ (−K)) + (H + (−H)) ≡ (G+ (−H)) + (H + (−K)) ≥ 0.

But by part (e), H + (−H) is a zero game, so we can (by the Corollary),
remove it without effecting the outcome. Therefore G + (−K) ≥ 0, i.e.,
G ≥ K. So ≥ is transitive. Therefore so are ≤ and =.

Now if G ≤ H and H C K, suppose for the sake of contradiction that
G C K is false. Then K ≤ G ≤ H, so K ≤ H, contradicting H C K. A
similar argument shows that if GCH and H ≤ K, then GCK.

Finally, suppose that G < H and H < K. Then G ≤ H and H ≤ K, so
G ≤ K. But also, GCH and H ≤ K, so GCK. Together these imply that
G < K. A similar argument shows that > is transitive.

So we have just shown that ≥ is a preorder (a reflexive and transitive
relation), with = as its associated equivalence relation (i.e., x = y iff x ≥ y
and y ≥ x). So ≥ induces a partial order on the quotient of games modulo =.
Because the outcome depends only on a game’s comparison to 0, it follows
that if G = H then G and H have the same outcome.

We use Pg to denote the class of all partizan games, modulo =. This
class is also sometimes denoted with Ug (for unimpartial games) in older
books. We will use G to denote the class of all short games modulo =. The
only article I have seen which explicitly names the group of short games
is David Moews’ article The Abstract Structure of the Group of Games in
More Games of No Chance, which uses the notation ShUg. This notation
is outdated, however, as it is based on the older Ug rather than Pg. Both
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ShUg and ShPg are notationally ugly, and scattered notation in several
other articles suggests we use G instead.

From now on, we use “game” to refer to an element of Pg.
When we need to speak of our old notion of game, we talk of the “form” of

a game, as opposed to its “value,” which is the corresponding representative
in Pg. We abuse notation and use {A,B, . . . |C,D, . . .} to refer to both the
form and the corresponding value.

But after making these identifications, can we still use our operations
on games, like sums and negation? An analogous question arises in the
construction of the rationals from the integers. Usually one defines a rational
number to be a pair x

y
, where x, y ∈ Z, y 6= 0. But we identify x

y
= x′

y′
if

xy′ = x′y. Now, given a definition like

x

y
+
a

b
=
xb+ ay

yb
,

we have to verify that the right hand side does not depend on the form we
choose to represent the summands on the left hand side. Specifically, we need
to show that if x

y
= x′

y′
and a

b
= a′

b′
, then

xb+ ay

yb
=
x′b′ + a′y′

y′b′
.

This indeed holds, because

(xb+ay)(y′b′) = (xy′)(bb′)+(ab′)(yy′) = (x′y)(bb′)+(a′b)(yy′) = (x′b′+a′y′)(yb).

Similarly, we need to show for games that if G = G′ and H = H ′, then
G+H = G′ +H ′. In fact, we have

Theorem 3.3.6. (a) If G ≥ G′ and H ≥ H ′, then G + H ≥ G′ + H ′. In
particular if G = G′ and H = H ′, then G+H = G′ +H ′.

(b) If G ≥ G′, then −G′ ≥ −G. In particular if G = G′, then −G = −G′.

(c) If A ≥ A′, B ≥ B′,. . . , then

{A,B, . . . |C,D, . . .} ≥ {A′, B′, . . . |C ′, D′, . . .}

In particular if A = A′, B = B′, and so on, then

{A,B, . . . |C,D, . . .} = {A′, B′, . . . |C ′, D′, . . .}
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What this theorem is saying is that whenever we combine games using one
of our operations, the final value depends only on the values of the operands,
not on their forms.

Proof. (a) Suppose first that H = H ′. Then we need to show that if G′ ≥ G
then G+H ≥ G′ +H, which is straightforward:

G+H ≥ G′ +H ⇐⇒ (G+H) + (−(G′ +H)) ≥ 0 ⇐⇒

(G+ (−G′)) + (H + (−H)) ≥ 0 ⇐⇒ G+ (−G)′ ≥ 0 ⇐⇒ G ≥ G′.

Now in the general case, if G ≥ G′ and H ≥ H ′ we have

G+H ≥ G′ +H ≡ H +G′ ≥ H ′ +G′ ≡ G′ +H ′.

So G + H ≥ G′ + H ′. And if G = G′ and H = H ′, then G′ ≥ G and
H ′ ≥ H so by what we have just shown, G′ + H ′ ≥ G + H. Taken
together, G′ +H ′ = G+H.

(b) Note that

G ≥ G′ ⇐⇒ G+(−G′) ≥ 0 ⇐⇒ (−G′)+(−(−G)) ≥ 0 ⇐⇒ −G′ ≥ −G.

So in particular if G = G′, then G ≥ G′ and G′ ≥ G so −G′ ≥ −G and
−G ≥ −G′. Thus −G = −G′.

(c) We defer the proof of this part until after the proof of Theorem 3.3.7.

Next we relate the partial order to options:

Theorem 3.3.7. If G is a game, then GLCGCGR for every left option GL

and every right option GR.
If G and H are games, then G ≤ H unless and only unless there is a

right option HR of H such that HR ≤ G, or there is a left option GL of G
such that H ≤ GL.

Proof. Note that GL C G iff GL − G C 0, which is part (f) of Lemma 3.3.1.
The proof that GCGR similarly uses part (g).

For the second claim, note first that G ≤ H iff G−H ≤ 0, which occurs
iff every left option of G−H is not ≥ 0.

But the left options of G−H are of the forms GL −H and G−HR, so
G ≤ H iff no GL or HR satisfy GL ≥ H or G ≥ HR.
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Now we prove part (c) of Theorem 3.3.6:

Proof. Suppose A′ ≥ A, B′ ≥ B, and so on. Let

G = {A,B, . . . |C,D, . . .}

and
G′ = {A′, B′, . . . |C ′, D′, . . .}.

Then G ≤ G′ as long as there is no (G′)R ≤ G, and no GL ≥ G′. That is, we
need to check that

C ′ 6≤ G

D′ 6≤ G

...

G′ 6≤ A

G′ 6≤ B

...

But actually these are clear: if C ′ ≤ G then because C ≤ C ′ we would have
C ≤ G, contradicting G C G by the previous theorem. Similarly if G′ ≤ A,
then since A ≤ A′, we would have G′ ≤ A′, rather than A′ CG′.

The same argument shows that if A = A′, B = B′, and so on, then
G′ ≤ G, so that G′ = G in this particular case.

Using this, we can make substitutions in expressions. For instance, if we
know that G = G′, then we can conclude that

−{25|13, (∗+G)} = −{25|13, (∗+G′)}

Definition 3.3.8. A partially-ordered abelian group is an abelian group G
with a partial order ≤ such that

x ≤ y =⇒ x+ z ≤ y + z

for every z.
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All the expected algebraic facts hold for partially-ordered abelian groups.
For instance,

x ≤ y ⇐⇒ x+ z ≤ y + z

(the ⇐ direction follows by negating z), and

x ≤ y ⇐⇒ −y ≤ −x

and the elements ≥ 0 are closed under addition, and so on.
With this notion we summarize all the results so far:

Theorem 3.3.9. The class G of (short) games modulo equality is a partially
ordered abelian group, with addition given by addition of games, identity given
by the game 0 = {|}, and additive inverses given by negation. The outcome
of a game G is determined by its comparison to zero:

• If G = 0, then G is a win for whichever player moves second.

• If G||0, then G is a win for whichever player moves first.

• If G > 0, then G is a win for Left either way.

• If G < 0, then G is a win for Right either way.

Also, if A,B,C, . . . ∈ G, then we can meaningfully talk about

{A,B, . . . |C,D, . . .} ∈ G

This gives a well-defined map

Pf (G)× Pf (G)→ G

where Pf (S) is the set of all finite subsets of S. Moreover, if G = {GL|GR}
and H = {HL|HR}, then G ≤ H unlesss HR ≤ G for some HR, or H ≤ GL

for some GL. Also, GL CGCGR for every GL and GR.

3.4 Simplifying Games

Now that we have an equivalence relation on games, we seek a canonical
representative of each class. We first show that removing a left (or right)
option of a game doesn’t help Left (or Right).
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Theorem 3.4.1. If G = {A,B, . . . |C,D, . . .}, then

G′ = {B, . . . |C,D, . . .} ≤ G.

Similarly,
G ≤ {A,B, . . . |D, . . .}.

Proof. We use Theorem 3.3.7. To see G′ ≤ G, it suffices to show that G is
not ≤ any left option of G′ (which is obvious, since every left option of G′

is a left option of G), and that G′ is not ≥ any right option of G, which is
again obvious since every right option of G is a right option of G′.

The other claim is proven similarly.

On the other hand, sometimes options can be added/removed without
affecting the value:

Theorem 3.4.2. (Gift-horse principle) If G = {A,B, . . . |C,D, . . .}, and
X CG, then

G = {X,A,B, . . . |C,D, . . .}.

Similarly if Y BG, then

G = {A,B, . . . |C,D, . . . , Y }.

Proof. We prove the first claim because the other is similar. From the previ-
ous theorem we already know that G′ = {X,A,B, . . . |C,D, . . .} is ≥ G. So
it remains to show that G′ ≤ G. To see this, it suffices by Theorem 3.3.7 to
show that

• G is not ≤ any left option of G′: obvious since every left option of G′

is a left option of G, except for X, but G 6≤ X by assumption.

• G′ is not ≥ any right option of G: obvious since every right option of
G is a right option of G′.

Definition 3.4.3. Let G be a (form of a) game. Then a left option GL is
dominated if there is some other left option (GL)′ such that GL ≤ (GL)′.
Similarly, a right option GR is dominated if there is some other right option
(GR)′ such that GR ≥ (GR)′.
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That is, an option is dominated when its player has a better alternative.
The point of dominated options is that they are useless and can be removed:

Theorem 3.4.4. (dominated moves). If A ≤ B, then

{A,B, . . . |C,D, . . .} = {B, . . . |C,D, . . .}.

Similarly, if D ≤ C then

{A,B, . . . |C,D, . . .} = {A,B, . . . |D, . . .}.

Proof. We prove the first claim (the other follows by symmetry).

A ≤ B C {B, . . . |C,D, . . .}.

So therefore AC{B, . . . |C,D, . . .} and we are done by the gift-horse principle.

Definition 3.4.5. If G is a game, GL is a left option of G, and GLR is a
right option of GL such that GLR ≤ G, then we say that GL is a reversible
option, which is reversed through its option GLR.

Similarly, if GR is a right option, having a left option GRL with GRL ≥ G,
then GR is also a reversible option, reversed through GRL.

A move from G to H is reversible when the opponent can “undo” it with
a subsequent move. It turns out that a player might as well always make
such a reversing move.

Theorem 3.4.6. (reversible moves) If G = {A,B, . . . |C,D, . . .} is a game,
and A is a reversible left option, reversed through AR, then

G = {X, Y, Z, . . . , B, . . . |C,D, . . .}

where X, Y, Z, . . . are the left options of AR.
Similarly, if C is a reversible move, reversed through CL, then

G = {A,B, . . . |D, . . . , X, Y, Z, . . .}

where X, Y, Z, . . . are the right options of CL.
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Proof. We prove the first claim because the other follows by symmetry.
Let G′ be the game

{X, Y, Z, . . . , B, . . . |C,D, . . .}.

We need to show G′ ≤ G and G ≤ G’.
First of all, G′ will be ≤ G unless G′ is ≥ a right option of G (impossible,

since all right options of G are right options of G′), or G is ≤ a right option
of G′. Clearly G cannot be ≤ B, . . . because those are already right options
of G. So suppose that G is ≤ a right option of AR, say X. Then

G ≤ X C AR ≤ G,

so that GCG, an impossibility. Thus G′ ≤ G.
Second, G will be ≤ G′ unless G is ≥ a right option of G′ (impossible,

because every right option of G′ is a right option of G), or G′ is ≤ a left
option of G. Now every left option of G aside from A is a left option of G′

already, so it remains to show that G′ 6≤ A.
This follows if we show that AR ≤ G′. Now G′ cannot be ≤ any left

option of AR, because every left option of AR is also a left option of G′. So
it remains to show that AR is not ≥ any right option of G′. But if AR was
≥ say C, then

AR ≥ C BG ≥ AR,

so that AR B AR, a contradiction.

The game {X, Y, Z, . . . , B, . . . |C,D, . . .} is called the game obtained by
bypassing the reversible move A.

The key result is that for short games, there is a canonical representative
in each equivalence class:

Definition 3.4.7. A game G is in canonical form if every position of G has
no dominated or reversible moves.

Theorem 3.4.8. If G is a game, there is a unique canonical form equal to
G, and it is the unique smallest game equivalent to G, measuring size by the
number of edges in the game tree of G.6

6The number of edges in the game tree of G can be defined recursively as the number
of options of G plus the sum of the number of edges in the game trees of each option of G.
So 0 has no edges, 1 and −1 have one each, and ∗ has two. A game like {∗, 1| − 1} then
has 2 + 1 + 1 plus three, or seven total. It’s canonical form is {1|− 1} which has only four.
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Proof. Existence: if G has some dominated moves, remove them. If it has
reversible moves, bypass them. These operations may introduce new domi-
nated and reversible moves, so continue doing this. Do the same thing in all
subpositions. The process cannot go on forever because removing a domi-
nated move or bypassing a reversible move always strictly decreases the total
number of edges in the game tree. So at least one canonical form exists.

Uniqueness: Suppose that G and H are two equal games in canonical
form. Then because G−H = 0, we know that every right option of G−H
is B0. In particular, for every right option GR of G, GR −H B 0, so there is
a left option of GR −H which is ≥ 0. This option will either be of the form
GRL−H or GR−HR (because of the minus sign). But since G is assumed to
be in canonical form, it has no reversible moves, so GRL 6≥ G = H. Therefore
GRL −H 6≥ 0. So there must be some HR such that GR ≥ HR.

In other words, if G and H are both in canonical form, and if they equal
each other, then for every right option GR of G, there is a right option HR of
H such that GR ≥ HR. Of course we can apply the same logic in the other
direction, to HR, and produce another right option (GR)′ of G, such that

GR ≥ HR ≥ (GR)′.

But since G has no dominated moves, we must have GR = (GR)′, and so
GR = HR. In fact, by induction, we even have GR ≡ HR.

So every right option of G occurs as a right option of H. Of course the
same thing holds in the other direction, so the set of right options of G and H
must be equal. Similarly the set of left options will be equal too. Therefore
G ≡ H.

Minimality: If G = H, then G and H can both be reduced to canonical
form, and by uniqueness the canonical forms must be identical. So if H is of
minimal size in its equivalence class, then it cannot be made any smaller and
must equal the canonical form. So any game of minimal size in its equivalence
class is identical to the unique canonical form.

3.5 Some Examples

Let’s demonstrate some of these ideas with the simplest four games:

0 ≡ {|}

1 ≡ {0|}
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−1 ≡ {|0}

∗ ≡ {0|0}.

Each of these games is already in canonical form, because there can be no
dominated moves (as no game has more than two options on either side), nor
reversible moves (because every option is 0, and 0 has no options itself).

Let’s try adding some games together:

1 + 1 ≡ {1L + 1, 1 + 1L|1R + 1, 1 + 1R} ≡ {0 + 1|} ≡ {1|}

This game is called 2, and is again in canonical form, because the move to 1
is not reversible (as 1 has no right option!).

On the other hand, sometimes games become simpler when added to-
gether. We already know that G−G = 0 for any G, and here is an example:

1 + (−1) ≡ {1L + (−1), 1 + (−1)L|1R + (−1), 1 + (−1)R} ≡ {−1|1}

since no 1R or (−1)L exist, and the only 1L or (−1)R is 0. Now {−1|1} is
not in canonical form, because the moves are reversible. If Left moves to −1,
then Right can reply with a move to 0, which is ≤ {−1|1} (since we know
{−1|1} actually is zero). Similarly, the right option to 1 is also reversible.
This yields

{−1|1} = {0L|1} ≡ {|1} = · · · = {|} = 0.

Likewise, ∗ is its own negative, and indeed we have

∗+ ∗ ≡ {∗L + ∗| ∗R +∗} ≡ {∗|∗}

which reduces to {|} because ∗ on either side is reversed by a move to 0.
For an example of a dominated move that appears, consider 1 + ∗

1 + ∗ ≡ {1L + ∗, 1 + ∗L|1R + ∗, 1 + ∗R} ≡ {0 + ∗, 1 + 0|1 + 0} ≡ {∗, 1|1}.

Now it is easy to show that ∗ = {0|0} ≤ {0|} = 1, (in fact, this follows
because 1 is obtained from ∗ by deleting a right option), so ∗ is dominated
and we actually have

1 + ∗ = {1|1}.

Note that 1 + ∗ ≥ 0, even though ∗ 6≥ 0. We will see that ∗ is an “infinites-
imal” or “small” game which is insignificant in comparison to any number,
such as 1.
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Chapter 4

Surreal Numbers

4.1 Surreal Numbers

One of the more surprising parts of CGT is the manifestation of the numbers.

Definition 4.1.1. A (surreal) number is a partizan game x such that every
option of x is a number, and every left option of x is C every right option of
x.

Note that this is a recursive definition. Unfortunately, it is not compatible
with equality: by the definition just given, {∗, 1|} is not a surreal number
(since ∗ is not), but {1|} is, even though {1|} = {∗, 1|}. But we can at least
say that if G is a short game that is a surreal number, then its canonical
form is also a surreal number. In general, we consider a game to be a surreal
number if it has some form which is a surreal number.

Some simple examples of surreal numbers are

0 = {|}

1 = {0|}
−1 = {|0}
1

2
= {0|1}

2 = 1 + 1 = {1|}.
Explanation for these names will appear quickly. But first, we prove some
basic facts about surreal numbers.
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Theorem 4.1.2. If x is a surreal number, then xL < x < xR for every left
option xL and every right option xR.

Proof. We already know that xL C x. Suppose for the sake of contradic-
tion that xL 6≤ x. Then either xL is ≥ some xR (directly contradicting the
definition of surreal number), or x ≤ xLL for some left option xLL of xL.
Now by induction, we can assume that xLL < xL, so it would follow that
x ≤ xLL < xL, and so x ≤ xL, contradicting the fact that xL C x. Therefore
our assumption was false, and xL ≤ x. Thus xL < x. A similar argument
shows that x < xR.

Theorem 4.1.3. Surreal numbers are closed under negation and addition.

Proof. Let x and y be surreal numbers. Then the left options of x + y are
of the form xL + y and x+ yL. By the previous theorem, these are less than
x + y. By induction they are surreal numbers. By similar arguments, the
right options of x + y are greater than x + y and are also surreal numbers.
Therefore every left option of x + y is less than every right option of x + y,
and every option is a surreal number. So x+ y is a surreal number.

Similarly, if x is a surreal number, we can assume inductively that −xL
and −xR are surreal numbers for every xL and xR. Then since xL C xR

for every xL and xR, we have −xL C −xR for every xL and xR. So −x =
{−xL| − xR} is a surreal number.

Theorem 4.1.4. Surreal numbers are totally ordered by ≥. That is, two
surreal numbers are never incomparable.

Proof. If x and y are surreal numbers, then by the previous theorem x − y
is also a surreal number. So it suffices to show that no surreal number is
fuzzy (incomparable to zero). Let x be a minimal counterexample. If any
left option xL of x is ≥ 0, then 0 ≤ xL < x, contradicting fuzziness of x. So
every left option of x is C0. That means that if Left moves first in x, she can
only move to losing positions. By the same argument, if Right moves first in
x, then he loses too. So no matter who goes first, they lose. Thus x is a zero
game, not a fuzzy game.

John Conway defined a way to multiply1 surreal numbers, making the
class No of all surreal numbers into a totally ordered real-closed field which

1 His definition is

xy = {xLy + xyL − xLyL, xRy + xyR − xRyR|xLy + xyR − xLyR, xRy + xyL − xRyL}
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turns out to contain all the real numbers and transfinite ordinals. We refer
the interested reader to Conway’s book On Numbers and Games.

4.2 Short Surreal Numbers

If we just restrict to short games, the short surreal numbers end up being in
correspondence with the dyadic rationals - rational numbers of the form i/2j

for i, j ∈ Z. We now work to show this, and to give the rule for determining
which numbers are which.

We have already shown that the (short) surreal numbers form a totally
ordered abelian group. In particular, if x is any nonzero surreal number,
then the integral multiples of x form a group isomorphic to Z with its usual
order, because x cannot be incomparable to zero.

Lemma 4.2.1. Let G ≡ {GL|GR} be a game, and S be the class of all surreal
numbers x such that GL C x C GR for every left option GL and every right
option GR. Then if S is nonempty, G equals a surreal number, and there is
a surreal number y ∈ S none of whose options are in S. This y is unique up
to equality, and in fact equals G.

So roughly speaking, {GL|GR} is always the simplest surreal number
between GL and GR, unless there is no such number, in which case G is not
a surreal number.

Proof. Suppose that S is nonempty. It is impossible for every element of S
to have an option in S, or else S would be empty by induction. Let y be
some element of S, none of whose options are in S. Then it suffices to show
that y = G, for then G will equal a surreal number, and y will be unique.

By symmetry, we need only show that y ≤ G. By Theorem 3.3.7, this
will be true unless y ≥ GR for some right option GR (but this can’t happen
because y ∈ S), or G ≤ yL for some left option yL of y. Suppose then that
G ≤ yL for some yL. By choice of y, yL /∈ S.

So for any GL, we have GL C G ≤ yL. But also, for any GR, we have
yL ≤ y CGR, so that yL CGR for any GR. So yL ∈ S, a contradiction.

Here xL, xR, yL, and yR have their usual meanings, though within an expression like
xLy + xyL − xLyL, the two xL’s should be the same.
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Lemma 4.2.2. Define the following infinite sequence:

a0 ≡ 1 ≡ {0|}

and
an+1 ≡ {0|an}

for n ≥ 0. Then every term in this sequence is a positive surreal number,
and an+1 + an+1 = an for n ≥ 0. Thus we can embed the dyadic rational
numbers into the surreal numbers by sending i/2j to

aj + aj + · · ·+ aj︸ ︷︷ ︸
i times

where the sum of 0 terms is 0. This map is an order-preserving homomor-
phism.

Proof. Note that if x is a positive surreal number, then {0|x} is clearly a
surreal number, and it is positive by Theorem 4.1.2. So every term in this
sequence is a positive surreal number, because 1 is.

For the second claim, proceed by induction. Note that

an+1 + an+1 ≡ {an+1|an+1 + an}.

Now by Theorem 4.1.2, 0 < an+1 < an, so that

an+1 < an < an+1 + an,

or more specifically
an+1 C an C an+1 + an.

By Lemma 4.2.1, it will follow that an+1 + an+1 = an as long as no option x∗

of an satisfies
an+1 C x

∗ C an+1 + an. (4.1)

Now an has the option 0, which fails the left side of (4.1) because an+1 is
positive, and the only other option of an is an−1, which only occurs in the
case n > 1. By induction, we know that

an + an = an−1.

Since an+1 < an, it’s clear that

an+1 + an < an + an = an−1,
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so that an−1 C an+1 + an is false. So no option of an satisfies (4.1), but an
does. Therefore by Lemma 4.2.1, {an+1|an+1 + an} = an.

The remaining claim follows easily and is left as an exercise to the reader.

Definition 4.2.3. A surreal number is dyadic if it occurs in the range of the
map from dyadic rationals to surreal numbers in the previous theorem.

Note that these are closed under addition, because the map from the
theorem is a homomorphism.

Theorem 4.2.4. Every short surreal number is dyadic.

Proof. Let’s say that a game G is all-dyadic if every position of G (including
G) equals (=) a dyadic surreal number. (This depends on the form of G, not
just its value.)

We first claim that all-dyadic games are closed under addition. This
follows easily by induction and the fact that the values of dyadic surreal
numbers are closed under addition. Specifically, if x = {xL|xR} and y =
{yL|yR} are all-dyadic, then xL, xR, yL, and yR are all-dyadic, so by induction
x+ yL, xL + y, x+ yR, xR + y are all all-dyadic. Therefore x+ y is, since it
equals a dyadic surreal number itself, because x and y do.

Similarly, all-dyadic games are closed under negation, and therefore sub-
traction.

Next, we claim that every dyadic surreal number has an all-dyadic form.
The dyadic surreal numbers are sums of the an games of Lemma 4.2.2, and
by construction, the an are all-dyadic in form. So since all-dyadic games are
closed under addition and subtraction, every dyadic surreal number has an
all-dyadic form.

We can also show that if G is a game, and there is some all-dyadic surreal
number x such that GLCxCGR for every GL and GR, then G equals a dyadic
surreal number. The proof is the same as Lemma 4.2.1 except that we now
let S be the set of all all-dyadic surreal numbers between all GL and all GR.
The only property of S we used were that every x ∈ S satisfies GLCxCGR,
and that if y is an option of x ∈ S, and y also satisfies GL C y C GR, then
y ∈ S. These conditions are still satisfied if we restrict S to all-dyadic surreal
numbers.

Finally, we prove the theorem. We need to show that if L and R are
finite sets of dyadic surreal numbers, and every element of L is less than
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every element of R, then {L|R} is also dyadic. (All short surreal numbers are
built up in this way, so this suffices.) By the preceding paragraph, it suffices
to show that some dyadic surreal number is greater than every element of
L and less than every element of R. This follows from the fact that the
dyadic rational numbers are a dense total order without endpoints, and that
the dyadic surreal numbers are in order-preserving correspondence with the
dyadic rational numbers.

From now on, we identify dyadic rationals and their corresponding short
surreal numbers.

We next determine the canonical form of every short number and provide
rules to decide which number {L|R} is, when L and R are sets of numbers.

Theorem 4.2.5. Let b0 ≡ {|} and bn+1 ≡ {bn|} for n ≥ 0. Then bn is the
canonical form of positive integers n for n ≥ 0.

Proof. It’s easy to see that every bn is in canonical form: there are no dom-
inated moves because there are never two options for Left or for Right, and
there are no reversible moves, because no bn has any right options.

Since b0 = 0, it remains to see that bn+1 = 1 + bn. We proceed by
induction. The base case n = 0 is clear, since b1 = {b0|} = {0|} = 1, by
definition of the game 1.

If n > 0, then

1 + bn = {0|}+ {bn−1|} = {1 + bn−1, 0 + bn|}.

By induction 1 + bn−1 = bn, so this is just {bn|} = bn+1.

So for instance, the canonical form of 7 is {6|}. Similarly, if we let c0 = 0
and cn+1 = {|cn}, then cn = −n for every n, and these are in canonical form.
For example, the canonical form of −23 is {| − 22}.

Theorem 4.2.6. If G ≡ {GL|GR} is a game, and there is at least one integer
m such that GLCmCGR for all GL and GR, then there is a unique such m
with minimal magnitude, and G equals it.

Proof. The proof is the same as the proof of Lemma 4.2.1, but we let S be
the set of integers between the left and right options of G, and we use their
canonical forms derived in the preceding theorem.
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That is, we let S be the set

S = {bn : GLCbnCG
R for all GL and GR}∪{cn : GLCcnCG

R for all GL and GR}

Then by assumption (and the fact that every integer equals a bn or a cn), S
is nonempty. Let m be an element of S with minimal magnitude. I claim
that no option of m is in S. If m is 0 = b0 = c0, this is obvious, since m has
no options. If m > 0, then m = bm, and the only option of bm is bm−1, which
has smaller magnitude, and thus cannot be in S. Similarly if m < 0, then
m = c−m, and the only option of m is m+ 1, which has smaller magnitude.

So no option of m is in S. And in fact no option of m is in the broader
S of Lemma 4.2.1, so m = G.

Theorem 4.2.7. If m/2n is a non-integral dyadic rational, and m is odd,
then the canonical form of m/2n is

{m− 1

2n
|m+ 1

2n
}.

So for instance, the canonical form of 1/2 is {0|1}, of 11/8 is {5/4|3/2},
and so on.

Proof. Proceed by induction on n. If n = 1, then we need to show that for
any k ∈ Z,

k +
1

2
= {k|k + 1}

and that {k|k + 1} is in canonical form. Letting x = {k|k + 1}, we see that

x+ x = {k + x|k + 1 + x}.

Since k < x < k + 1, we have k + x < 2k + 1 < k + 1 + x. Therefore, by
Theorem 4.2.6 x+x is an integer. In fact, since k < x < k+ 1, we know that
2k < x+ x < 2k + 2, so that x+ x = 2k + 1. Therefore, x must be k + 1

2
.

Moreover, {k|k + 1} is in canonical form: it clearly has no dominated
moves. Suppose it had a reversible move, k without loss of generality. But
k’s right option can only be k + 1, by canonical forms of the integers. And
k + 1 6≤ {k|k + 1}.

Now suppose that n > 1. Then we need to show that for m odd,

m

2n
= {m− 1

2n
|m+ 1

2n
}
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and that the right hand side is in canonical form. (Note that m±1
2n

have
smaller denominators than m

2n
because m is odd.)

Let x = {m−1
2n
|m+1

2n
}. Then

x+ x = {x+
m− 1

2n
|x+

m+ 1

2n
}.

Now since m−1
2n

< x < m+1
2n

, we know that x+ m−1
2n

< m
2n

+ m
2n
< x+ m+1

2n
. So

m
2n−1 lies between the left and right options of x+ x. On the other hand, we
know by induction that m

2n−1 = {m−1
2n−1 |m+1

2n−1}, and we have

x+
m− 1

2n
6< m− 1

2n−1
< x+

m+ 1

2n

(because x > m−1
2n

) and

x+
m− 1

2n
<
m+ 1

2n−1
6< x+

m+ 1

2n

(because x < m+1
2n

) so by Lemma 4.2.1, x+ x = m
2n−1 . Therefore, x = m

2n
.

It remains to show that x = {m−1
2n
|m+1

2n
} is in canonical form. It clearly

has no dominated moves. And since m−1
2n

has smaller denominator, we know
by induction that when it is in canonical form, any right option must be at
least m−1

2n
+ 1

2n−1 = m+1
2n
6> x. So m−1

2n
is not reversible, and similarly neither

is m+1
2n

.

Using these rules, we can write out the canonical forms of some of the
simplest numbers:

0 = {|} 1 = {0|}
−1 = {|0} 2 = {1|}
1

2
= {0|1} −1

2
= {−1|0}

−2 = {| − 1} 3 = {2|}
3

2
= {1|2} 3

4
= {1

2
|1}

1

4
= {0|1

2
} −1

4
= {−1

2
|0}

−3

4
= {−1|−1

2
} −3

2
= {−2| − 1}

− 3 = {| − 2}.
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But what about numbers that aren’t in canonical form? What is {−1
4
|27} or

{1, 2|19
8
}?

Definition 4.2.8. Let x and y be dyadic rational numbers (short surreal
numbers). We say that x is simpler than y if x has a smaller denominator
than y, or if |x| < |y| when x and y are both integers.

Note that simplicity is a strict partial order on numbers. Also, by the
canonical forms just determined, if x is a number in canonical form, then all
options of x are simpler than x.

Theorem 4.2.9. (the simplicity rule) Let G = {GL|GR} be a game. If there
is any number x such that GL C xCGR for all GL and GR, then G equals a
number, and G is the unique simplest such x.

Proof. A simplest possible x exists because there are no infinite sequences
of numbers x1, x2, . . . such that xn+1 is simpler than xn for every n. The
denominators in such a chain would necessarily decrease at each step until
reaching 1, and then the magnitudes would decrease until 0 was reached,
from which the sequence could not proceed.

Then taking x to be in canonical form, the options of x are simpler than
x, and therefore not in the class S of Lemma 4.2.1, though x itself is. So by
Lemma 4.2.1, x = G.

Here is a diagram showing the structure of some of the simplest short
surreal numbers. Higher numbers in the tree are simpler.

0

1

2

3

45/2

3/2

7/45/4

1/2

3/41/4

-1

-1/2

1/4-3/4

-2

-3/2

-5/4-7/4

-3

-5/2-4
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So for instance {10|20} is 11 (rather than 15 as one might expect), because
11 is the simplest number between 10 and 20. Or {2|2.75} is 2.5 but {2|2.25}
is 2.125.

4.3 Numbers and Hackenbush

Surreal numbers are closely connected to the game of Hackenbush. In fact,
every Hackenbush position is a surreal number, and every short surreal num-
ber occurs as a Hackenbush position.

Lemma 4.3.1. Let G be a game, and suppose that for every position H of
G, every HL ≤ H and every HR ≥ H. Then G is a surreal number.

Proof. If HL ≤ H then HL < H because HL C H by Theorem 3.3.7, and
similarly H ≤ HR ⇒ H < HR. So by transitivity and the assumptions,
HL < HR for every HL and HR. Since this is true for all positions of G, G
is a surreal number.

Theorem 4.3.2. Every position of Hackenbush is a surreal number.

Proof. We need to show that if G is a Hackenbush position, and GL is a left
option, then GL ≤ G. (We also need to show that if GR is a right option, then
G ≤ GR. But this follows by symmetry from the other claim.) Equivalently,
we need to show that GL + (−G) ≤ 0. Note that GL is obtained from
G by removing a left edge e, and then deleting all the edges that become
disconnected from the ground by this action. Let S be the set of deleted
edges other than e. Let e′ and S ′ be the corresponding edges in −G, so that
e′ is a Right edge, whose removal definitely deletes all the edges in S ′.
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To show that GL + (−G) ≤ 0, we exhibit a strategy that Right can use
playing second. Whenever Left plays in one component, Right makes the
exact same move in the other. This makes sense as long as Left does not
play at e′ or in S ′. However, Left cannot play at e′ because e′ is a Right edge.
On the other hand, if Left plays in S ′, we add a caveat to Right’s strategy,
by having Right respond to any move in S ′ with a move at e′. After such an
exchange, all of S ′ and e′ will be gone, and the resulting position will be of
the form X + (−X) = 0. Since Right has moved to this position, Right will
win.

Therefore, Right can always reply to any move of Left. So Right will win,
if he plays second.

As a simple example of numbers, the reader can verify that a Hackenbush
position containing only Blue (Left) edges is a positive integer, equal to the
number of edges.

More generally, every surreal number occurs:

Theorem 4.3.3. Every short surreal number is the value of some position
in Hackenbush.

Proof. The sum of two Hackenbush positions is a Hackenbush position, and
the negative of a Hackenbush position is also a Hackenbush position. There-
fore, we only need to present Hackenbush positions taking the values 1

2n
for

n ≥ 0.
Let dn denote a string of edges, consisting of a blue (left) edge attached

to the ground, followed by n red edges.
Then we can easily verify that for all n ≥ 0,

dn ≡ {0|d0, d1, . . . , dn−1}.

So d0 ≡ {0|}, d1 ≡ {0|d0}, d2 ≡ {0|d0, d1}, and so on.
Then by the simplicity rule it easily follows inductively that dn ≡ 1

2n
.

So we can assign a rational number to each Hackenbush position, describ-
ing the advantage that the position gives to Left or to Right. In many cases
there are rules for finding these numbers, though there is probably no general
rule, because the problem of determining the outcome of a general Hacken-
bush position is NP-hard, as shown on page 211-217 of Winning Ways.
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Figure 4.1: 2−2 and 2−7 in Hackenbush

4.4 The interplay of numbers and non-numbers

Unfortunately, not all games are numbers. However, the numbers play a
fundamental role in understanding the structure of the other games.

First of all, they bound all other games:

Theorem 4.4.1. Let G be a game. Then there is some number n such that
−n < G < n.

Proof. We show by induction that every game is less than a number.
Let G be a game, and suppose that every option of G is less than a

number. Since all our games are short, G has finitely many options. So
we can find some M such that every option GL, GR < M . Without loss of
generality, M is a positive integer, so it has no right option. Then G ≤ M
unless G is ≥ a right option of M (but none exist), or M ≤ a left option
of G (but we chose M to exceed all options of G). Therefore G ≤ M , by
Theorem 3.3.7. Then G < M + 1, and M + 1 is a number.

Because of this, we can examine which numbers are greater than or less
than a given game.

Definition 4.4.2. If G is a game then we let L(G) be the infimum (in R)
of all numbers x such G ≤ x, and R(G) be the supremum of all numbers x
such that x ≤ G.
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These exist, because the previous theorem shows that the sets are non-
empty, and because if x ≤ G for arbitrarily big x, then it could not be the
case that G < n for some fixed n.

It’s clear that R(G) ≤ L(G), since if x ≤ G and G ≤ y, then x ≤ y. It’s
not yet clear that R(G) and L(G) must be dyadic rational numbers, but we
will see this soon. If G is a number, then clearly R(G) = G = L(G). Another
easily verified fact is that if x is a number, then L(G + x) = L(G) + x and
R(G + x) = R(G) + x for any x. Also, it’s easy to show that L(G + H) ≤
L(G) + L(H) and similarly that R(G + H) ≥ R(G) + R(H), using the fact
that if x ≤ G and y ≤ H, then x+ y ≤ G+H.

Numbers are games in which any move makes the game worse for the
player who made the move. Such games aren’t very fun to play in, so Left
and Right might decide to simply stop as soon as the state of the game
becomes a number. Suppose they take this number as the final score of the
game, with Left trying to maximize it, and Right trying to minimize it. Then
the final score under perfect play is called the “stopping value.” Of course it
depends on who goes first, so we actually get two stopping values:

Definition 4.4.3. Let G be a short game. We recursively define the left
stopping value LS(G) and the right stopping value RS(G) by

• If G equals a number x, then LS(G) = RS(G) = x.

• Otherwise, LS(G) is the maximum value of RS(GL) as GL ranges over
the left options of G; and RS(G) is the minimum value of LS(GR) as
GR ranges over the right options of G.

Then we have the following:

Theorem 4.4.4. Let G be a game and x be a number. Then

• If x > LS(G) then x > G.

• If x < LS(G) then xCG.

• If x < RS(G) then x < G.

• If x > RS(G) then xBG.
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Proof. We proceed by joint induction on G and x. As usual, we need no base
case.

If G equals a number, then all results are obvious. So suppose that G is
not equal to a number, so that LS(G) is the maximum value of RS(GL) and
RS(G) is the maximum value of LS(GR). We have four things to prove.

Suppose x > LS(G). Then since G does not equal a number, we only need
to show that G ≤ x. This will be true unless xR ≤ G for some xR, or x ≤ GL

for some GL. In the first case, we have xR > x > LS(G), so by induction
xR > G, not xR ≤ G. In the second case, note that x > LS(G) ≥ RS(GL)
so by induction xBGL, not x ≤ GL.

Next, suppose that x < LS(G). Then there is some GL such that x <
LS(G) = RS(GL). By induction, then x < GL. So x ≤ GL C G, and thus
xCG.

The cases where x > RS(G) and x < RS(G) are handled similarly.

Corollary 4.4.5. If G is any short game, then LS(G) = L(G) and RS(G) =
R(G).

Proof. Clear from the definition of L(G) and R(G) and the previous theorem.

Interestingly, this means that the left stopping value of any non-numerical
game is at least its right stopping value

LS(G) ≥ RS(G).

So in some sense, in a non-numerical game you usually want to be the first
person to move. Since LS(G) and RS(G) are synonymous with L(G) and
R(G), we drop the former and write L(G) and R(G) for the left stopping
value and the right stopping value.

Using these results, we can easily compute L(G) and R(G) for various
games. For ∗ = {0|0}, the left and right stopping values are easily seen to be
0, so L(∗) = R(∗) = 0. It follows that ∗ is less than every positive number
and greater than every negative number. Such games are called infinitesimal
or small games, and will be discussed more in a later section.

For another example, the game ±1 = {1|−1} has L(±1) = 1 and R(±1).
So it is less than every number in (1,∞), and greater than every number in
(−∞, 1), but fuzzy with (−1, 1).

The next result formalizes the notion that “numbers aren’t fun to play
in.”
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Theorem 4.4.6. (Number Avoidance Theorem) Let x be a number and G =
{GL|GR} be a short game that does not equal any number. Then

G+ x = {GL + x|GR + x}.

Proof. Let Gx = {GL + x|GR + x}. Then consider

Gx −G = {Gx −GR, (GL + x)−G|Gx −GL, (GR + x)−G}.

Now for any GR, GR+x is a right option of Gx, so GR+xBGx and therefore
Gx −GR C x. Similarly, GL CG, so that (GL + x)−GC x for every GL. So
every left option of Gx −G is Cx.

Similarly, for any GL, we have GL +xCGx so that xCGx−GL. And for
any GR, GCGR so that xC (GR + x)−G. So every right option of Gx −G
is Bx. Then by the simplicity rule, Gx−G is a number, y. We want to show
that y = x.

Note that Gx = G+ y, so that

L(Gx) = L(G) + y. (4.2)

Now y is a number and G is not, so Gx is not a number. Therefore L(Gx) is
the maximum value of R(GL + x) = R(GL) + x as GL ranges over the left
options of G. Since the maximum value of R(GL) as GL ranges over the left
options of G is L(G), we must have L(Gx) = L(G) +x. Combining this with
(4.2) gives y = x. So Gx −G = x and we are done.

This theorem needs some explaining. Some simple examples of its use are

∗+ x = {x|x}

and
{−1|1}+ x = {−1 + x|1 + x}

for any number x. To see why it is called “Number Avoidance,” note that
the definition of G+ x is

G+ x = {GL + x,G+ xL|GR + x,G+ xR},

where the options G+xL and G+xR correspond to the options of moving in
x rather than in G. The Number Avoidance theorem says that such options
can be removed without affecting the outcome of the game. The strategic
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implication of this is that if you are playing a sum of games, you can ignore
all moves in components that are numbers. This works even if your opponent
does move in a number, because by the gift-horse principle,

G+ x = {GL + x|GR + x,G+ xR}

in this case.

4.5 Mean Value

If G and H are short games, then L(G+H) ≤ L(G)+L(H) and R(G+H) ≥
R(G) + R(H). It follows that the size of the confusion interval [R(G +
H), L(G+H)] is at most the sum of the sizes of the confusion intervals of G
and H.

Now if we add a single game to itself n times, what happens in the limit?
We might expect that L(nG)−R(nG) will be approximately n(L(G)−R(G)).
But in fact, the size of the confusion interval is bounded:

Theorem 4.5.1. (Mean Value Theorem) Let nG denote G added to itself n
times. Then there is some bound M dependent on G but not n such that

L(nG)−R(nG) ≤M

for every n.

Proof. We noted above that

L(G+H) ≤ L(G) + L(H).

But we can also say that

R(G+H) ≤ R(G) + L(H)

for arbitrary G and H, because if x > R(G) and y > L(H), then xBG and
y > H, so that x+ y BG+H, implying that x+ y ≥ R(G+H). Similarly,

L(G+H) ≥ R(G) + L(H).

Every left option of nG is of the form GL + (n − 1)G, and by these
inequalities

R(GL + (n− 1)G) ≤ L(GL) +R((n− 1)G)
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Therefore if we let M1 be the maximum of L(GL) over the left options of G,
then

R(GL + (n− 1)G) ≤M1 +R((n− 1)G)

and so every left option of nG has right stopping value at most M1 +R((n−
1)G). Therefore L(nG) ≤M1 +R((n− 1)G).

Similarly, every right option of nG is of the form GR + (n− 1)G, and we
have

L(GR + (n− 1)G) ≥ L(GR) +R((n− 1)G)

Letting M2 be the minimum value of L(GR) over the right options of G, we
have

L(GR + (n− 1)G) ≥M2 +R((n− 1)G)

and so every right option of nG has left stopping value at least M2 +R((n−
1)G). Therefore, R(nG) ≥M2 +R((n− 1)G).

Thus

L(nG)−R(nG) ≤M1 +R((n− 1)G)− (M2 +R((n− 1)G)) = M1 −M2

regardless of n.

Together with the fact that L(G+H) ≤ L(G) + L(H) and R(G+H) ≥
R(G) +R(H) and L(G) ≥ R(G), it implies that

lim
n→∞

L(nG)

n
and lim

n→∞

R(nG)

n

converge to a common limit, called the mean value of G, denoted m(G). It is
also easily seen that m(G+H) = m(G) +m(H) and m(−G) = −m(G), and
that G ≥ H implies m(G) ≥ m(H). The mean value of G can be thought of
as a numerical approximation to G.
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Chapter 5

Games near 0

5.1 Infinitesimal and all-small games

As noted above, the game ∗ lies between all the positive numbers and all the
negative numbers. Such games are called infinitesimals or small games.

Definition 5.1.1. A game is infinitesimal (or small) if it is less than every
positive number and greater than every negative number, i.e., if L(G) =
R(G) = 0. A game is all-small in form if every one of its positions (including
itself) is infinitesimal. A game is all-small in value if it equals an all-small
game.

Since L(G + H) ≤ L(G) + L(H) and R(G + H) ≥ R(G) + R(H) and
R(G) ≤ L(G), it’s clear that infinitesimal games are closed under addition.
An easy inductive proof shows that all-small games are also closed under
addition: if G and H are all-small in form, then every option of G + H is
all-small by induction, and G+H is infinitesimal itself, so G+H is all-small.
Moreover, if G is all-small in value, then the canonical value of G is all-small
in form.

Their name might suggest that all-small games are the smallest of games,
but as we will see this is not the case: the game +2 = {0|{0| − 2}} is smaller
than every positive all-small game.

Infinitesimal games occur naturally in certain contexts. For example,
every position in Clobber is infinitesimal. To see this, let G be a position in
Clobber. We need to show that for any n,

−1

2n
≤ G ≤ 1

2n
.
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As noted in the proof of Theorem 4.3.3, 1
2n

is a Hackenbush position consisting
of string of edges attached to the ground: 1 blue edge followed by n red edges
(see Figure 4.1). By symmetry, we only need to show that G ≤ 1

2n
, or in

other words, that 1
2n
−G is a win for Left when Right goes first. Left plays as

follows: whenever it is Left’s turn, she makes a move in G, unless there are
no remaining moves in G. In this case there are no moves for Right either.
This can be seen from the rules of Clobber - see Figure 5.1.

Figure 5.1: In a position of Clobber, whenever one player has available moves,
so does the other. The available moves for each player correspond to the pairs
of adjacent black and white pieces, highlighted with red lines in this diagram.

So once the game reaches a state where no more moves remain in G, Left
can make the final move in 1

2n
, by cutting the blue edge at the base of the

stalk. This ends the other component.
In other words, the basic reason why Left can win is that she retains the

ability to end the Hackenbush position at any time, and there’s nothing that
Right can do about it.

Now since every subposition of a Clobber position is itself a Clobber
position, it follows that Clobber positions are in fact all-small.

The only property of Clobber that we used was that whenever Left can
move, so can Right, and vice versa. So we have the following
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Theorem 5.1.2. If G is a game for which Left has options iff Right has
options, and the same holds of every subposition of G, then G is all-small.

Conversely

Theorem 5.1.3. If G is an all-small game in canonical form, then G has
the property that Left can move exactly when Right can, and this holds in all
subpositions.

Proof. By induction, we only need to show that this property holds for G.
Suppose that it didn’t, so that G = {L|∅} or G = {∅|R}. In the first case,
there is some number n such that n exceeds every element of L. Therefore
by the simplicity rule, G is a number. Since G is infinitesimal, it must be
zero, but the canonical form of 0 has no left options. So G cannot be of the
form {L|∅}. The other possibility is ruled out on similar grounds.

The entire collection of all-small games is not easy to understand. In
fact, we will see later that there is an order-preserving homomorphism from
the group G of (short) games into the group of all-small games. So all-small
games are as complicated as games in general.

Here are the simplest all-small games:

0 = {|}

∗ = {0|0}

↑= {0|∗}

↓= {∗|0}

The reader can easily check that ↑> 0 but ↑ ||∗. As an exercise in reducing
to canonical form, the reader can also verify that

↑ +∗ = {0, ∗|0}

↑ + ↑= {0| ↑ +∗}

↑ + ↑ +∗ = {0| ↑}

{↑ | ↓} = ∗

Usually we use the abbreviations ↑ ∗ =↑ +∗, ⇑=↑ + ↑, ⇓=↓ + ↓, ⇑ ∗ =⇑ +∗.
More generally, n̂ is the sum of n copies of ↑ and n̂∗ = n̂+ ∗.

These games occur in Clobber as follows:
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Theorem 5.1.4. Letting µ1 =↑, µn+1 = {0|µn}, and ν1 =↑ ∗, νn+1 = {0|νn},
we have µn+1 =↑ +νn and νn+1 =↑ +µn and µn+1 = νn+1 +∗ for every n ≥ 1.

Proof. We proceed by induction on n. The base case is already verified above
in the examples. Otherwise

↑ +νn = {0|∗}+ {0|νn−1} = {↑, νn| ↑ +νn−1, νn + ∗}.

By induction, this is
{↑, νn|µn, µn}

This value is certainly ≥ {0|µn}, since it is obtained by improving a left
option (0 →↑) and adding a left option of νn. So it remains to show that
µn+1 = {0|µn} ≤ {↑, νn|µn}. This will be true unless µn+1 ≥ µn (impossible,
since µn is a right option of µn+1), or {↑, νn|µn} ≤ 0 (impossible because Left
can make an initial winning move to ↑). So ↑ +νn = µn+1.

A completely analogous argument shows that ↑ +µn = νn+1. Then for the
final claim, note that µn+1 =↑ +νn =↑ +µn − ∗ =↑ +µn + ∗ = νn+1 + ∗.

So then µ2k−1 is the sum of 2k − 1 copies of ↑ and ν2k is the sum of 2k
copies of ↑, because ∗+ ∗ = 0.

Using this, we get the following values of clobber positions:
We also can use this to show that the multiples of ↑ are among the largest

of (short) infinitesimal games:

Theorem 5.1.5. Let G be a short infinitesimal game. Then there is some N
such that for n > N , G ≤ µn and G ≤ νn. In particular, every infinitesimal
game lies between two (possibly negative) multiples of ↑.
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Proof. Take N to be larger than five plus the number of positions in G. We
give a strategy for Left to use as the second player in µn−G. The strategy is
to always move to a position of the form µm+H, where m > 5 and R(H) ≥ 0,
until the very end. The initial position is of this form. From such a position,
Right can only move to µm−1 + H or to µm + HR for some H. In the first
case, we use the fact that L(H) ≥ R(H) ≥ 0, and find a left option HL such
that R(HL) ≥ 0. Then µm−1 +HL is of the desired form. In the other case,
since R(H) ≥ 0, L(HR) ≥ 0, and therefore we can find some HRL such that
R(HRL) ≥ 0. We make such a move. Left uses this strategy until H becomes
a number.

Note that if we follow this strategy, we (Left) never move in the µn com-
ponent. Therefore, the complexity of the other component will decrease after
each of our turns. By the time that H becomes a number x, we will stil lbe
in a position µm + x with m at least four or five, by choice of n.

Now by following our strategy, once H becomes a number, the number
will be nonnegative. So we will be in a position µm+x, where x ≥ 0 and m is
at least four or five. Either Left or Right moved to this position. Either way,
this position is positive (because x ≥ 0 and µm > 0 for m > 1), so therefore
Left wins.

The same argument shows that νn−G is positive for sufficiently large n.
Since the positive multiples of ↑ are of the form µn or νn, all sufficiently

large multiples of ↑ will exceed G. By the same logic, all sufficiently large
negative multiples of ↑ (i.e., multiples of ↓) will be less than G. So our claim
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is proven.

We end this section by showing that some infinitesimal games are smaller
than all positive all-small games. For any positive number x, let +x (pro-
nounced “tiny x”) be the game {0||0| − x} ≡ {0|{0| − x}}. The negative of
+x is {x|0||0}, which we denote −x (pronounced “miny x”).

Theorem 5.1.6. For any positive number x, +x is a positive infinitesimal,
and +x < G for any positive all-small G. Also, if G is any positive infinites-
imal, then +x < G for sufficiently large x.

Proof. It’s easy to verify that L(+x) = R(+x) = 0, and that +x > 0.
For the first claim, let G be a positive all-small game. We need to show

that G + (−x) is still positive. If Left goes first, she can win by making her
first move be {x|0}. Then Right is forced to respond by moving to 0 in this
component, or else Left can move to x on her next turn, and win (because
x is a positive number, so that x plus any all-small game will be positive).
So Right is forced to move to 0. This returns us back to G alone, which Left
wins by assumption.

If Left goes second, then she follows the same strategy, moving to {x|0}
at the first moment possible. Again, Right is forced to reply by moving
{x|0} → 0, and the brief interruption has no effect. The only time that this
doesn’t work is if Right’s first move is from −x to 0. This leaves G+ 0, but
Left can win this since G > 0. This proves the first claim.

For the second claim, we use identical arguments, but choose x to be so
large that −x < G∗ < x for every position G∗ occurring anywhere within G.
Then Left’s threat to move to x is still strong enough to force a reply from
Right.

So just as the multiples of ↑ are the biggest infinitesimal games, the games
+x are the most miniscule.

5.2 Nimbers and Sprague-Grundy Theory

An important class of all-small games is the nimbers

∗n = {∗0, ∗1, . . . , ∗(n− 1)}

where we are using {A} as shorthand for {A|A}. For instance

∗0 = {|} = 0
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∗1 = {0|0} = ∗

∗2 = {0, ∗|0, ∗}

∗3 = {0, ∗, ∗2|0, ∗, ∗2}

These games are all-small by the same criterion that made Clobber games
all-small. Note that if m < n, then ∗n has ∗m as both a left and a right
option, so ∗mC∗nC∗m. Thus ∗m||∗n. So the nimbers are pairwise distinct,
and in fact pairwise fuzzy with each other.

There are standard shorthand notations for sums of numbers and nimbers:

x ∗ n ≡ x+ ∗n

x∗ ≡ x+ ∗1 ≡ x+ ∗

where x is a number and n ∈ Z. Similarly, 7 ↑ means 7+ ↑ and so on.This
notation is usually justified as an analog to mixed fraction notation like 51

2

for 11
2

.
Because nimbers are infinitesimal, we can compare expressions of this sort

as follows: x1 ∗ n1 ≤ x2 ∗ n2 if and only if x1 < x2, or x1 = x2 and n1 = n2.
We will see how to add these kind of values soon.

The nimbers are so-called because they occur in the game Nim. In fact,
the nim-pile of size n is identical to the nimber ∗n.

Nim is an example of an impartial game, a game in which every position
is its own negative. In other words, every left option of a position is a
right option, and vice versa. When working with impartial games, we can
use “option” without clarifying whether we mean left or right option. The
impartial games are exactly those which can be built up by the operation
{A,B,C, . . . |A,B,C, . . .}, in which we require the left and right sides of the
| to be the same. This is often abbreviated to {A,B,C, . . .}, and we use this
abbreviation for the rest of the section.

Another impartial game is Kayles. Like Nim, it is played using counters
in groups. However, now the counters are in rows, and a move consists of
removing one or two consecutive counters from a row. Doing so may split
the row into two pieces. Both players have the same options, and as usual
we play this game using the normal play rule, where the last player to move
is the winner.

So if Kn denotes the Kayles-row of length n, then we have

K1 = {0} = ∗
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Figure 5.2: Two moves in a game of Kayles. Initially there are rows of length
3, 2, and 4. The first player splits the row of 4 into rows of length 1 and 1,
by removing the middle two pieces. The second player reduces the row of
length 3 to length 2.

K2 = {0, K1}

K3 = {K1, K2, K1 +K1}

K4 = {K2, K1 +K1, K3, K2 +K1}

K5 = {K3, K2 +K1, K4, K3 +K1, K2 +K2}

Another similar game is Grundy’s game. This game is played with piles,
like Nim, but rather than removing counters, the move is to split a pile into
two non-equal parts. So if Gn denotes a Grundy-heap of size n, then

G1 = {} = 0

G2 = {} = 0

G3 = {G1 +G2}

G4 = {G1 +G3}

G5 = {G1 +G4, G2 +G3}

G6 = {G1 +G5, G2 +G4}
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G7 = {G1 +G6, G2 +G5, G3 +G4}
and so on.

The importance of nimbers is the following:

Theorem 5.2.1. Every impartial game equals a nimber.

Proof. Because of how impartial games are constructed, it inductively suffices
to show that if all options of an impartial game are nimbers, then the game
itself is a nimber. This is the following lemma:

Lemma 5.2.2. If a, b, c, . . . are nonnegative integers, then

{∗a, ∗b, ∗c, . . .} = ∗m,

where m is the smallest nonnegative integer not in the set {a, b, c, . . .}, the
minimal excludent of a, b, c, . . ..

Proof. Since impartial games are their own negatives, we only need to show
that ∗m ≤ x = {∗a, ∗b, ∗c, . . .}. This will be true unless ∗m ≥ an option of
x (impossible since ∗m|| ∗ a, ∗b, ∗c, . . . because m 6= a, b, c, . . .), or if x ≤ an
option of ∗m. But by choice of ∗m, every option of ∗m is an option of x,
so x is incomparable with every option of ∗m. Thus this second case is also
impossible, and so ∗m ≤ x.

One can easily show that the sum of two impartial games is an impartial
game. So which nimber is ∗m+ ∗n?

Lemma 5.2.3. If m,n < 2k, then ∗m+∗(2k) = ∗(m+2k), and ∗m+∗n = ∗q
for some q < 2k.

Proof. We proceed by induction on k. The base case k = 0 is true because
∗0 = 0 and so ∗0 + ∗0 = ∗0 and ∗0 + ∗(20) = ∗(0 + 20).

So suppose the hypothesis is true for k. Let m,n < 2k+1. We can write
m = m′ + i2k and n = n′ + j2k, where i, j ∈ {0, 1} and m′, n′ < 2k. Then by
induction,

∗m = ∗m′ + ∗(i2k)
∗n = ∗n′ + ∗(j2k)

∗m+ ∗n = ∗q′ + ∗(i2k) + ∗(j2k)
where ∗q′ = ∗m′+∗n′, and q′ < 2k. Now i2k is either 0 or 2k and similarly for
j2k, so the correction term ∗(i2k) + ∗(j2k) is either ∗0 + ∗0 = ∗0, ∗0 + ∗2k =
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∗2k, or ∗2k + ∗2k = ∗0 (using the fact that impartial games are their own
inverses).

So ∗m + ∗n is either ∗q′ where q′ < 2k < 2k+1, in which case we are
done, or ∗q′ + ∗2k, which by induction is ∗(q′ + 2k). Then we are done since
q′ + 2k < 2k+1.

So if m,n < 2k+1, then ∗m + ∗n = ∗q for some q < 2k+1. Since addition
of games (modulo equality) is cancellative and associative, it follows that
{∗q : q < 2k+1} forms a group.

It remains to show that for any m < 2k+1, ∗m+∗2k+1 = ∗(m+2k+1). We
show this by induction on m (k is fixed of course). The options of ∗m+∗2k+1

are of two forms:

• ∗m+ ∗n for n < 2k+1. Because {∗q : q < 2k+1} with addition forms a
group, {∗m+ ∗n : n < 2k+1} = {∗n : n < 2k+1}.

• ∗m′ + ∗2k+1 for m′ < 2k+1. By induction, this is just {∗(m′ + 2k+1) :
m′ < m}.

So all together, the options of ∗m+ ∗2k+1 are just

{∗n : n < 2k+1}∪{∗n : 2k+1 ≤ n < 2k+1+m} = {∗0, ∗1, . . . , ∗(2k+1+m−1)}.

Therefore the minimal excludent is m + 2k+1, and so ∗m + ∗2k+1 = ∗(m +
2k+1).

Together with the fact that ∗m+∗m = 0, we can use this to add any two
nimbers:

∗9 + ∗7 = (∗1 + ∗8) + (∗3 + ∗4) = (∗1 + ∗8) + (∗1 + ∗2 + ∗4) =

(∗1 + ∗1) + ∗2 + ∗4 + ∗8 = 0 + ∗2 + ∗4 + ∗8 = ∗6 + ∗8 = ∗14.

∗25+∗14 = (∗1+∗8+∗16)+(∗2+∗4+∗8) = ∗1+∗2+∗4+(∗8+∗8)+∗16 =

∗1 + ∗2 + ∗4 + ∗16 = ∗23.

In general, the approach is to split up the summands into powers of two,
and them combine and cancel out like terms. The reader can show that the
general rule for ∗m + ∗n is to write m and n in binary, and add without
carries, to produce a number l which will satisfy ∗m+ ∗n = ∗l.

The number l such that ∗m+ ∗n = ∗l is called the nim-sum of m and n,
denoted m+2 n. Here is an addition table:
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+2 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

Note also that sums of numbers and nimbers are added as follows: x ∗ n +
y ∗m = (x+ y) ∗ (n+2 m).

Using nim-addition and the minimal-excludent rule, we can calculate val-
ues of some positions in Kayles and Grundy

K1 = {0} = ∗

K2 = {0, K1} = {0, ∗} = ∗2

K3 = {K1, K2, K1 +K1}

= {∗, ∗2, ∗+ ∗} = {∗, ∗2, 0} = ∗3

K4 = {K2, K1 +K1, K3, K2 +K1}

= {∗2, ∗+ ∗, ∗3, ∗2 + ∗1} = {∗2, 0, ∗3, ∗3} = ∗

K5 = {K3, K2 +K1, K4, K3 +K1, K2 +K2}

= {∗3, ∗2 + ∗1, ∗, ∗3 + ∗1, ∗2 + ∗2} = {∗3, ∗3, ∗, ∗2, ∗0} = ∗4

G1 = {} = 0

G2 = {} = 0

G3 = {G1 +G2} = {0 + 0} = ∗

G4 = {G1 +G3} = {0 + ∗} = 0

G5 = {G1 +G4, G2 +G3}

= {0 + 0, 0 + ∗} = {0, ∗} = ∗2

G6 = {G1 +G5, G2 +G4}

= {0 + ∗2, 0 + 0} = {0, ∗2} = ∗
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G7 = {G1 +G6, G2 +G5, G3 +G4}

= {0 + ∗, 0 + ∗2, ∗} = {∗, ∗2} = 0

In general, there are sequences of integers κn and γn such that Kn = ∗κn and
Gn = ∗γn. One can construct a table of these values, and use it to evaluate
any small position in Grundy’s game or Kayles. For the case of Kayles, this
sequence is known to become periodic after the first hundred or so values,
but for Grundy’s game periodicity is not yet know to occur.

The theory of impartial games is called Sprague-Grundy theory, and was
the original form of additive CGT which Conway, Guy, Berlekamp and others
extended to handle partizan games.
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Chapter 6

Norton Multiplication and
Overheating

6.1 Even, Odd, and Well-Tempered Games

Definition 6.1.1. A short game G is even in form if every option is odd in
form, and odd in form if every option is even in form and G 6= 0. G is even
(odd) in value if it equals a short game that is even (odd) in form.

For instance

• 0 = {|} is even and not odd (in form).

• ∗ = {0|0} and 1 = {0|} are odd and not even (in form).

• 2 = {1|} is even and not odd (in form).

• 2 = {0, 1|} is neither even nor odd (in form), but even (in value).

• In general an integer is even or odd in value if it is even or odd in the
usual sense.

• 1/2 = {0|1} is neither even nor odd (in form). By (b) of the following
theorem, it is neither even nor odd in value, too.

Theorem 6.1.2. Let G be a short game.

(a) If G is a short game that is odd (even) in form, then the canonical form
of G is also odd (even) in form.
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(b) G is even or odd (in value) iff the canonical form of G is even or odd
(in form)

(c) G is even or odd (in form) iff −G is even or odd (in form). G is even
or odd (in value) iff −G is even or odd (in value).

(d) No game is both even and odd (in form or in value).

(e) The sum of two even games or two odd games is even. The sum of an
odd game and an even game is an odd game. True for forms or values.

(f) If every option of G is even (or odd) in value, and G 6= 0, then G is odd
(or even) in value.

Proof. (a) Let G be odd or even in form. By induction we can put all the
options of G in canonical form. We can then reduce G to canonical form
by bypassing reversible options and removing dominated options. None
of these operations will introduce options of G of the wrong parity: this
is obvious in the case of removing dominated options, and if, say, GR is
a reversible option reversed by GRL, then GR has the opposite parity
of G, and GRL has the same parity as G, so that every left option of
GRL has opposite parity of G, and can be added to the list of options
of G without breaking the parity constraint. Of course since removing
dominated moves and bypassing reversible moves does not effect the
value of G, the constraint that G 6= 0 when G is odd will never be
broken. So after reducing G to canonical form, it will still be odd or
even, as appropriate.

(b) If G is, say, odd in value, then G = H for some H that is odd in form.
Letting H ′ be the canonical form of H, by part (a) H ′ is odd (in form).
Since H ′ is also the canonical form of G, we see that the canonical form
of G is odd (in form). Conversely, if the canonical form of G is odd (in
form), then G is odd in value by definition, since G equals its canonical
form.

(c) Clear by induction - the definitions of even and odd are completely sym-
metric between the two players.

(d) We first show that no game is both even and odd in form, by induction.
Let G be a short game, and suppose it is both even and odd in form.
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Then by definition, every option of G is both even and odd in form. By
induction, G has no options, so G ≡ {|} = 0, and then G is not odd.

Next, suppose that G is both even and odd in value. Then by part (b),
the canonical form of G is both even and odd in form, contradicting
what we just showed.

(e) We first prove the two statements about even and odd games in form,
by induction. Suppose that both G and H have parities in form. By
induction, every option of G + H will have the correct parity. So we
only need to show that if G is odd and H is even (or vice versa), then
G+H 6= 0. But if G+H = 0, then G = −H, and since H is even, so
is −H, by part (c), so we have a contradiction of part (d), since G is
odd and −H is even.

Now suppose that G and H are both even or odd (in value). Then
G = G′ and H = H ′, for some games G′ and H ′ having the same
parities (in form) as G and H have (in value). Then G+H = G′+H ′,
and G′+H ′ has the desired parity (in form), so G+H has the desired
parity (in value).

(f) For every option of G, there is an equivalent game having the same
parity, in form. Assembling these equivalent games into another game
H, we have G = H by Theorem 3.3.6(c), and H has the desired parity
(in form), so G has the desired parity (in value).

Henceforth “even” and “odd” will mean even and odd in value. From
this theorem, we see that the even and odd values form a subgroup of G (the
group of short games), with the even values as an index 2 subgroup. Every
even or odd game can be uniquely written as an even game plus an element
of the order-2 subgroup {0, ∗}, because ∗ is odd and has order 2.

Later, using Norton multiplication, we’ll see that the group of (short)
even games is isomorphic as a partially-ordered group to the entire group G
of short games.

A slight variation of even and odd is even and odd -temper :

Definition 6.1.3. Let G be a short game. Then G is even-tempered in
form if it equals a (surreal) number, or every option is odd-tempered in form.
Similarly, G is odd-tempered in form if does not equal a number, and every
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option is even-tempered in form. Also, G is odd- (even-)tempered in value
if it equals a short game that is odd or even tempered in form.

This notion behaves rather differently: now 0, 1, 1/2 are all even-tempered,
while ∗, 1∗, and {1|0} are odd-tempered, and ↑ is neither. Intuitively, a game
is even- or odd-tempered iff a number will be reached in an even- or odd-
number of moves.

We say that a game is well-tempered if it is even-tempered or odd-
tempered.

Theorem 6.1.4.

(a) If G is a short game that is odd- or even-tempered in form, then the
canonical form of G is also odd- or even-tempered in form.

(b) G is even- or odd-tempered (in value) iff the canonical form of G is even-
or odd-tempered (in form).

(c) Then G is even- or odd-tempered (in form) iff −G is even- or odd-tempered
(in form). G is even- or odd-tempered (in value) iff −G is even- or odd-
tempered (in value).

(c’) If G is even- or odd-tempered (in value), then so is G+x, for any number
x.

(d) No game is both even- and odd-tempered (in form or in value).

(e) The sum of two even-tempered games or two odd-tempered games is even-
tempered. The sum of an odd-tempered game and an even-tempered game is
an odd-tempered game. True in values (not forms).

(f) If G does not equal a number, and every option of G is even- or odd-
tempered in value, then G is odd- or even-tempered in value.

Proof. Most of the proofs are the same as in the case for even and odd games.
However, we have the following subtleties:

(a) When bypassing reversible moves, we now need to check that the re-
placement options GRLR actually have the appropriate parity. If G
itself equals a number, then the parity of the bypassed options is irrel-
evant. Otherwise, if GR equals a number, then since we’ve reduced to
canonical form, GRL and GRLR will also be numbers, so they will have
the same temper as GR, and everything works out fine.

100



The only possible failure case is when GRL is a number, so every one
of its left options GRLR is even tempered, and G and GR are even-
and odd-tempered non-numerical games, respectively. Since GRL ≥ G
(by definition of reversible move), GRL must be greater than or fuzzy
with every left option of G. If GRL were additionally less than or fuzzy
with every right option of G, then by the simplicity rule G would be a
number. So some right optionH ofGmust be less than or equal toGRL.
This option cannot be GR itself, since GRL CGR. So H will remain a
right option of G after bypassing GR. But then H ≤ GRL ≤ GRLR for
every new option GRLR. Here GRL ≤ GRLR because GRL is a number.
So all the new moves will be dominated by H and can be immediately
discarded, fixing the problem.

(b-c) These remain true for identical reasons as for even and odd games.

(c’) Suppose G is even tempered (in value). Then it equals a game H that
is even-tempered (in form). If G equals a number, then so does G+ x,
so G+x is also even-tempered (in form and value). Otherwise, H does
not equal a number, so by number avoidance

H + x = {HL + x|HR + x}.

By induction, every HL + x and HR + x is odd-tempered in value, so
by part (f), H + x is even-tempered in value.

Similarly, if G is odd tempered in value, then it equals a game H
that is odd-tempered (in form). And since G and H are not equal to
numbers, neither is G + x, so it suffices to show that every option of
{HL+x|HR+x} is even-tempered in value, which follows by induction.

(d) The proof that no game is both even- and odd-tempered in form is
essentially the same: unless G is a number, G can have no options by
induction, and then it equals zero and is not odd. And if G is a number,
then G is not odd in form. Extending this result to values proceeds in
the same way as before, using part (a).

(e) Note that this is not true in forms, since 1+∗ = {∗, 1|1}, and ∗ and 1 are
odd- and even-tempered respectively, so that {∗, 1|1} is neither even-
nor odd-tempered in form. But it equals {1|1} which is odd-tempered
in form, so it is odd-tempered in value.
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We prove the result for values inductively, making use of part (f). If G
and H are even or odd-tempered games, then every option of G + H
will have the desired temper (in value), except when one of G or H is
a number. But this case follows from part (c’). So the only remaining
thing we need to show is that if G and H are even- and odd-tempered
in value, respectively, then G+H is not a number. But if G+H = x
for some number x, then G = x + (−H), so by parts (c-c’), x + (−H)
is odd-tempered in value. But then G is both even- and odd-tempered
in value, contradicting part (d).

(f) This proceeds as in the previous theorem.

So as in the previous case, even and odd-tempered values form a subgroup
of G, with the even-tempered games as an index 2 subgroup, having {0, ∗}
as a complement. But in this case, something more interesting happens:
the group of all short games is a direct sum of even-tempered games and
infinitesimal games.

Theorem 6.1.5. Every short partizan game G can be uniquely written as
E + ε, where E is even-tempered and ε is infinitesimal.

To prove this, we need some preliminary definitions and results:

Definition 6.1.6. If G and H are games, we say that G is H-ish if G−H
is an infinitesimal.

Since infinitesimals form a group, this is an equivalence relation. The
suffix “-ish” supposedly stands for “infinitesimally shifted,” though it also
refers to the fact that G and H are approximately equal. For instance,
they will have the same left and right stopping values.1 We can rephrase
Theorem 6.1.5 as saying that every short game is even-tempered-ish.

Lemma 6.1.7. If G = {A,B, . . . |C,D, . . .} is a short game that does not
equal a number, and A′ is A-ish, B′ is B-ish, and so on, then

G′ = {A′, B′, . . . |C ′, D′, . . .}

is G-ish.
1This can be shown easily from the fact that L(G+H) ≤ L(G) +L(G) for short games

G and H, and related inequalities, like L(G + H) ≥ L(G) + R(H). Recall that if ε is
infinitesimal, then L(ε) = R(ε) = 0.
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Proof. Since G does not equal a number, we know by number avoidance that
for every positive number δ,

G+ δ = {A+ δ, B + δ, . . . |C + δ,D + δ, . . .}

But since A′ is A-ish, A′ − A ≤ δ, and B′ − B ≤ δ, and so on, so that
A′ ≤ A+ δ, B′ ≤ B + δ, and so on. Therefore,

G′ = {A′, B′, . . . |C ′, D′, . . .} ≤ {A+ δ, B + δ, . . . , C + δ,D + δ, . . .} = G+ δ.

So G′ − G ≤ δ for every positive number δ. Similarly, G′ − G ≥ δ for every
negative number δ, so that G′ −G is infinitesimal.

Corollary 6.1.8. For every short game G, there are G-ish even-tempered
and odd-tempered games.

Proof. We proceed by induction on G. If G is a number, then G is already
even-tempered, and G+ ∗ is odd-tempered and G-ish because ∗ is infinitesi-
mal. If G is not a number, let G = {A,B, . . . |C,D, . . .}. By induction, there
are odd-tempered A′, B′, . . . such that A′ is A-ish, B′ is B-ish, and so on.
By the lemma,

G′ = {A′, B′, . . . |C ′, D′, . . .}

is G-ish. It is also even-tempered in value, by part (f) of Theorem 6.1.4,
unless G′ is a number. But then it is even-tempered in form and value, by
definition of even-tempered. So either way G′ is even-tempered and G-ish.
Then as before, G+ ∗ is odd-tempered and also G-ish.

It remains to show that 0 is the only even-tempered infinitesimal game.

Theorem 6.1.9. Let G be an even or even-tempered game. If R(G) ≥ 0,
then G ≥ 0. Similarly, if L(G) ≤ 0, then G ≤ 0.

Proof. By symmetry we only need to prove the first claim. Since right and
left stopping values depend only on value, not form, we can assume without
loss of generality that G is even or even-tempered in form. We proceed
by induction. If G equals a number, then R(G) = G and we are done.
Otherwise, every option of G is odd or odd-tempered in form, and we have

L(GR) ≥ R(G) ≥ 0
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for all GR, by definition of stopping values. We need to show that Left wins
G when Right goes first. Suppose for the sake of contradiction that Right
wins, and let GR be Right’s winning move. So GR ≤ 0. If GR is a number,
then

0 ≤ L(GR) = GR ≤ 0,

so GR = 0, contradicting the fact that GR is odd or odd-tempered. Thus GR

does not equal a number. So again, by definition of stopping values,

0 ≤ L(GR) = R(GRL)

for some left option GRL of GR. But then since GR is odd or odd-tempered,
GRL is even or even-tempered, and then by induction 0 ≤ GRL C GR, con-
tradicting GR ≤ 0.

Corollary 6.1.10. If G is an even or even-tempered game that is infinites-
imal, then G = 0. If G is odd or odd-tempered, then G = ∗.

Proof. Since R(G) = L(G) = 0, the previous theorem implies that 0 ≤ G ≤
0.

Now we prove Theorem 6.1.5

Proof (of Theorem 6.1.5). By Corollary 6.1.8, we know that every short game
G can be written as the sum of an even-tempered game and an infinitesimal
game. By Corollary 6.1.10 the group of even-tempered games has trivial
intersection with the group of infinitesimal games. So we are done.

Therefore for every short game G, there is a unique G-ish even-tempered
game. We can also draw another corollary from Theorem 6.1.9

Theorem 6.1.11. If G is any even or odd game (in value), then L(G) and
R(G) are integers.

Proof. If G is any short game, then the values L(G) and R(G) actually occur
(as surreal numbers) within G. So if G is even or odd in form, then L(G)
and R(G) must be even or odd (not respectively) in value, because every
subposition of an even or odd game is even or odd (not respectively). So to
show that L(G) and R(G) are integers, it suffices to show that every (surreal)
number which is even or odd (in value) is an integer.

Suppose that x is a short number which is even or odd in value, and x is
not an integer. Then x corresponds to a dyadic rational, so some multiple of
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x is a half-integer. Since the set of even and odd games forms a group, and
since it contains the integers, it follows that 1

2
must be an even or an odd

game. But then 1
2

+ 1
2

= 1 would be even, when in fact it is odd. Therefore
L(G) and R(G) must be integers.

6.2 Norton Multiplication

If H is any game, we can consider the multiples of G

. . . , (−2).H = −H −H, (−1).H = −H, 0.H = 0,

1.H = H, 2.H = H +H, 3.H = H +H +H, . . .

The map sending n ∈ Z to G+G+ · · ·+G (n times, with obvious allowances
for n ≤ 0) establishes a homomorphism from Z to G. If G is positive, then
the map is injective and strictly order-preserving. In this case, Simon Norton
found a way to extend the domain of the map to all short partizan games.
Unfortunately this definition depends on the form of G (not just its value),
and doesn’t have many of the properties that we expect from multiplication,
but it does provide a good collection of endomorphisms on the group of short
partizan games.

We’ll use Norton multiplication to prove several interesting results:

• If G is any short game, then there is a short game H with H +H = G.
By applying this to ∗, we get torsion elements of the group of games G
having order 2k for arbitrary k.

• The partially-ordered group of even games is isomorphic to the group
of all short games, and show how to also include odd games into the
mix.

• The group of all-small games contains a complete copy of the group of
short partizan games.

• Later on, we’ll use it to relate scoring games to G.

The definition of Norton multiplication is very ad-hoc, but works never-
theless:
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Definition 6.2.1. (Norton multiplication) Let H be a positive short game.
For n ∈ Z, define n.H to be H +H + · · ·+H︸ ︷︷ ︸

n times

if n ≥ 0 or −(H +H + · · ·+H︸ ︷︷ ︸
−n times

)

if n ≤ 0. If G is any short game, then G Norton multiplied by H (denoted
G.H) is n.H if G equals an integer n. and otherwise is defined recursively
as

G.H ≡ {GL.H +HL, GL.H + 2H −HR|GR.H −HL, GR.H − 2H +HR}.

To make more sense of this definition, note that HL and 2H−HR can be
rewritten as H+(HL−H) and H+(H−HR). The expressions HL−H and
H−HR are called left and right incentives of H, since they measure how much
Left or Right gains (improves her situation) by making the corresponding
option. Unfortunately, incentives can never be positive, because HLCHCHR

for every HL and HR.
For instance, if H ≡↑≡ {0|∗}, then the left incentive is 0− ↑=↓, and

the right incentive is ↑ −∗ =↑ ∗. Since ↑ ∗ ≥↓, the options of the form
GL.H +HL will be dominated by GL.H + 2H −HR in this case, and we get

G. ↑≡ {GL. ↑ + ⇑ ∗|GR. ↑ + ⇓ ∗}

when G is not an integer. Sometimes G. ↑ is denoted as Ĝ.
Another important example is when H ≡ 1 + ∗ ≡ 1∗ ≡ {1|1}. Then the

incentives for both players are 1 ∗ −1 = ∗ = 1 − 1∗, so H + (HL − H) and
H + (H −HR) are both 1 ∗+∗ = 1. So when G is not an integer,

G.(1∗) ≡ {GL.(1∗) + 1|GR.(1∗)− 1}.

In many cases, Norton multiplication is an instance of the general over-
heating operator ∫ H

G

K,

defined to be K.G if K equals an integer, and

{H +

∫ H

G

KL| −H +

∫ H

G

KR}

otherwise. For example,
∫ ⇑∗
↑ is Norton multiplication by ↑≡ {0|∗}, and

∫ 1

1∗
is Norton multiplication by {1|1}. Unfortunately, overheating is sometimes
ill-defined modulo equality of games.

We list the important properties of Norton multiplication in the following
theorem:
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Theorem 6.2.2. For every positive short game A, the map G → G.A is a
well-defined an order-preserving endomorphism on the group of short-games,
sending 1 to A. In other words

(G+H).A = G.A+H.A

(−G).A = −(G.A)

1.A = A

0.A = 0

G = H =⇒ G.A = H.A

G ≥ H ⇐⇒ G.A ≥ H.A

Of course the last of these equations also implies that G < H ⇐⇒
G.A < H.A, GCH ⇐⇒ G.ACH.A, and so on.

These identities show that G.A depends only on the value of G. But as
a word of warning, we note that G.A depends on the form of A. For
instance, it turns out that

1

2
.{0|} =

1

2
,

while
1

2
.{1 ∗ |} = {1|0} 6= 1

2

although {0|} = 1 = {1 ∗ |}. By default, we will interpret G.A using the
canonical form of A, when the form of A is left unspecified.

Before proving Theorem 6.2.2, we use it to show some of the claims above:

Corollary 6.2.3. The map sending G→ G. ↑ is an order-presering embed-
ding of the group of short partizan games into the group of short all-small
games.

Proof. We only need to show that G. ↑ is always all-small. Since all-small
games are closed under addition, this is clear when G is an integer. In any
other case, G has left and right options, so G. ↑ does too. Moreover, the
left options of G. ↑ are all of the form GL. ↑ + ⇑ ∗ and GL. ↑ +0 (because
↑= {0|∗}) and by induction (and the fact that ⇑ ∗ is all-small), all the left
options of G. ↑ are all-small. So are all the right options. So every option
of G. ↑ is all-small, and G. ↑ has options on both sides. Therefore G. ↑ is
all-small itself.
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Corollary 6.2.4. The map sending G→ G.(1∗) is an order-preserving em-
bedding of the group of short partizan games into the group of (short) even
games.

In fact, we’ll see that this map is bijective, later on.

Proof. As before, we only need to show that G.(1∗) is even, for any G. Since
1∗ = {1|1} is even, and even games are closed under addition and subtraction,
this is clear when G is an integer. Otherwise, note that

G.(1∗) = {GL.(1∗) + 1|GR.(1∗)− 1}

and by induction GL.(1∗) is even and GR.(1∗) is even, so that GL.(1∗) + 1
and GR.(1∗)− 1 are odd (because 1 and −1 are odd). Thus every option of
G.(1∗) is odd, and so G.(1∗) is even as desired.

Corollary 6.2.5. If G is any short game, then there is a short game H such
that H + H = G. If G is infinitesimal or all-small, we can take H to be
likewise. Either way, we can take H to have the same sign (outcome) as G.

Proof. Since every short game is greater than some number, G + 2n will be
positive for big enough n. Let H = (1/2).(G+ 2n)− n. Then

H +H = (1/2).(G+ 2n) + (1/2).(G+ 2n)− n− n =

(1/2 + 1/2).(G+ 2n)− 2n = G+ 2n− 2n = G.

If G is infinitesimal, we can replace 2n with 2̂n (i.e., 2n. ↑), since we know
that every infinitesimal is less than some multiple of ↑. Then G + 2̂n will
be infinitesimal or all-small, as G is, so H = (1/2).(G + 2̂n) − n̂ will be
infinitesimal or all-small, by the following lemma:

Lemma 6.2.6. If K is infinitesimal and positive, then G.K is infinitesimal
for every short game G. Similarly if K is all-small, then G.K is all-small
too.

Proof. The all-small case proceeds as in Corollary 6.2.3, using the fact that
the incentives of K will be all-small because K and its options are, and
all-small games form a group.

If K is merely infinitesimal, then notice that since every short game is
less than an integer, there is some large n for which −n < G < n, and so
−n.K < G.K < n.K. But since K is an infinitesimal, n.K is less than every
positive number and −n.K is greater than every negative number. Thus G.K
also lies between the negative and positive numbers, so it is infinitesimal.
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To make the signs come out right, note that if G = 0, then we can trivially
take H = 0. If G||0, then any H satisfying H + H = G must satisfy H||0,
since H ≥ 0⇒ H +H ≥ 0, H = 0⇒ H +H = 0, and H ≤ 0⇒ H +H ≤ 0.
So the H chosen above works. If G > 0, then we can take n = 0. So
H = (1/2).G which is positive by Theorem 6.2.2. If G is negative, then by
the same argument applied to−G, we can find K > 0 such that K+K = −G.
Then take H = −K.

We now work towards a proof of Theorem 6.2.2.

Lemma 6.2.7. (−G).H ≡ −(G.H)

Proof. This is easily proven by induction. If G equals an integer, then it is
obvious by definition of Norton multiplication. Otherwise,

(−G).H ≡ {(−G)L.H +HL, (−G)L.H + 2H −HR|

(−G)R.H −HL, (−G)R.H − 2H +HR}

≡ {(−(GR)).H +HL, (−(GR)).H + 2H −HR|

(−(GL)).H −HL, (−(GL)).H − 2H +HR}

≡ {−(GR.H) +HL,−(GR.H) + 2H −HR|

−(GL.H)−HL,−(GL.H)− 2H +HR}

≡ {−(GR.H −HL),−(GR.H − 2H +HR)|

−(GL.H +HL),−(GL.H + 2H −HR)} ≡

−{GL.H +HL, GL.H + 2H −HR|

GR.H −HL, GR.H − 2H +HR}

≡ −(G.H)

where the third identity follows by induction.

The remainder is more difficult. We’ll need the following variant of
number-avoidance

Theorem 6.2.8. (Integer avoidance) If G is a short game that does not equal
an integer, and n is an integer, then

G+ n = {GL + n|GR + n}
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Proof. If G does not equal a number, this is just the number avoidance
theorem. Otherwise, let S be the set of all numbers x such that GLCxCGR

for all GL and GR, and let S ′ be the set of all numbers x such that GL +
n C x C GR + n for all GL and GR. By the simplicity rule, G equals the
simplest number in S, and {GL + n|GR + n} equals the simplest number in
S ′. But the elements of S ′ are just the elements of S shifted by n, that is
S ′ = {s + n : s ∈ S}. Let x = G and y = {GL + n|GR + n}. We want to
show y = x+n, so suppose otherwise. Then x is simpler than y−n ∈ S, and
y is simpler than x + n ∈ S ′. Because of how we defined simplicity, adding
an integer to a number has no effect on how simple it is unless a number is
an integer. So either x or y is an integer. If x = G is an integer then we have
a contradiction, and if y is an integer, the fact that x is simpler than y − n
implies that x is an integer too.

The name integer avoidance comes from the following reinterpretation:

Lemma 6.2.9. Let G1, G2, . . . , Gn be a list of short games. If at least one
Gi does not equal an integer, and G1 +G2 + · · ·+GnB 0, then there is some
i and some left option (Gi)

L such that Gi does not equal an integer, and

G1 + · · ·+Gi−1 + (Gi)
L +Gi+1 + · · ·+Gn ≥ 0

(If we didn’t require Gi to be a non-integer, this would be obvious from
the fact that some left option of G1 +G2 + · · ·+Gn must be ≥ 0.)

Proof. Assume without loss of generality that we’ve sorted the Gn so that
G1, . . . , Gj are all non-integers, while Gj+1, . . . , Gn are all integers. (We
don’t assume that j < n, but we do assume that j > 0.) Then we can write
Gj+1 + · · ·+Gn = k for some integer k, which will be the empty sum zero if
j = n. By integer avoidance,

0CG1 +G2 + · · ·+Gn = G1 + · · ·+Gj−1 + {(Gj)
L + k|(Gj)

R + k}

Therefore, there is some left option of G1 + · · ·+Gj−1 +{(Gj)
L+k|(Gj)

R+k}
which is ≥ 0. There are two cases: it is either of the form

G1 + · · ·+Gi−1 + (Gi)
L +Gi+1 + · · ·+Gj−1 + {(Gj)

L + k|(Gj)
R + k}

for some i < j, or it is of the form

G1 + · · ·+Gj−1 + (Gj)
L + k.
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In the first case, we have

0 ≤ G1 + · · ·+Gi−1 + (Gi)
L +Gi+1 + · · ·+Gj−1 + {(Gj)

L + k|(Gj)
R + k} =

G1 + · · ·+Gi−1 + (Gi)
L +Gi+1 + · · ·+Gj + k =

G1 + · · ·+Gi−1 + (Gi)
L +Gi+1 + · · ·+Gn

and Gi is not an integer. In the second case, we have

0 ≤ G1 + · · ·+Gj−1 + (Gj)
L + k = G1 + · · ·+Gj−1 + (Gj)

L +Gj+1 + · · ·+Gn

and Gj is not an integer.

This result says that in a sum of games, not all integers, whenever you
have a winning move, you have one in a non-integer. In other words, you
never need to play in an integer if any non-integers are present on the board.

Using this, we turn to our most complicated proof:

Lemma 6.2.10. Let H be a positive short game and G1, G2, G3 be short
games. Then

G1 +G2 +G3 ≥ 0 =⇒ G1.H +G2.H +G3.H ≥ 0

Proof. If every Gi equals an integer, then the claim follows easily from the
definition of Norton multiplication. Otherwise, we proceed by induction on
the combined complexity of the non-integer games among {G1, G2, G3}.

We need to show that Left has a good response to any Right option of
G1.H + G2.H + G3.H. So suppose that Right moves in some component,
G1.H without loss of generality. We have several cases.

Case 1: G1 is an integer n. In this case, (n+ 1) +G2 +G3 ≥ 1 > 0, and
G2 and G3 are not both equal to integers, so we can assume without loss
of generality (by integer avoidance), that a winning left option in (n + 1) +
G2 +G3 is in G2, and G2 is not an integer. That is, G2 is not an integer and
(n+ 1) + (G2)

L +G3 ≥ 0 for some GL
2 . By induction, we get

(n+ 1).H + (G2)
L.H +G3.H ≥ 0 (6.1)

Now we break into cases according to the sign of n.
Case 1a: n = 0. Then G1.H ≡ 0 so right could not have possibly moved

in G1.H.
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Case 1b: n > 0. Then G1.H ≡ n.H ≡ H +H + · · ·+H︸ ︷︷ ︸
n times

, so that the

right options of G1.H are all of the form (n − 1).H + HR. If Right moves
from G1.H = n.H to (n − 1).H + HR, we (Left) reply with a move from
G2.H to (G2)

L.H + 2H − HR, which is legal because G2 is not an integer.
This leaves us in the position

(n−1).H+HR+(G2)
L.H+H+H−HR+G3.H = (n+1).H+(G2)

L.H+G3.H ≥ 0

using (6.1).
Case 1c: n < 0. Then similarly, the right options of n.H are all of the

form (n + 1).H −HL. We reply to such a move with a move from G2.H to
(G2)

L.H +HL, resulting in

(n+ 1).H −HL + (G2)
L.H +HL +G3.H = (n+ 1).H + (G2)

L.H +G3.H ≥ 0

using (6.1) again.
Case 2: G1 is not an integer. Then the right options of G1.H are of

the form (G1)
R.H − HL and (G1)

R.H − 2H + HR. We break into cases
according to the nature of (G1)

R +G2 +G3, which is necessarily B0 because
G1 +G2 +G3 ≥ 0.

Case 2a: All of (G1)
R, G2, and G3 are integers. Then (G1)

R +G2 +G3B
0 =⇒ (G1)

R +G2 +G3 ≥ 1. After Right’s move, we will either be in

(G1)
R.H −HL +G2.H +G3.H

or
(G1)

R.H − 2H +HR +G2.H +G3.H

But since (G1)
R, G2, and G3 are all integers, we can rewrite these possibilities

as
m.H −HL

and
m.H − 2H +HR

where m = (G1)
R + G2 + G3 is an integer at least 1. But since m ≥ 1, we

have
m.H −HL ≥ H −HL B 0

and
m.H − 2H +HR ≥ H − 2H +HR = HR −H B 0
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so Right’s move in G1.H was bad.
Case 2b: Not all of (G1)

R, G2, and G3 are integers. Letting {A,B,C} =
{(G1)

R, G2, G3}, we find outselves in a position

A.H −HL +B.H + C.H (6.2)

or
A.H − 2H +HR +B.H + C.H (6.3)

and we know that not all of A,B,C are integers, and A + B + C B 0. By
integer avoidance, there is some winning left option in one of the non-integers.
Without loss of generality, A is not an integer and AL + B + C ≥ 0. Then
by induction,

AL.H +B.H + C.H ≥ 0.

Now, if we were in situation (6.2), we move from A.H to AL.H + HL, pro-
ducing

AL.H +HL −HL +B.H + C.H = AL.H +B.H + C.H ≥ 0

while if we were in situation (6.3), we move from A.H to AL.H + 2H −HR,
producing

AL.H + 2H −HR − 2H +HR +B.H + C.H = AL.H +B.H + C.H ≥ 0

So in this case, we have a good reply, and Right’s move could not have been
any good.

So no matter how Right plays, we have good replies.

Using this, we prove Theorem 6.2.2

Proof (of Theorem 6.2.2). 1.A = A and 0.A = 0 are obvious, and (−G).A =
−(G.A) was Lemma 6.2.7. The implication G = H =⇒ G.A = H.A follows
from the last line G ≥ H ⇐⇒ G.A ≥ H.A, so we only need to show

G ≥ H ⇐⇒ G.A ≥ H.A (6.4)

and
(G+H).A = G.A+H.A. (6.5)

We use Lemma 6.2.10 for both of these. First of all, suppose that G ≥ H.
Then G+ (−H) + 0 ≥ 0, so by Lemma 6.2.10, together with Lemma 6.2.7,

G.A+ (−H).A+ 0.A ≡ G.A−H.A ≥ 0.
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Thus G ≥ H =⇒ G.A ≥ H.A. Similarly, if G and H are any games,
G+H + (−(G+H)) ≥ 0 and (−G) + (−H) + (G+H) ≥ 0, so that

G.A+H.A+ (−(G+H)).A ≡ G.A+H.A− (G+H).A ≥ 0

and

(−G).A+ (−H).A+ (G+H).A ≡ −G.A−H.A+ (G+H).A ≥ 0.

Combining these shows (6.5). It remains to show the ⇐ direction of (6.4).
Then suppose that G 6≥ H, i.e., GCH. Then H −GB 0, and

(H −G).A = (H + (−G)).A = H.A+ (−G).A = H.A−G.A.

If we can similarly show that H.A−G.AB 0, when we’ll have shown G.A 6≥
H.A, as desired. So it suffices to show that if K B 0, then K.AB 0.

We show this by induction on K. If K is an integer, this is obvious, since
K B 0 =⇒ K ≥ 1 =⇒ K.A ≥ A > 0. Otherwise, K B 0 implies that some
KL ≥ 0. Then by the ⇒ direction of (6.4),

KL.A ≥ 0

so that
KL.A+ AL ≥ 0

if AL ≥ 0. Such an AL exists because A > 0.

6.3 Even and Odd revisited

Now we show that the map sending G to G.(1∗) is onto the even games,
showing that the short even games are isomorphic as a partially-ordered
group to the whole group of short games.

Lemma 6.3.1. For G a short game, G.(1∗) ≥ ∗ ⇐⇒ G ≥ 1 ⇐⇒ G.(1∗) ≥
1∗. Similarly, G.(1∗) ≤ ∗ ⇐⇒ G ≤ −1 ⇐⇒ G.(1∗) ≤ −1∗.

Proof. We already know that G ≥ 1 iff G.(1∗) ≥ 1∗, since 1∗ = 1.1∗ and
Norton multiplication by 1∗ is strictly order-preserving.

It remains to show that G.(1∗) ≥ ∗ ⇐⇒ G ≥ 1. If G is an integer,
this is easy, since every positive multiple of 1∗ is greater than ∗ (as ∗ is an
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infinitesimal so x and x + ∗ are greater than ∗ for positive numbers x), but
0.(1∗) = 0 6≥ ∗.

If G is not an integer, then G.(1∗) ≡ {GL.(1∗) + 1|GR.(1∗) − 1}, so by
Theorem 3.3.7 we have ∗ ≤ G.(1∗) unless and only unless G.(1∗) ≤ ∗L = 0
or GR.(1∗) − 1 ≤ ∗. So ∗ ≤ G.(1∗) unless and only unless G.(1∗) ≤ 0 or
some GR has GR.(1∗) ≤ 1∗. Because Norton multiplication with 1∗ is order-
preserving, we see that ∗ ≤ G.(1∗) unless and only unless G ≤ 0 or some
GR ≤ 1. This is exactly the conditions for which 1 6≤ G. So ∗ ≤ G.(1∗) iff
1 ≤ G.

Lemma 6.3.2. If G is a short game and

G.(1∗) 6= {GL.(1∗) + 1|GR.(1∗)− 1},

then there is some integer n such that GL C n and n+ 1CGR for every GL

and GR.

In other words, the recursive definition of Norton multiplication works
even when G is an integer, except in some bad cases. Another way of saying
this is that as long as there is no more than one integer n such that GL C
nCGR, then the recursive definition of G.(1∗) works.

Proof. Suppose that there is no integer n such that GL C n and n+ 1CGR

for all GL and GR. Then we want to show that

G.(1∗) = {GL.(1∗) + 1|GR.(1∗)− 1}. (6.6)

This is obvious ifG does not equal an integer, so suppose thatG = m for some
integer m. Then GLCmCGR for every GL and GR. If GL.(1∗)+1 ≥ G.(1∗),
then GL.(1∗)−G.(1∗) + 1∗ ≥ ∗, so by the previous lemma GL −G+ 1 ≥ 1,
so GL ≥ G, contradicting GL CG. Thus GL.(1∗) + 1CG.(1∗) for every GL,
and similarly one can show G.(1∗) C GR.(1∗) − 1 for every GR. So by the
gift-horse principle, we can add the left options GL.(1∗) + 1 and the right
options GR.(1∗)− 1 to any presentation of G.(1∗).

Since G = m, one such presentation is (1∗) + · · ·+ (1∗) (m times), which
is

{(m− 1).(1∗) + 1|(m− 1).(1∗) + 1}

This produces the presentation

{(m− 1).(1∗) + 1, GL.(1∗) + 1|(m− 1).(1∗) + 1, GR.(1∗)− 1}
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I claim that we can remove the old options (m−1).(1∗)+1 and (m−1).(1∗)+1
as dominated moves, leaving behind (6.6).

By assumption, m is the only integer satisfying GLCmCGR, ∀GL, ∀GR.
Since m− 1CGR for all GR, it must be the case that GL ≥ m− 1 for some
GL, or else GL Cm− 1CGR would hold. Then GL.(1∗) ≥ (m− 1).(1∗), so
(m− 1).(1∗) + 1 is dominated by GL.(1∗) + 1. Similarly, GL Cm+ 1 for all
GL, so some GR must satisfy GR ≤ m + 1. Then GR.(1∗) ≤ (m + 1).(1∗) =
(m − 1).(1∗) + 2. So (m − 1).(1∗) + 1 ≥ GR.(1∗) − 1, and (m − 1).(1∗) + 1
is dominated by GR.(1∗)− 1. So after removing dominated moves, we reach
(6.6), the desired form.

Lemma 6.3.3. Every (short) even game G equals H.(1∗) for some short
game H.

Proof. We need induction that works in a slightly different way.
Recursively define the following sets of short games:

• A0 contains all short games which equal numbers.

• An+1 contains An and all short games whose options are all in An.

Note that A0 ⊆ A1 ⊆ A2 ⊆ · · · .
We first claim that ∪∞n=1An is the set of all short games. In other words,

every short game G belongs to some An. Proceeding by induction on G, if G
is an integer, then G ∈ A0, and otherwise, we can assume by induction and
shortness of G that there is some n such that every option of G is in An, so
that G itself is in An+1.

Next we claim that the sets An are somewhat invariant under translation
by integers. Specifically, if G ∈ An and m is an integer, then G+m = H for
some H ∈ An. We show this by induction on n. If n = 0, this is obvious, since
the integers are closed under addition. Now supposing that the hypothesis
holds for An, let G ∈ An+1 and m be an integer. If G equals an integer,
then G + m does too, so G + m equals an element of A0 ⊆ An+1 and we
are done. Otherwise, by integer avoidance G+m equals {GL +m|GR +m}.
By induction every GL + m and every GR + m equals an element of An.
So {GL + m|GR + m} = {HL|HR} for some HL, HR ∈ An. Then H =
{HL|HR} ∈ An+1, so G+m equals an element of An.

Next, we show by induction on n that if G is even in form and G ∈ An,
then G = H.(1∗) for some H. If n = 0, then G is an integer. Since integers
are even as games if and only if they are even in the usual sense, G = 2m =
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(2m).(1∗) (because ∗ has order two, so 1 ∗+1∗ = 2). For the inductive step,
suppose that the result is known for An, and G ∈ An+1. Then by definition
of “even” and An+1, every option of G is odd and in An. So if GL is any
left option of G, then GL − 1 will be even, and will equal some X ∈ An,
by the previous paragraph. By induction, X = HL.(1∗) for some HL. We
can carry this out for every left option of G, so that every GL is of the form
HL.(1∗) + 1. Similarly we can choose some games HR such that the set of
GR is the set of (HR).(1∗)− 1. Thus

G ≡ {GL|GR} = {HL.(1∗) + 1|HR.(1∗)− 1}

We will be done with our inductive step by Lemma 6.3.2, unless there is some
integer n such that HL C n and n+ 1CHR for every HL and HR. Now by
the order-preserving property of Norton multiplication, and Lemma 6.3.1

HL C n ⇐⇒ HL.(1∗) 6≥ n.(1∗) ⇐⇒ HL.(1∗)− n.(1∗) + 1∗ 6≥ 1∗ ⇐⇒

HL.(1∗)− n.(1∗) + 1∗ 6≥ ∗ ⇐⇒ HL.(1∗) + 1C n.(1∗).
Similarly,

n+1CHR ⇐⇒ (n+1).(1∗) 6≥ HR.(1∗) ⇐⇒ (n+1).(1∗)−HR.(1∗)+1∗ 6≥ 1∗ ⇐⇒

(n+ 1).(1∗)−HR.(1∗) + 1∗ 6≥ ∗ ⇐⇒ (n+ 1).(1∗)CHR.(1∗)− 1.

So it must be the case that

HL.(1∗) + 1C n.(1∗) ≤ (n+ 1).(1∗)CHR.(1∗)− 1

for every HL and HR. But since each GL equals HL.(1∗) + 1 and each GR

equals HR.(1∗)− 1, we see that

GL C n.(1∗) ≤ (n+ 1).(1∗)CGR

for every GL and GR. But either n or n+ 1 will be even, so either n.(1∗) or
(n + 1).(1∗) will be an integer, and therefore by the simplicity rule G must
equal an integer. So G ∈ A0 and we are done by the base case of induction.

So we have just shown, for every n, that if G ∈ An and G is even in form,
then G = H.(1∗) for some H. Thus if K is any even game (in value), then as
shown above K = G for some game G that is even in form. Since every short
game is in one of the An for large enough n, we see that K = G = H.(1∗)
for some H.
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Theorem 6.3.4. The map G→ G.(1∗) establishes an isomorphism between
the partially ordered group of short games and the subgroup consisting of even
games. Moreover, every even or odd game can be uniquely written in the form
G = H.(1∗) +a, for a ∈ {0, ∗}, (unique up to equivalence of G), where a = 0
if H is even and a = ∗ if H is odd. Such a game is ≥ 0 iff H ≥ 0 when
a = 0, and iff H ≥ 1 when a = ∗.

Proof. From Corollary 6.2.4, we know that the map sending G to G.(1∗) is an
embedding of short partizan games into short even games. From Lemma 6.3.3
we know that the map is a surjection. We know from Theorem 6.1.2(d)
that no game is even and odd, so that the group of even and odd games is
indeed a direct product of {0, ∗} with the even games. Moreover, we know
that H.(1∗) ≥ 0 iff H ≥ 0, by the order-preserving property of Norton
multiplication, and H.(1∗) + ∗ ≥ 0 iff H ≥ 1, by Lemma 6.3.1.
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Chapter 7

Bending the Rules

So far we have only considered loopfree partizan games played under the
normal play rule, where the last player able to move is the winner. In this
chapter we see how combinatorial game theory can be used to analyze games
that do not meet these criteria. We first consider cases where the standard
partizan theory can be applied to other games.

7.1 Adapting the theory

Northcott’s Game is a game played on a checkerboard. Each player starts
with eight pieces along his side of the board. Players take alternating turns,
and on each turn a player may move one of her pieces left or right any number
of squares, but may not jump over her opponent’s piece in the same row. The
winner is decided by the normal play rule: you lose when you are unable to
move.
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Figure 7.1: A position of Northcott’s Game

Clearly each row functions independently, so Northcott’s Game is really
a sum of eight independent games. However, the standard partizan theory
isn’t directly applicable, because this game is loopy, meaning that the players
can return the board to a prior state if they so choose:

Figure 7.2: Loops can occur in Northcott’s Game.

Consequently, there is no guarantee that the game will ever come to an
end, and draws are possible. We assume that each player prefers victory to a
draw and a draw to defeat. Because of this extra possibility, it is conceivable
that in some positions, neither player would have a winning strategy, but
both players would have a strategy guaranteeing a drwa.

Suppose that we changed the rules, so that a player could only move
his pieces forward, towards his opponent’s. Then the game would become
loopfree, and in fact, it becomes nothing but Nim in disguise! Given a
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position of Northcott’s Game, one simply counts the number of empty squares
between the two pieces in each row, and creates a Nim-heap of the same size:

Figure 7.3: Converting the position of Figure 7.1 into a Nim position.

The resulting Nim position is equivalent: taking n counters from a Nim
pile corresponds to moving your piece in the corresponding row n squares
forward. This works as long as we forbid backwards moves.

However, it turns out that this prohibition has no strategic effect. Whichever
player has a winning strategy in the no-backwards-move variant can use the
same strategy in the full game. If her opponent ever moves a piece backwards
by x squares, she moves her own piece forwards by x squares, cancelling her
opponent’s move. This strategy guarantees that the game actually ends, be-
cause the pieces of the player using the strategy are always moving forwards,
which cannot go on indefinitely. So Northcott’s Game is still nothing but
Nim in disguise. The moral of the story is that loopy games can sometimes
be analyzed using partizan theory (Sprague-Grundy theory in this case).

We now consider two case studies of real-life games that can be partially
analyzed using the standard partizan theory, even though they technically
aren’t partizan games themselves.

7.2 Dots-and-Boxes

Unlike Northcott’s Game, Dots-and-Boxes (also known as Squares) is a game
that people actually play. This is a pencil and paper game, played on a square
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grid of dots. Players take turns drawing line segments between orthogonally
adjacent dots. Whenever you complete the fourth side of a box, you claim
the box by writing your initials in it, and get another move1. It is possible
to chain together these extra moves, and take many boxes in a single turn:

Figure 7.4: Alice takes three boxes in one turn.

Eventually the board fills up, and the game ends. The player with the
most boxes claimed wins. Victory is not decided by the normal play rule,
making the standard theory of partizan games inapplicable2.

Most people play Dots-and-Boxes by making random moves until all re-
maining moves create a three-sided box. Then the players take turn giving
each other larger and larger chains.

1Completing two boxes in one move does not give you two more moves.
2The fact that you move again after completing a box also creates problems
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Figure 7.5: Alice gives Bob a box. Bob takes it and gives Alice two boxes.
Alice takes them and gives Bob three boxes.

Oddly enough, there is a simple and little-known trick which easily beats
the näıve strategy. When an opponent gives you three or more boxes, it is
always possible to take all but two of them, and give two to your opponent.
Your opponent takes the two boxes, and is then usually forced to give you
another long chain of boxes.

For instance, in the following position,

the näıve strategy is to move to something like

which then gives your opponent more boxes than you obtained your self.
The better move is the following:
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From this position, your opponent might as well take the two boxes, but
is then forced to give you the other long chain:

This trick is tied to a general phenomenon, of loony positions. Rather
than giving a formal definition, we give an example.

Let P1 be the following complicated position:

Surprisingly, we can show that this position is a win for the first player,
without even exhibiting a specific strategy. To see this, let P2 be the following
position, in which Alice has the two squares in the bottom left corner:

124



Let k be the final score for Alice if she moves first in P2 and both players
play optimally.

Since there are an odd number of boxes on the board, k cannot be zero.
Now break into cases according to the sign of k.

• If k > 0, then the first player can win P1 by taking the two boxes as
well as the name “Alice.”

• If k < 0, then the first player can win P1 by naming her opponent
“Alice” and declining the two boxes, as follows:

Now “Alice” might as well take the two boxes, resulting in position P2.
Then because k < 0, Alice’s opponent can guarantee a win. If “Alice”
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doesn’t take the two boxes, her opponent can just take them on her
next turn, with no adverse effect.

So either way, the first player has a winning strategy in P1. Actually applying
this strategy is made difficult by the fact that we have to completely evaluate
P2 to tell which move to make in P1.

In general, a loony position is one containing two adjacent boxes, such
that

• There is no wall between the two boxes

• One of the two boxes has three walls around it.

• The other box has exactly two walls around it.

• The two boxes are not part of one of the following configurations:

The general fact about loony positions is that the first player is always able
to win a weak majority of the remaining pieces on the board. This follows
by essentially the same argument used to analyze the complicated position
above. In the case where there are an odd number of boxes on the board, and
neither player has already taken any boxes, it follows that a loony position
is a win for the first player. Here are some examples of loony positions:
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The red asterisks indicate why each position is loony. Here are some
examples of non-loony positions:

It can be shown that whenever some squares are available to be taken,
and the position is not loony, then you might as well take them.

A loony move is one that creates a loony position. Note that giving away
a long chain (three or more boxes) or a loop is always a loony move. When
giving away two boxes, it is always possible to do so in a non-loony way:
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In the vast majority of Dots-and-Boxes games, somebody eventually gives
a way a long chain. Usually, few boxes have been claimed when this first
happens (or both players have claimed about the same amount, because
they have been trading chains of length one and two), so the player who
gives away the first long chain loses under perfect play.

Interestingly, the player who first makes a loony move can be predicted in
terms of the parity of the number of long chains on the board. As the game
proceeds towards its end, chains begin to form and the number of long chains
begins to crystallize. Between experts, Dots-and-Boxes turns into a fight to
control this number. For more information, I refer the interested reader to
Elwyn Berlekamp’s The Dots and Boxes Game.

To connect Dots-and-Boxes to the standard theory of partizan games
(in fact, to Sprague-Grundy theory), consider the variant game of Nimdots.
This is played exactly the same as Dots-and-Boxes except that the player
who makes the last move loses. A few comments are in order:

• Despite appearances to the contrary, Nimdots is actually played by the
normal play rule, not the misère rule. The reason is that the normal rule
precisely says that you lose when it’s your turn but you can’t move. In
Nimdots, the player who makes the last move always completes a box.
He then gets a bonus turn, which he is unable to complete, because the
game is over!

• Who claims each box is completely irrelevant, since the final outcome
isn’t decided by score. This makes Nimdots be impartial.

• As in Dots-and-Boxes, a loony move is generally bad. In fact, in Nim-
dots, a loony move is always a losing move, by the same arguments as
above. In fact, since we are using the normal play rule, we might as
well make loony moves illegal, and consider no loony positions.
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• If you give away some boxes without making a non-loony move, your
opponent might as well take them. But there is no score, so it doesn’t
matter who takes the boxes, and we could simply have the boxes get
magically eaten up after any move which gives away boxes.

With these rule modifications, there are no more entailed moves, and Nimdots
becomes a bona fide impartial game, so we can apply Sprague-Grundy theory.
For example, here is a table showing the Sprague-Grundy numbers of some
small Nimdots positions (taken from page 559 of Winning Ways).

This sort of analysis is actually useful because positions in Nimdots and
Dots-and-Boxes can often decompose as sums of smaller positions. And
oddly enough, in some cases, a Nimdots positions replicate impartial games
like Kayles (see chapter 16 of Winning Ways for examples).

The connection between Dots-and-Boxes and Nimdots comes by seeing
Nimdots as an approximation to Dots-and-Boxes. In Dots-and-Boxes, the
first player to make a loony move usually loses. in Nimdots, the first player
to make a loony move always loses. So even though the winner is determined
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by completely different means in the two games, they tend to have similar
outcomes, at least early in the game.

This gives an (imperfect and incomplete) “mathematical” strategy for
Dots-and-Boxes: pretend that the position is a Nimdots position, and use
this to make sure that your opponent ends up making the first loony move. In
order for the loony-move fight to even be worthwhile, you also need to ensure
that there are long enough chains. In the process of using this strategy, one
might actually sacrifice some boxes to your opponent, for a better final score.
For instance, in Figure 7.6, the only winning move is to prematurely sacrifice
two boxes.

Figure 7.6: The only winning move is (a), which sacrifices two boxes. The
alternative move at (b) sacrifices zero boxes, but ultimately loses.

The mathematical strategy is imperfect, so some people have advocated
alternative strategies. On his now-defunct Geocities page, Ilan Vardi sug-
gested a strategy based on

(a) Making lots of shorter chains, and loops, which tend to decrease the
value of winning the Nimdots fight.

(b) “Nibbling,” allowing your opponent to win the Nimdots/loony-move
fight, but at a cost.

(c) “Pre-emptive sacrifices,” in which you make a loony-move in a long chain
before the chain gets especially long. This breaks up chains early,
helping to accomplish (a). Such moves can only work if you are already
ahead score-wise, via (b).

As Ilan Vardi notes, there are some cases in Dots-and-Boxes in which the
only winning move is loony:
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Figure 7.7: In the top position, with Alice to move, the move at the left is
the only non-loony move. However, it ultimately loses, giving Bob most of
the boxes. On the other hand, the move on the right is technically loony,
but gives Alice the win, with 5 of the 9 boxes already.

According to Vardi, some of the analyses of specific positions in Berlekamp’s
The Dots and Boxes Game are incorrect because of the false assumption that
loony moves are always bad.

Unlike many of the games we have considered so far, there is little hope of
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giving a general analysis of Dots-and-Boxes, since determining the outcome
of a Dots-and-Boxes position is NP-hard, as shown by Elwyn Berlekamp in
the last chapter of his book.

7.3 Go

Go (also known as Baduk and Weiqi) is an ancient boardgame that is popular
in China, Japan, the United States, and New Zealand, among other places.
It is frequently considered to have the most strategic depth of any boardgame
commonly played, more than Chess.3

In Go, two players, Black and White, alternatively place stones on a
19 × 19 board. Unlike Chess or Checkers, pieces are played on the corners
of the squares, as in Figure 7.8. A group of stones is a set of stones of one
color that is connected (by means of direct orthogonal connections). So in
the following position, Black has 4 groups and White has 1 group:

Figure 7.8: Image taken from the Wikipedia article Life and Death on June
6, 2011.

The liberties of a group are the number of empty squares. Once a group
has no liberties, its pieces are captured and removed from the board, and

3In fact, while computers can now beat most humans at Chess, computer Go programs
are still routinely defeated by novices and children.
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given to the opposing player. There are some additional prohibitions against
suicidal moves and moves which exactly reverse the previous move or return
the board to a prior state. Some of these rules vary between different rulesets.

Players are also allowed to pass, and the game ends when both players
pass. The rules for scoring are actually very complicated and vary by ruleset,
but roughly speaking you get a point for each captured opponent stone, and
a point for each empty space that is surrounded by pieces of your own color.4

In the following position, if there were no stones captured, then Black
would win by four points:

Figure 7.9: Black has 17 points of territory (the a’s) and White has 13 (the
b’s). Image taken from the Wikipedia article Rules of Go on June 6, 2011.

(The scoring rule mentioned above is the one used in Japan and the
United States. In China, you also get points for your own pieces on the
board, but not for prisoners, which tends to make the final score difference

4What if the losing player decides to never pass? If understand the rules correctly, he
will eventually be forced to pass, because his alternative to passing is filling up his own
territory. He could also try invading the empty spaces in his opponent’s territory, but
then his pieces would be captured and eventually the opponent’s territory would also fill
up. After a very long time, all remaining spots on the board would become illegal to move
to, by the no suicide rule, and then he would be forced to pass. At any rate, it seems like
this would be a pointless exercise in drawing out the game, and the sportsmanlike thing
to do is to resign, i.e., to pass.
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almost identical to the result of Japanese scoring.)
There is a great deal of terminology and literature related to this game,

so we can barely scratch the surface. One thing worth pointing out is that
it is sometimes possible for a group of stones to be indestructible. This is
called life. Here is an example:

Figure 7.10: The black group in the bottom left corner has two eyes, so it
is alive. There is no way for White to capture it, since White would need
to move in positions c and d simultaneously. The other black groups do not
have two eyes, and could be taken. For example, if White moves at b, the
top right black group would be captured. (Image taken from the Wikipedia
article Life and Death on June 6, 2011.)

This example shows the general principle that two “eyes” ensures life.
Another strategic concept is seki, which refers to positions in which nei-

ther player wants to move, like the following:
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Figure 7.11: If either player moves in one of the red circled positions, his
opponent will move in the other and take one of his groups. So neither player
will play in those positions, and they will remain empty. (Image taken from
the Wikipedia article Go (game) on June 6, 2011.)

Because neither player has an obligation to move, both players will simply
ignore this area until the end of the game, and the spaces in this position
will count towards neither player.

Like Dots-and-Boxes, Go is not played by the normal play rule, but uses
scores instead. However, there is a näıve way to turn a Go position into a
partizan game position that actually works fairly well, and is employed by
Berlekamp and Wolfe in their book Mathematical Go: Chilling Gets the Last
Point. Basically, each final position in which no moves remain is replaced by
its score, interpreted as a surreal number.

For instance, we have
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Figure 7.12: Small positions in Go, taken from Berlekamp and Wolfe. The
pieces along the boundary are assumed to be alive.

This approach works because of number avoidance. Converting Go endgames
into surreal numbers adds extra options, but we can assume that the play-
ers never use these extra options, because of number avoidance. For this
to work, we need the fact that a non-endgame Go position isn’t a number.
Unfortunately, some are, like the following:

136



However, something slightly stronger than number-avoidance is actually
true:

Theorem 7.3.1. Let A,B,C, . . . , D,E, F, . . . be short partizan games, such
that

max(R(A), R(B), . . .) ≥ min(L(D), L(E), . . .),

and let x be a number. Then

{A,B,C, . . . |D,E, F, . . .}+ x = {A+ x,B + x, . . . |D + x,E + x, . . .}.

Proof. If {A,B,C, . . . |D,E, F, . . .} is not a number, then this follows by
number avoidance. It also follows by number avoidance if {A + x,B +
x, . . . |D + x,E +X, . . .} is not a number. Otherwise, there is some number
y, equal to {A,B, . . . |D,E, . . .} such that A,B,C, . . .C yCD,E, F, . . .. But
by definition of L(·) and R(·), it follows that

max(R(A), R(B), . . .) ≤ y ≤ min(L(D), L(E), . . .),

since it is a general fact that y C G implies that y ≤ L(G) and similarly
GC y ⇒ R(G) ≤ y. So it must be the case that max(R(A), R(B), . . .) = y =
min(L(A), L(B), . . .). Thus

{A,B,C, . . . |D,E, F, . . .} = max(R(A), R(B), . . .).

By the same token,

{A+ x,B + x, . . . |D + x,E + x, . . .} = max(R(A+ x), R(B + x), . . .)

= max(R(A) + x,R(B) + x, . . .) = {A,B, . . . |D,E, . . .}+ x.

Now Go positions always have the property that maxGL(R(GL)) ≥ minGR(L(GR)),
because players are not under compulsion to pass. There is no way to create
a position like {0|4} in Go (which would asymmetrically be given the value
1 by our translation), because in such a position, neither player wants to
move, and the position will be a seki endgame position that should have
been directly turned into a number.

Interestingly enough, many simple Go positions end up taking values that
are Even or Odd, in the sense of Section 6.1. This comes about because we
can assign a parity to each Go position, counting the number of prisoners
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and emtpy spaces on the board, and the parity is reversed after each move.
And an endgame will have an odd score iff its positional parity is odd (unless
there are dame).

Then because most of the values that arise are even and odd, we can
describe them as Norton multiples of 1∗. Replacing the position X.(1∗) with
X creates a simpler description of the same position. This operation is the
“chilling” operation referenced in the title of Wolfe and Berlekamp’s books.
It is an instance of the cooling operation of “thermography,” which is closely
related to the mean value theory.

A lot of research has gone into studying ko situations like the following:

Figure 7.13: From the position on the left, White can move to the position
on the right by playing in the circled position. But from the position on the
right, Black can move directly back to the position on the right, by playing
in the circled position.

The rules of Go include a proviso that forbids directly undoing a previous
move. However, nothing prevents White from making a threat somewhere
else, which Black must respond to - and then after Black responds elsewhere,
White can move back in the ko. This can go back and forth several rounds,
in what is known as a kofight. While some players of Go see kofights as
mere randomness (a player once told me it was like shooting craps), many
combinatorial game theorists have mathematically examined ko positions,
using extensions of mean value theory and “thermography” for loopy games.
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7.4 Changing the theory

In some cases, we need a different theory from the standard one discussed so
far. The examples in this section are not games people play, but show how
alternative theories can arise in constructed games.

Consider first the following game, One of the King’s Horses : a number
of chess knights sit on a square board, and players take turns moving them
towards the top left corner. The pieces move like knights in chess, except
only in the four northwestern directions:

Each turn, you move one piece, but multiple pieces are allowed to occupy
the same square. You lose when you cannot move.

Clearly, this is an impartial game with the normal play rule, and each
piece is moving completely independently of all the others, so the game de-
composes as a sum. Consequently we can “solve” the game by figuring out
the Sprague-Grundy value of each position on the board. Here is a table
showing the values in the top left corner of the board:
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0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 2 1 0 0 1 1 0 0 1 1 0 0 1 1
1 2 2 2 3© 2 2 2 3 2 2 2 3 2 2 2
1 1 2 1 4 3© 2 3 3 3 2 3 3 3 2 3
0 0 3 4© 0 0 1 1 0 0 1 1 0 0 1 1
0 0 2© 3© 0 0 2 1 0 0 1 1 0 0 1 1
1 1 2 2 1 2 2 2 3 2 2 2 3 2 2 2
1 1 2 3 1 1 2 1 4 3 2 3 3 3 2 3
0 0 3 3 0 0 3 4 0 0 1 1 0 0 1 1
0 0 2 3 0 0 2 3 0 0 2 1 0 0 1 1
1 1 2 2 1 1 2 2 1 2 2 2 3 2 2 2
1 1 2 3 1 1 2 3 1 1 2 1 4 3 2 3
0 0 3 3 0 0 3 3 0 0 3 4 0 0 1 1
0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 1
1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 2
1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 1

So for instance, if there are pieces on the circled positions, the combined
value is

3 +2 3 +2 2 +2 3 +2 4 = 5

Since 5 6= 0, this position is a first-player win. The table shown above has a
fairly simple and repetitive pattern, which gives the general strategy for One
of the King’s Horses.

Now consider the variant All of the King’s Horses, in which you move
every piece on your turn, rather than selecting one. Note that once one of
the pieces reaches the top left corner of the board, the game is over, since you
are required to move all the pieces on your turn, and this becomes impossible
once one of the pieces reaches the home corner.

This game no longer corresponds to a sum, but instead to what Winning
Ways calls a join. Whereas a sum is recursively defined as

G+H = {GL +H,G+HL|GR +H,G+HR},

a join is defined recursively as

G ∧H = {GL ∧HL|GR ∧HR},

where G∗ and H∗ range over the options of G and H. In a join of two games,
you must move in both components on each turn.
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Just as sums of impartial games are governed by Sprague-Grundy num-
bers, joins of impartial games are governed by remoteness. If G is an impar-
tial game, its remoteness r(G) is defined recursively as follows:

• If G has no options, then r(G) is zero.

• If some option of G has even remoteness, then r(G) is one more than
the minimum r(G′) where G′ ranges over options of G such that r(G′)
is even.

• Otherwise, r(G) is one more than the maximum r(G′) for G′ an option
of r(G).

Note that r(G) is odd if and only if some option of G has even remoteness.
Consequently, a game is a second-player win if its remoteness number is
even, and a first-player win otherwise. The remoteness of a Nim heap with n
counters is 0 if n = 0, and 1 otherwise, since every Nim-heap after the zeroth
one has the zeroth one as an option.

The remoteness is roughly a measure of how quickly the winning player
can bring the game to an end, assuming that the losing player is trying to
draw out the game as long as possible.

Remoteness governs the outcome of joins of impartial games in the same
way that Sprague-Grundy numbers govern the outcome of sums:

Theorem 7.4.1. If G1, . . . , Gn are impartial games, then the join G1∧ · · · ∧
Gn is a second-player win if min(r(G1), . . . , r(Gn)) is even, and a first-player
win otherwise.

Proof. First of all note that if G is any nonzero impartial game, then r(G) =
r(G′)− 1 for some option G′ of G. Also, if r(G) is odd then some option of
G has even remoteness.

To prove the theorem, first consider the case where one of the Gi has no
options, so r(Gi) = 0. Then neither does the G1 ∧ · · · ∧ Gn. A game with
no options is a second-player win (because whoever goes first immediately
loses). And as expected, and min(r(G1), . . . , r(Gn)) = 0 which is even.

Now suppose that every Gi has an option. First consider the case where
min(r(G1), . . . , r(Gn)) is odd. Then for every i we can find an option G′i of
Gi, such that r(Gi) = r(G′i) + 1. In particular then,

min(r(G′1), . . . , r(G
′
n)) = min(r(G1), . . . , r(Gn)) is even,,
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so by induction G′1∧ · · · ∧G′n is a second-player win. Therefore G1∧ · · · ∧Gn

is a first-player win, as desired.
On the other hand, suppose that min(r(G1), . . . , r(Gn)) is even. Let

r(Gi) = min(r(G1), . . . , r(Gn)). Suppose for the sake of contradiction that
there is some optionG′1∧· · ·∧G′n ofG1∧· · ·∧Gn such that min(r(G′1), . . . , r(G

′
n))

is also even. Let r(G′j) = min(r(G′1), . . . , r(G
′
n)). Since r(G′j) is even, it fol-

lows that r(Gj) is odd and at most r(G′j) + 1. Then

r(Gi) = min(r(G1), . . . , r(Gn)) ≤ r(Gj) ≤ r(G′j) + 1, (7.1)

On the other hand, since r(Gi) is even, every option ofGi has odd remoteness,
and in particular r(G′i) is odd and at most r(Gi)− 1. Then

r(G′j) = min(r(G′1), . . . , r(G
′
n)) ≤ r(G′i) ≤ r(Gi)− 1.

Combining with (7.1), it follows that r(G′j) = r(Gi) − 1, contradicting the
fact that r(Gi) and r(G′j) are both even.

In fact, from this we can determine the remoteness of a join of two games:

Corollary 7.4.2. Let G and H be impartial games. Then r(G ∧ H) =
min(r(G), r(H)).

Proof. Let a0 = {|}, and an = {an−1|an−1} for n > 0. Then r(an) = n. Now
ifK is any impartial game, then r(K) is uniquely determined by the outcomes
of K ∧ an for every n. To see this, suppose that K1 and K2 have differing
remotenesses, specifically n = r(K1) < r(K2). Then min(r(K1), r(an+1)) =
min(n, n+ 1) = n, while r(K2) ≥ n+ 1, so that min(r(K2), r(an+1)) = n+ 1.
Since n and n + 1 have different parities, it follows by the theorem that
K1 ∧ an+1 and K2 ∧ an+1 have different outcomes.

Now let G and H be impartial games, and let n = min(r(G), r(H)). Then
for every k,

min(r(G), r(H), r(ak)) = min(r(an), r(ak)),

so that G∧H ∧ ak has the same outcome as an ∧ ak for all k. But then since
G∧H ∧ak = (G∧H)∧ak, it follows by the previous paragraph that (G∧H)
and an must have the same remoteness. But since the remoteness of an is n,
r(G ∧H) must also be n = min(r(G), r(H)).

Using these rules, we can evaluate a position of All the King’s Horses
using the following table showing the remoteness of each location:
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0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
1 1 1 1 3© 3 3 3 5 5 5 5 7 7 7 7
1 1 1 3 3 3© 3 5 5 5 5 7 7 7 7 9
2 2© 3 3 4 4 5 5 6© 6 7 7 8 8 9 9
2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
3 3 3 3 5 5 5 5 7 7 7 7 9 9 9 9
3 3 3 5 5 5 5 7 7 7 7 9 9 9 9 11
4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11
4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11
5 5 5 5 7 7 7 7 9 9 9 9 11 11 11 11
5 5 5 7 7 7 7 9 9 9 9 11 11 11 11 13
6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13
6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13
7 7 7 7 9 9 9 9 11 11 11 11 13 13 13 13
7 7 7 9 9 9 9 11 11 11 11 13 13 13 13 15

So for instance, if there are pieces on the circled positions, then the combined
remoteness is

min(3, 3, 2, 6) = 2,

and 2 is even, so the combined position is a win for the second-player.
The full partizan theory of joins isn’t much more complicated than the

impartial theory, because of the fact that play necessarily alternates in each
component (unlike in the theory of sums, where a player might make two
moves in a component without an intervening move by the opponent).

A third operation, analogous to sums and joins, is the union, defined
recursively as

G ∨H = {GL ∨H,GL ∨HL, G ∨HL|GR ∨H,GR ∨HR, G ∨HR}

In a union of two games, you can move in one or both components. More gen-
erally, in a union of n games, you can on your turn move in any (nonempty)
set of components. The corresponding variant of All the King’s Horses is
Some of the King’s Horses, in which you can move any positive number of
the horses, on each turn.

For impartial games, the theory of unions turns out to be trivial: a union
of two games is a second-player win if and only if both are second-player
wins themselves. If G and H are both second-player wins, then any move in
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G, H, or both, will result in at least one of G and H being replaced with a
first-player win - and by induction such a union is itself a first player win.
On the other hand, if at least one of G and H is a first-player win, then
the first player to move in G ∨ H can just move in whichever components
are not second-player wins, creating a position whose every component is a
second-player win.

So to analyze Some of the King’s Horses, we only need to mark whether
each position is a first-player win or a second-player win:

2 2 1 1 2 2 1 1
2 2 1 1 2 2 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
2 2 1 1 2 2 1 1
2 2 1 1 2 2 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

7.5 Highlights from Winning Ways Part 2

The entire second volume of Winning Ways is an exposition of alternate
theories to the standard partizan theory.

7.5.1 Unions of partizan games

In the partizan case, unions are much more interesting. Without proofs, here
is a summary of what happens, taken from Chapter 10 of Winning Ways :

• To each game, we associate an expression of the form xnym where x
and y are dyadic rationals and n and m are nonnegative integers. The
xn part is the “left tally” consisting of a “toll” of x and a “timer” n,
and similarly ym is the “right tally.” The expression x is short for x0x0.

• These expressions are added as follows:

xnym + wizj = (x+ w)max(n,i)(y + z)max(m,j).

• In a position with value xnym, if Left goes first then she wins iff x > 0
or x = 0 and n is odd. If Right goes first then he wins iff y < 0 or
y = 0 and m is odd.
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Given a game G = {GL|GR}, the tallies can be found by the following com-
plicated procedure, copied verbatim out of page 308 of Winning Ways :

To find the tallies from options:

Shortlist all the GL with the GREATEST RIGHT toll, and all
the GR with the LEAST LEFT toll. Then on each side select
the tally with the LARGEST EVEN timer if there is one, and
otherwise the LEAST ODD timer, obtaining the form

G = {. . . xa|yb . . .}.

• If x > y (HOT), the tallies are xa+1yb+1.

• If x < y (COLD), G is the simplest number between x and
y, including x as a possibility just if a is odd, y just if b is
odd.

• If x = y (TEPID), try xa+1yb+1. But if just one of a+ 1 and
b + 1 is an even number, increase the other (if necessary)
by just enough to make it a larger odd number. If both are
even, replace each of them by 0.

Here they are identifying a number z with tallies z0z0. If I understand Win-
ning Ways correctly, the cases where there are no left options or no right
options fall under the COLD case.

7.5.2 Loopy games

Another part of Winning Ways Volume 2 considers loopy games, which have
no guarantee of ever ending. The situation where play continues indefinitely
are draws, are ties by default. However, we actually allow games to specify
the winner of every infinite sequence of plays. Given a game γ, the variants
γ+ and γ− are the games formed by resolving all ties in favor of Left and
Right, respectively.

Sums of infinite games are defined in the usual way, though to specify the
winner, the following rules are used:

• If the sum of the games comes to an end, the winner is decided by the
normal rule, as usual.
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• Otherwise, if Left or Right wins every component in which play never
came to an end, then Left or Right wins the sum.

• Otherwise the game is a tie.

Given sums, we define equivalence by G = H if G+K and H +K have
the same outcome under perfect play for every loopy game K.

A stopper is a game which is guaranteed to end when played in isolation,
because it has no infinite alternating sequences of play, like

G→ GL → GLR → GLRL → GLRLR → · · ·

Finite stoppers have canonical forms in the same way that loopfree partizan
games do.

For most (but not all5) loopy games γ, there exist stoppers s and t such
that

γ+ = s+ and γ− = t−.

These games are called the onside and offside of γ respectively, and we write
γ = s&t to indicate this relationship. These stoppers can be found by the
operation of “sidling” described on pages 338-342 of Winning Ways. It is
always the case that s ≥ t. When γ is already a stopper, s and t can be
taken to be γ.

Given two games s&t and x&y, the sum (s&t) + (x&y) is u&v where u
is the upsum of s and x, while v is the downsum of t and y. The upsum of
two games is the onside of their sum, and the downsum is the offside of their
sum.

7.5.3 Misère games

Winning ways Chapter 13 “Survival in the Lost World” and On Numbers and
Games Chapter 12 “How to Lose when you Must” both consider the theory
of impartial misère games. These are exactly like normal impartial games,
except that we play by a different rule, the misère rule in which the last
player able to move loses. The theory turns out to be far more complicated
and lest satisfactory than the Sprague-Grundy theory for normal impartial
games. For games G and H, Conway says that G is like H if G + K and

5For some exceptional game γ, γ+ and γ− can not be taken to be stoppers, but this
does not happen for most of the situations considered in Winning Ways.
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H+K have the same misère outcome for all K, and then goes on to show that
every game G has a canonical simplest form, modulo this relation. However,
the reductions allowed are not very effective, in the sense that the number of
misère impartial games born on day n grows astronomically, like the sequence

dγ0e , d2γ0e ,
⌈
22γ0

⌉
,
⌈
222γ0

⌉
, . . .

for γ0 ≈ 0.149027 (see page 152 of ONAG). Conway is able to give more com-
plete analyses of certain “tame” games which behave similar to mis‘ere Nim
positions, and Winning Ways contains additional comments about games
that are almost tame but in general, the theory is very spotty. For example,
these results do not provide a complete analysis of Misère Kayles.

7.6 Misère Indistinguishability Quotients

However, a solution of Misère Kayles was obtained through other means by
William Sibert. Sibert found a complete description of the Kayles positions
for which misère outcome differs from normal outcome. His solution can be
found on page 446-451 of Winning Ways.

Let K be the set of all Kayles positions. We say that G and H ∈ K are
indistinguishable if G + X and H + X have the same misère outcome for
every X in K. If we let X range over all impartial games, this would be
the same as Conway’s relation G “is like” H. By limiting X to range over
only positions that occur in Kayles, the equivalence relation becomes coarser,
and the quotient space becomes smaller. In fact, using Sibert’s solution, one
can show that the quotient space has size 48. An alternate way of describing
Sibert’s solution is to give a description of this monoid, a table showing which
equivalence classes have which outcomes, and a table showing which element
of the monoid corresponds to a Kayles row of each possible length.

This sort of analysis has been extended to many other misère games by
Plambeck, Siegel, and others. For a given class of misère games, let G be the
closure of this class under addition. Then for X, Y ∈ G, we say that X and
Y are indistinguishable if X + Z and Y + Z have the same misère outcome
for all z ∈ G. We then let the indistinguishability quotient be G modulo
indistinguishability. The point of this construction is that

• The indistinguishablity quotient is a monoid, and there is a natural
surjective monoid homomorphism (the “pretending function”) from G
(as a monoid with addition) to the indistinguishability quotient.
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• There is a map from the indistinguishability quotient to the set of
outcomes, whose composition with the pretending function yields the
map from games to their outcomes.

Using these two maps, we can then analyze any sum of games in G, assuming
the structure of the indistinguishability quotient is manageable.

For many cases, like Kayles, the indistinguishability quotient is finite. In
fact Aaron Siegel has written software to calculate the indistinguishability
quotient when it is finite, for a large class of games. This seems to be the
best way to solve or analyze misère games so far.

7.7 Indistinguishability in General

The general setup of (additive) combinatorial game theory could be described
as follows: we have a collection of games, each of which has an outcome.
Additionally, we have various operations - ways of combining games. We
want to characterize each game with a simpler object, a value, satisfying two
conditions. First of all, the outcome of a game must be determined by the
value, and second, the value of a combination of games must be determined
by the values of the games being combined. The the value of a game contains
all the information about the game that we care about, and two games having
the same value can be considered equivalent.

Our goal is to make the set of values as simple and small as possible. We
first throw out values that correspond to no games, making the map from
games to values a surjection. Then the set of values becomes the quotient
space of games modulo equivalence. This quotient space will be smallest
when the equivalence relation is coarsest.

However, there are two requirements on the equivalence relation. First
of all, it needs to respect outcomes: if two games are equivalent, then they
must have the same outcome. And second, it must be compatible with the
operations on games, so that the operations are well-defined on the quotient
space.

Indistinguishability is the uniqe coarsest equivalence relation satisfying
these properties, and the indistinguishability quotient of games modulo in-
distinguishability is thus the smallest set of values that are usable. It thus
provides a canonical and optimal solution to the construction of the set of
“values.”
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The basic idea of indistinguishability is that two games should be in-
distinguishable if they are fully interchangeable, meaning that they can be
exchanged in any context within a larger combination of games, without
changing the outcome of the entire combination. For example if G and H
are two indistinguishable partizan games, then

• G and H must have the same outcome.

• 23 +G+ ↓ and 23 +H+ ↓ must have the same outcome.

• {17 ∗ |G, 6−G} and {17 ∗ |H, 6−H} must have the same outcome

• And so on. . .

Conversely, if G and H are not indistinguishable, then there must be some
context in which they cannot be interchanged.

The notion of indistinguishability is a relative one, that depends on the
class of games being considered, the map from games to outcomes, and the
set of operations being considered. Restricting the class of games makes in-
distinguishability coarser, which is how misère indistinguishability quotients
are able to solve games like Misère Kayles, even when we cannot classify
positions of Misère Kayles up to indistinguishability in the broader context
of all misère impartial games.

Similarly, adding new operations into the mix makes indistinguishability
finer. In the case of partizan games, by a lucky coincidence indistinguisha-
bility for the operation of addition alone is already compatible with negation
and game-construction, so adding in these other two operations does not
change indistinguishability. In other contexts this might not always work.

While never defined formally, the notion of indistinguishability is implicit
in every chapter of the second volume of Winning Ways. For example, one
can show that if our class of games is partizan games and our operation is
unions, then two games G and H are indistinguishable if and only if they
have the same tally. Similarly, if we are working with impartial games and
joins, then two games G and H are indistinguishable if and only if they
have the same remoteness (this follows by Theorem 7.7.3 below and what
was shown in the first paragraph of the proof of Corollary 7.4.2 above).
For misère impartial games, our indistinguishability agrees with the usual
definition used by Siegel and Plambeck, because of Theorem 7.7.3 below.
And for the standard theory of sums of partizan games, indistinguishability
will just be the standard notion of equality that we have used so far.

149



To formally define indistinguishability, we need some notation. Let S be a
set of “games,” O a set of “outcomes,” and o# : S → O a map which assigns
an outcome to each game. Let f1, . . . , fk be “operations” fi : Sni → S on
the set of games.

Theorem 7.7.1. There is a unique largest equivalence relation ∼ on S hav-
ing the following properties:

(a) If x ∼ y then o#(x) = o#(y).

(b) If 1 ≤ i ≤ k, and if x1, . . . , xni , y1, . . . , yni are games in S for which
xj ∼ yj for every 1 ≤ j ≤ ni, then fi(x1, . . . , xni) ∼ fi(y1, . . . , yni).

So if we have just one operation, say ⊕, then ∼ is the largest equivalence
relation such that

x1 ∼ y1 and x2 ∼ y2 =⇒ x1 ⊕ x2 ∼ y1 ⊕ y2,

and such that x ∼ y implies that x and y have the same outcome. These
conditions are equivalent to the claim that ⊕ and o#(·) are well-defined on
the quotient space of ∼.

Proof. For notational simplicity, we assume that there is only one f , and
that its arity is 2: f : S2 → S. The proof works the same for more general
situations.

Note that as long as∼ is an equivalence relation, (b) is logically equivalent
to the following assumptions

(c1) If x ∼ x′, then f(x, y) ∼ f(x′, y).

(c2) If y ∼ y′, then f(x, y) ∼ f(x, y′).

For if (b) is satisfied, then (c1) and (c2) both follow by reflexitivity of ∼. On
the other hand, given (c1) and (c2), x1 ∼ y1 and x2 ∼ y2 imply that

f(x1, y1) ∼ f(x2, y1) ∼ f(x2, y2),

using (c1) and (c2) for the first and second∼, so that by transitivity f(x1, y1) ∼
f(x2, y2). These proofs easily generalize to the case where there is more
than one f or higher arities, though we need to replace (c1) and (c2) with
n1+n2+· · ·+nk separate conditions, one for each parameter of each function.
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We show that there is a unique largest relation satisfying (a), (c1) and
(c2), and that it is an equivalence relation. This clearly implies our desired
result.

Let T be the class of all relations R satisfying

(A) If o#(x) 6= o#(y), then x R y.

(C1) If f(x, a) R f(y, a), then x R y.

(C2) If f(a, x) R f(a, y), then x R y.

It’s clear that R satisfies (A), (C1), and (C2) if an only if the complement of
R satisfies (a), (c1), and (c2). Moreover, there is a unique smallest element
6∼ of T , the intersection of all relations in T , and its complement is the
unique largest relation satisfying (a), (c1), and (c2). We need to show that
the complement ∼ of this minimal relation 6∼ is an equivalence relation.

First of all, the relation 6= also satisfies (A), (C1), (C2). By minimality
of 6∼, it follows that x 6∼ y =⇒ x 6= y, i.e., x = y =⇒ x ∼ y. So ∼ is
reflexive.

Second of all, if R is any relation in T , then the transpose relation R′

given by x R′ y ⇐⇒ y R x also satisfies (A), (C1), and (C2). Thus 6∼ must
lie inside its transpose: x 6∼ y =⇒ y 6∼ x, and therefore ∼ is symmetric.

Finally, to see that 6∼ is transitive, let R be the relation given by

x R z ⇐⇒ ∀y ∈ S : x 6∼ y ∨ y 6∼ z

where ∨ here means logical “or.” I claim that R ∈ T . Indeed

o#(x) 6= o#(z) =⇒ ∀y ∈ S : o#(x) 6= o#(y) ∨ o#(y) 6= o#(z)

=⇒ ∀y ∈ S : x 6∼ y ∨ y 6∼ z =⇒ x R z

so (A) is satisfied. Similarly, for (C1):

f(x, a) R f(z, a) =⇒ ∀y ∈ S : f(x, a) 6∼ y ∨ y 6∼ f(z, a)

=⇒ ∀y ∈ S : f(x, a) 6∼ f(y, a) ∨ f(y, a) 6∼ f(z, a) =⇒
∀y ∈ S : x 6∼ y ∨ y 6∼ z =⇒ x R z,

using the fact that 6∼ satisfies (C1). A similar argument shows that R satisfies
(C2). Then by minimality of 6∼, we see that x 6∼ y =⇒ x R y, i.e.,

x 6∼ z =⇒ ∀y ∈ S : x 6∼ y ∨ y 6∼ z

which simply means that ∼ is transitive.

151



Definition 7.7.2. Given a class of games and a list of operations on games,
we define indistinguishability (with respect to the given operations) to be the
equivalence relation from the previous theorem, and denote it as ≈f1,f2,...,fk .
The quotient space of S is the indistinguishability quotient.

In the case where there is a single binary operation, turning the class of
games into a commutative monoid, indistinguishability has a simple defini-
tion:

Theorem 7.7.3. Suppose that ⊗ : G×G→ G is commutative and associa-
tive and has an identity e. Then G,H ∈ S are indistinguishable (with respect
to ⊗) if and only if o#(G⊗X) = o#(G⊗X) for every X ∈ S.

Proof. Let ρ be the relation GρH iff o#(G ⊗ X) = o#(H ⊗ X) for every
X ∈ S. I first claim that ρ satisfies conditions (a) and (b) of Theorem 7.7.1.
For (a), note that

GρH ⇒ o#(G⊗ e) = o#(H ⊗ e).

But G ⊗ e = G and H ⊗ e = H, so GρH ⇒ o#(G) = o#(H). For (b),
suppose that GρG′ and H ρ,H ′. Then G ⊗ H ρG′ ⊗ H ′, because for any
X ∈ S,

o#((G⊗H)⊗X) = o#(G⊗ (H ⊗X)) = o#(G′ ⊗ (H ⊗X)) =

o#(H ⊗ (G′ ⊗X)) = o#(H ′ ⊗ (G′ ⊗X)) = o#((G′ ⊗H ′)⊗X).

It then follows that if ∼ is true indisinguishability, then ∼ must be coarser
than ρ, i.e., ρ ⊆ (∼). On the other hand, suppose that G and H are indis-
tinguishable, G ∼ H. Then for any X ∈ S we must have

G⊗X ∼ H ⊗X,

so that o#(G ⊗X) = o#(H ⊗X). Thus (∼) ⊆ ρ, and so ρ is true indistin-
guishability and we are done.

For the standard theory of sums of normal play partizan games, indistin-
guishability is just equality:

Theorem 7.7.4. In the class of partizan games with normal outcomes, in-
distinguishability with respect to addition is equality.
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Proof. By the previous theorem, G and H are indistinguishable if and only
if G + X and H + X have the same outcome for all X. Taking X ≡ −G,
we see that G + (−G) is a second player win (a zero game), and therefore
H + (−G) must also be a second player win. But this is the definition of
equality, so G = H.

Conversely, if G = H, then G+X and H +X are equal, and so have the
same outcome, for any X.

Note that this is indistinguishability for the operation of addition. We
could also throw the operations of negation and game-building ({· · · | · · · })
into the mix, but they would not change indistinguishability, because they
are already compatible with equality, by Theorem 3.3.6.

In the case where there is a poset structure on the class of outcomes
O, the indistinguishability quotient inherits a partial order, by the following
theorem:

Theorem 7.7.5. Suppose O has a partially ordered structure. Then there is
a maximum reflexive and transitive relation . on the set of games S such
that

• If G . H then o#(G) ≤ o#(H).

• For every i, if G1, . . . , Gni and H1, . . . , Hni are such that Gj . Hj for
every j, then fi(G1, . . . , Gni) . fi(H1, . . . , Hni).

Moreover, G . H and H . G if and only if G and H are indistinguishable.

For example, in the case of partizan games, the four outcomes are ar-
ranged into a poset as in Figure 7.14, and this partial order gives rise to the
≤ order on the class of games modulo equivalence.6

Proof. The proof is left as an exercise to the reader, though it seems like it is
probably completely analogous to the proof of Theorem 7.7.1. To show that
. ∩ & is ∼, use the fact that . ∩ & satisfies (a) and (b) of Theorem 7.7.1,
while ∼ satisfies (a) and (b) of this theorem.

In the case where we have a single commutative and associative operation
with identity, we have the following analog of Theorem 7.7.3:

6But note that throwing negation into the mix now breaks everything, because negation
is order-reversing! It’s probably possible to flag certain operations as being order-reversing,
and make everything work out right.
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Figure 7.14: From Left’s point of view, L is best, R is worst, and 1 and 2
are inbetween, and incomparable with each other. Here L denotes a win for
Left, R denotes a win for Right, 1 denotes a win for the first player, and 2
denotes a win for the second player.

Theorem 7.7.6. With the setup of the previous theorem, if ⊗ is the sole
operation, and ⊗ has an identity, then G . H if and only if o#(G ⊗ X) ≤
o#(H ⊗X) for all X.

The proof is left as an exercise to the reader.
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Part II

Well-tempered Scoring Games
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Chapter 8

Introduction

8.1 Boolean games

The combinatorial game theory discussed so far doesn’t seem very relevant
to the game To Knot or Not to Knot. The winner of TKONTK is
decided by neither the normal rule or the misère rule, but is instead specified
explicitly by the game. On one hand, TKONTK feels impartial, because at
each position, both players have identical options, but on the other hand,
the positions are clearly not symmetric between the two players - a position
can be a win for Ursula no matter who goes first, unlike any impartial game.
Moreover, our way of combining games is asymmetric, favoring King Lear in
the case where each player won a different component.

By the philosophy of indistinguishability, we should consider the class of
all positions in TKONTK, and the operation of connected sum, and should
determine the indistinguishability quotient. This enterprise is very compli-
cated, so we instead consider a larger class of games, with a combinatorial
definition, and apply the same methodology to them.

Definition 8.1.1. A Boolean game born on day n is

• One of the values True or False if n = 0.

• A pair (L,R) of two finite sets L and R of Boolean games born on day
n − 1, if n > 0. The elements of L and R are called the left options
and right options of (L,R).

We consider a game born on day 0 to have no options of either sort.
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The sum G ∨H of two Boolean games G and H born on days n and m
is the logical OR of G and H when n = m = 0, and is otherwise recursively
defined as

G ∨H = ({GL ∨H,G ∨HL}, {GR ∨H,G ∨HR}),

where GL ranges over the left options of G, and so on.
The left outcome of a Boolean game G is True if G =True, or some

right option of G has right outcome True. Otherwise, the left outcome of G
is False.

Similarly, the right outcome of a Boolean game G is False if G =False,
or some left option of G has left outcome False. Otherwise, the left outcome
of G is True.

In other words, a Boolean game is a game between two players that ends
with either Left = True winning, or Right = False winning. But we require
that all sequences of play have a prescribed length. In other words, if we
make a gametree, every leaf must be at the same depth:

This includes the case of TKONTK, because the length of a game of
TKONTK is a fixed number, namely the number of unresolved crossings
initially present.

The indistinguishability-quotient program can be carried out for Boolean
games, by brute force means. When I first tried to analyze these games, this
was the approach that I took. It turns out that there are exactly 37 types
of Boolean games, modulo indistinguishability. Since addition of Boolean
games is commutative and associative, the quotient space (of size 37) has a
monoid structure, and here is part of it, in my original notation:
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00 01− 01+ 11 02 12− 12+ 22

00 00 01− 01+ 11 02 12− 12+ 22
01− 01− 02 12− 12− 12+ 12+ 22 22
01+ 01+ 12− 12+ 12+ 12+ 22 22 22
11 11 12− 12+ 22 12+ 22 22 22
02 02 12+ 12+ 12+ 22 22 22 22
12− 12− 12+ 22 22 22 22 22 22
12+ 12+ 22 22 22 22 22 22 22
22 22 22 22 22 22 22 22 22

Figure 8.1: There is no clear rule governing this table, which is mostly verified
by a long case-by-case analysis. But compare with Figure 12.1 below!

Subsequently, I found a better way of describing Boolean games, by view-
ing them as part of a larger class of well-tempered scoring games. While the
end result takes longer to prove, it seems like it gives better insight into
what is actually happening. For instance, it helped me relate the analysis of
Boolean games to the standard theory of partizan games. We will return to
Boolean games in Chapter 12, and give a much cleaner explanation of the
mysterious 37 element monoid mentioned above.

8.2 Games with scores

A scoring game is one in which the winner is determined by a final score
rather than by the normal play rule or the misère rule. In a loose sense this
includes games like Go and Dots-and-Boxes. Such games can be added in the
usual way, by playing two in parallel. The final score of a sum is obtained
by adding the scores of the two summands. This is loosely how independent
positions in Go and Dots-and-Boxes are added together.

Scoring games were first studied by John Milnor in a 1953 paper “Sums
of Positional Games” in Contributions to the Theory of Games, which was
one of the earliest papers in unimpartial combinatorial game theory. Milnor’s
paper was followed in 1957 by Olof Hanner’s paper “Mean Play of Sums of
Positional Games,” which studied the mean values of games, well before the
later work of Conway, Guy, and Berlekamp.

The outcome of a scoring game is the final score under perfect play (Left
trying to maximize the score, Right trying to minimize the score). There are
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actually two outcomes, the left outcome and the right outcome, depending
on which player goes first. Milnor and Hanner only considered games in
which there was a non-negative incentive to move, in the sense that the left
outcome was always as great as the right outcome - so each player would
prefer to move rather than pass. This class of games forms a group modulo
indistinguishability, and is closely connected to the later theory of partizan
games.

Many years later, in the 1990’s, J. Mark Ettinger studied the broader
class of all scoring games, and tried to show that scoring games formed a
cancellative monoid. Ettinger refers to scoring games as “positional games,”
following Milnor and Hanner’s terminology. However, the term “positional
game” is now a standard synonym for maker-breaker games, like Tic-Tac-Toe
or Hex.1 Another name might be “Milnor game,” but Ettinger uses this to
refer to the restricted class of games studied by Milnor and Hanner, in which
there is a nonnegative incentive to move. So I will instead call the general
class of games “scoring games,” following Richard Nowakowski’s terminology
in his History of Combinatorial Game Theory.

To notationally separate scoring games from Conway’s partizan games,
we will use angle brackets rather than curly brackets to construct games. For
example

X = 〈0|4〉
is a game in which Left can move to 0 and Right can move to 4, with either
move ending the game. Similarly, Y = 〈X, 4|X, 0〉 is a game in which Left
can move to 4 and Right can move to 0 (with either move ending the game),
but either player can also move to X. To play X and Y together, we add
the final scores, resulting in

X + Y = 〈0 + Y,X +X,X + 4 | 4 + Y,X +X,X + 0〉 =

〈Y, 〈X | 4 +X〉, 4 +X | 4 + Y, 〈X | 4 +X〉, X〉,
where 4 +X = 〈4 | 8〉 and 4 + Y = 〈4 +X, 8 | 4 +X, 4〉.

Unlike the case of partizan games, we rule out games like

〈3 | 〉,
1These are games in which players take turns placing pieces of their own color on the

board, trying to make one of a prescribed list of configurations with their pieces. In Tic-
Tac-Toe, a player wins by having three pieces in a row. In Hex, a player wins by having
pieces in a connected path from one side of the board to the other.
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in which one player has options but the other does not. Without this prohi-
bition, we would need an ad hoc rule for deciding the final outcome of 〈3 | 〉 in
the case where Right goes first: perhaps Right passes and lets Left move to 3,
or perhaps Right gets a score of 0 or −∞. Rather than making an arbitrary
rule, we follow Milnor, Hanner, and Ettinger and exclude this possibility.

8.3 Fixed-length Scoring Games

Unfortunately I have no idea how to deal with scoring games in general.
However, a nice theory falls out if we restrict to fixed-length scoring games
- those in which the duration of the game from start to finish is the same
under all lines of play. The Boolean games defined in the previous section are
examples, if we identify False with 0, and True with 1. So in particular,
To Knot or Not to Knot is an example. But because its structure is
opaque and unplayable, we present a couple alternative examples, that also
demonstrate a wider range of final scores.

Mercenary Clobber is a variant of Clobber (see Section 2.2) in which play-
ers have two types of moves allowed. First, they can make the usual clobber-
ing move, moving one of their own pieces onto one of their opponent’s pieces.
But second, they can collect any piece which is part of an isolated group of
pieces - a connected group of pieces of a single color which is not connected
to any opposing pieces. Such isolated groups are no longer accessible to the
basic clobbering rule. So in the following position:
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the circled pieces are available for collection. Note that you can collect
your own pieces or your opponent’s. You get one point for each of your
opponent’s pieces you collect, and zero points for each of your own pieces.
Which player makes the last move is immaterial. Your goal is to maximize
your score (minus your opponent’s).

Each move in Mercenary Clobber reduces the number of pieces on the
board by one. Moreover, the game does not end until every piece has been
removed: as long as at least one piece remains on the board, there is either
an available clobbering move, or at least one isolated piece. Thus Mercenary
Clobber is an example of a fixed-length scoring game.

Scored Brussel Sprouts is a variant of the joke game Brussel Sprouts,
which is itself a variant of the pen-and-paper game Sprouts. A game of
Brussel Sprouts begins with a number of crosses:

Players take turns drawing lines which connect to of the loose ends. Every
time you draw a line, you make an additional cross in the middle of the line:

Play continues in alternation until there are no available moves. The first
player unable to move loses.
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The “joke” aspect of Brussel Sprouts is that the number of moves that
the game will last is completely predictable in advance, and therefore so is
the winner. In particular, the winner is not determined in any way by the
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actual decisions of the players. If a position starts with n crosses, it will last
exactly 5n − 2 moves. To see this, note first of all that the total number
of loose ends is invariant. Second, each move either creates a new “region”
or decreases the number of connected components by one (but not both).
In particular, regions − components increases by exactly one on each turn.
Moreover, it is impossible to make a region which has no loose ends inside of
it, so in the final position, each region must have exactly one loose end:

or else there would be more moves possible. Also, there must be exactly
one connected component, or else there would be a move connecting two of
them:

Figure 8.2: If two connected components remain, each will have a loose end on
its outside, so a move remains that can connect the two. A similar argument
works in the case where one connected component lies inside another.

So in the final position, regions − components = 4n − 1 because there
are 4n loose ends. But initially, there is only one region and n components,
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so regions − components = 1 − n. Therefore the total number of moves is
(4n− 1)− (1− n) = 5n− 2. So in particular, if n is odd, then 5n− 2 is odd,
so the first player to move will win, while if n is even, then 5n − 2 is even,
and so the second player will win.

To make Brussel Sprouts more interesting, we assign a final score based
on the regions that arise. We give Left one point for every triangLe, and
Right one point for every squaRe. We are counting a region as a “triangle”
or a “square” if it has 3 or 4 corners (not counting the ones by the loose end).

Figure 8.3: The number of “sides” of each region. Note that the outside
counts as a region, in this case a triangle.
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Figure 8.4: A scored version of Figure 8.3. There is one square and four
triangles, so Left wins by three points.

We call this variant Scored Brussel Sprouts. Note that the game is no
longer impartial, because we have introduced an asymmetry between the two
players in the scoring.

Both Mercenary Clobber and Scored Brussel Sprouts have a tendency to
decompose into independent positions whose scores are combined by addi-
tion:
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Figure 8.5: Each circled region is an independent subgame.

In Scored Brussel Sprouts, something more drastic happens: each indi-
vidual region becomes its own subgame. This makes the gamut of indecom-
posable positions smaller and more amenable to analysis.

Figure 8.6: A Scored Brussel Sprouts position is the sum of its individual
cells.

Because both Mercenary Clobber and Scored Brussel Sprouts decompose
into independent subpositions, they will be directly amenable to the theory
we develop. In contrast, To Knot or Not to Knot does not add scores,
but instead combines them by a maximum, or a Boolean OR. We will see in
Chapter 12 why it can still be analyzed by the theory of fixed-length scoring
games and addition.

For technical reasons we will actually consider a slightly larger class of
games than fixed-length games. We will study fixed-parity or well-tempered
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games, in which the parity of the game’s length is predetermined, rather than
its exact length. In other words, these are the games where we can say at
the outset which player will make the last move. While this class of games is
much larger, we will see below (Corollary 9.3.6) that every fixed-parity game
is equivalent to a fixed-length game, so that the resulting indistinguishability
quotients are identical. I cannot think of any natural examples of games
which are fixed-parity but not fixed-length, since it seems difficult to arrange
for the game’s length to vary but not its parity.

By restricting to well-tempered games, we are excluding strategic con-
cerns of getting the last move, and thus one might expect that the resulting
theory would be orthogonal to the standard theory of partizan games. How-
ever, it actually turns out to closely duplicate it, as we will see in Chapter 11.

There is one more technical restriction we make: we will only consider
games taking values in the integers. Milnor, Hanner, and Ettinger all con-
sidered games taking values in the full real numbers, but we will only allow
integers, mainly so that Chapter 11 works out. Most of the results we prove
will be equally valid for real-valued well-tempered games, and the full indis-
tinguishability quotient of real-valued well-tempered games can be described
in terms of integer-valued games using the results of Chapter 10. We leave
these generalizations as an exercise to the motivated reader.
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Chapter 9

Well-tempered Scoring Games

9.1 Definitions

We will focus on the following class of games:1

Definition 9.1.1. Let S ⊆ Z. Then an even-tempered S-valued game is
either an element of S or a pair 〈L |R〉 where L and R are finite nonempty
sets of odd-tempered S-valued games. An odd-tempered S-valued game is
a pair 〈L |R〉 where L and R are finite nonempty sets of even-tempered S-
valued games. A well-tempered S-valued game is an even-tempered S-valued
game or an odd-tempered S-valued game. The set of well-tempered S-valued
games is denotedWS . The subsets of even-tempered and odd-tempered games
are denoted W0

S and W1
S , respectively. If G = 〈L |R〉, then the elements of

L are called the left options of G, and the elements of R are called the right
options. If G = n for some n ∈ S, then we say that G has no left or right
options. In this case, we call G a number.

As usual, we omit the curly braces in 〈{L1, L2, . . .} | {R1, R2, . . .}〉, writing
it as 〈L1, L2, . . . |R1, R2, . . .〉 instead. We also adopt some of the same nota-
tional conventions from partizan theory, like letting 〈x||y|z〉 denote 〈x|〈y|z〉〉.
We also use ∗ and x∗ to denote 〈0|0〉 and 〈x|x〉.

1Our main goal will be determining the structure of this class of games, and the ap-
propriate notion of equivalence. Because of this, we will not use ≡ and = to stand for
identity and equivalence (indistinguishability). Instead, we will use = and ≈ respectively.
For comparison, Ettinger uses = and ≡ (respectively!), while Milnor uses = and ∼ in his
original paper.
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We will generally refer to well-tempered scoring games simply as “games”
or “Z-valued games” in what follows, and refer to the games of Conway’s
partizan game theory as “partizan games” when we need them.

We next define outcomes.

Definition 9.1.2. For G ∈ WS we define L(G) = R(G) = n if G = n ∈ S,
and otherwise, if G = 〈L1, L2, . . . |R1, R2, . . .〉, then we define

L(G) = max{R(L1),R(L2), . . .}

R(G) = min{L(R1),L(R2), . . .}.
For any G ∈ WS , L(G) is called the left outcome of G, R(G) is called the
right outcome of G, and the ordered pair (L(G),R(G)) is called the (full)
outcome of G, denoted o#(G).

The outcomes of a game G are just the final scores of the game when
Left and Right play first, and both players play perfectly. It is clear from
the definition that if G ∈ WS , then o#(G) ∈ S × S. We compare outcomes
of games using the obvious partial order on S ×S. So for example o#(G1) ≤
o#(G2) iff R(G1) ≤ R(G2) and L(G1) ≤ L(G2). In what follows, we will use
bounds like

L(GR) ≥ R(G) for all GR

without explanation.
We next define operations on games. For S, T ⊆ Z, we let S + T denote

{s+ t : s ∈ S, t ∈ T }, and −S denote {−s : s ∈ S}.

Definition 9.1.3. If G is an S-valued game, then its negative −G is the
(−S)-valued game defined recursively as −n if G = n ∈ S, and as

−G = 〈−R1,−R2, . . . | − L1,−L2, . . .〉

if G = 〈L1, L2, . . . |R1, R2, . . .〉.

Negation preserves parity: the negation of an even-tempered or odd-
tempered game is an even-tempered or odd-tempered game. Moreover, −(−G) =
G for any game G. It is also easy to check that L(−G) = −R(G) and
R(−G) = −L(G).

We next define the sum of two games, in which we play the two games in
parallel (like a sum of partizan games), and add together the final scores at
the end.
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Definition 9.1.4. If G is an S-valued game and H is a T -valued game, then
the sum G + H is defined in the usual way if G and H are both numbers,
and otherwise defined recursively as

G+H = 〈G+HL, GL +H |G+HR, GR +H〉 (9.1)

where GL and GR range over all left and right options of G, and HL and HR

range over all left and right options of H.

Note that (9.1) is used even when one of G and H is a number but the
other isn’t. For instance,

2 + 〈3|4〉 = 〈5|6〉.

In this sense, number avoidance is somehow built in to our theory.
It is easy to verify that 0 + G = G = G + 0 for any Z-valued game G,

and that addition is associative and commutative. Moreover, the sum of two
even-tempered games or two odd-tempered games is even-tempered, while
the sum of an even-tempered and an odd-tempered game is odd-tempered.
Another important fact which we’ll need later is the following:

Proposition 9.1.5. If G is a Z-valued game and n is a number, then

L(G+ n) = L(G) + n

and
R(G+ n) = R(G) + n.

Proof. Easily seen inductively from the definition. If G is a number, this
is obvious, and otherwise, if G = 〈L1, L2, . . . |R1, R2, . . .〉, then n has no
options, so

G+ n = 〈L1 + n, L2 + n, . . . |R1 + n,R2 + n, . . .〉.

Thus by induction

L(G+n) = max{R(L1+n),R(L2+n), . . .} = max{R(L1)+n,R(L2)+n, . . .} = L(G)+n,

and similarly R(G+ n) = R(G) + n.

We also define G−H in the usual way, as G+ (−H).
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9.2 Outcomes and Addition

In the theory of normal partizan games, G ≥ 0 and H ≥ 0 implied that
G + H ≥ 0, because Left could combine her strategies in the two games to
win in their sum. Similarly, for Z-valued games, we have the following:

Claim 9.2.1. If G and H are even-tempered Z-valued games, and R(G) ≥ 0
and R(H) ≥ 0, then R(G+H) ≥ 0.

Left combines her strategies in G and H. Whenever Right moves in ei-
ther component, Left responds in the same component, playing responsively.
Similarly, just as G B 0 and H ≥ 0 implied G + H B 0 for partizan games,
we have

Claim 9.2.2. If G,H are Z-valued games, with G odd-tempered and H even-
tempered, and L(G) ≥ 0 and R(H) ≥ 0, then L(G+H) ≥ 0.

Since G is odd-tempered (thus not a number) and L(G) ≥ 0, there must
be some left option GL with R(GL) ≥ 0. Then by the previous claim, R(GL+
H) ≥ 0. So moving first, Left can ensure a final score of at least zero, by
moving to GL +H.

Of course there is nothing special about the score 0. More generally, we
have

• If G and H are even-tempered, R(G) ≥ m and R(H) ≥ n, then R(G+
H) ≥ m+ n. In other words, R(G+H) ≥ R(G) + R(H).

• If G is odd-tempered, H is even-tempered, L(G) ≥ m, and R(H) ≥ n,
then L(G+H) ≥ m+ n. In other words, L(G+H) ≥ L(G) + R(H).

We state these results in a theorem, and give formal inductive proofs:

Theorem 9.2.3. Let G and H be Z-valued games. If G and H are both
even-tempered, then

R(G+H) ≥ R(G) + R(H) (9.2)

Likewise, if G is odd-tempered and H is even-tempered, then

L(G+H) ≥ L(G) + R(H) (9.3)
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Proof. Proceed by induction on the complexity of G and H. If G and H
are both even-tempered, then (9.2) follows from Proposition 9.1.5 whenever
G or H is a number, so suppose both are not numbers. Then every right-
option of G + H is either of the form GR + H or G + HR. Since GR is
odd-tempered, by induction (9.3) tells us that L(GR +H) ≥ L(GR) + R(H).
Clearly L(GR) + R(H) ≥ R(G) + R(H), because R(G) is the minimum value
of L(GR). So L(GR+H) is always at least R(G)+R(H). Similarly, L(G+HR)
is always at least R(G) + R(H). So every right option of G + H has left-
outcome at least R(G) + R(H), and so the best right can do with G + H is
R(G) + R(H), proving (9.2).

If G is odd-tempered and H is even-tempered, then G is not a number so
there is some left option GL with L(G) = R(GR). Then by induction, (9.2)
gives

R(GR +H) ≥ R(GR) + R(H) = L(G) + R(H).

But clearly L(G+H) ≥ R(GR +H), so we are done.

Similarly we have

Theorem 9.2.4. Let G and H be Z-valued games. If G and H are both
even-tempered, then

L(G+H) ≤ L(G) + L(H) (9.4)

Likewise, if G is odd-tempered and H is even-tempered, then

R(G+H) ≤ R(G) + L(H) (9.5)

Another key fact in the case of partizan games was that G + (−G) ≥ 0.
Here we have the analogous fact that

Theorem 9.2.5. If G is a Z-valued game (of either parity), then

R(G+ (−G)) ≥ 0 (9.6)

L(G+ (−G)) ≤ 0 (9.7)

Proof. Consider the game G + (−G). When Right goes first, Left has an
obvious Tweedledum and Tweedledee Strategy mirroring moves in the two
components, which guarantees a score of exactly zero. This play may not
be optimal, but it at least shows that R(G + (−G)) ≥ 0. The other case is
similar.
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Unfortunately, some of the results above are contingent on parity. With-
out the conditions on parity, equations (9.2-9.5) would fail. For example,
if G is the even-tempered game 〈−1| − 1||1|1〉 = 〈〈−1| − 1〉|〈1|1〉〉 and H
is the odd-tempered game 〈G |G〉, then the reader can easily check that
R(G) = 1, R(H) = −1, but R(G + H) = −2 (Right moves from H to G),
and −2 6≥ 1 + (−1), so that (9.2) fails. The problem here is that since H is
odd-tempered, Right can end up making the last move in H, and then Left
is forced to move in G, breaking her strategy of only playing responsively.

To amend this situation, we consider a restricted class of games, in which
being forced to unexpectedly move is not harmful.

Definition 9.2.6. An i-game is a Z-valued game G which has the property
that every option is an i-game, and if G is even-tempered, then L(G) ≥ R(G).

So for instance, numbers are always i-games, ∗ and 1∗ and even 〈−1|1〉 are
i-games, but the game G = 〈−1 + ∗ | 1 + ∗〉 mentioned above is not, because
it is even-tempered and L(G) = −1 < 1 = R(G). It may seem arbitrary that
we only require L(G) ≥ R(G) when G is even-tempered, but later we will
see that this definition is more natural than it might first appear.

Now we can extend Claim 9.2.1 to the following:

Claim 9.2.7. If G and H are Z-valued games, G is even-tempered and an i-
game, H is odd-tempered, and R(G) ≥ 0 and R(H) ≥ 0, then R(G+H) ≥ 0.

In this case, Left is again able to play responsively in each component, but
in the situation where Right makes the final move in the second component,
Left is able to leverage the fact that the first component’s left-outcome is at
least its right-outcome, because the first component will be an even-tempered
i-game. And similarly, we also have

Claim 9.2.8. If G and H are odd-tempered Z-valued games, G is an i-game,
L(G) ≥ 0 and R(H) ≥ 0, then L(G + H) ≥ 0. If G and H are even-
tempered Z-valued games, G is an i-game, R(G) ≥ 0 and L(H) ≥ 0, then
L(G+H) ≥ 0.

As before, these results can be generalized to the following:

Theorem 9.2.9. Let G and H be Z-valued games, and G an i-game.

• If G is even-tempered and H is odd-tempered, then

R(G+H) ≥ R(G) + R(H) (9.8)
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• If G and H are both odd-tempered, then

L(G+H) ≥ L(G) + R(H) (9.9)

• If G and H are both even-tempered, then

L(G+H) ≥ R(G) + L(H) (9.10)

Proof. We proceed by induction on G and H. If G or H is a number, then
every equation follows from Proposition 9.1.5 and the stipulation that L(G) ≥
R(G) if G is even-tempered. So suppose that G and H are both not numbers.

To see (9.8), note that every right option of G + H is either of the form
GR+H or G+HR. Since L(GR) ≥ R(G) and GR is an odd-tempered i-game,
(9.9) tells us inductively that

L(GR +H) ≥ L(GR) + R(H) ≥ R(G) + R(H).

And likewise since L(HR) ≥ R(H) and HR is even-tempered, (9.10) tells us
inductively that

L(G+HR) ≥ R(G) + L(HR) ≥ R(G) + R(H).

So no matter how Right moves in G + H, he produces a position with left-
outcome at least R(G) + R(H). This establishes (9.8).

Equations (9.9 - 9.10) can easily be seen by having Left make an optimal
move in G or H, respectively, and using (9.8) inductively. I leave the details
to the reader.

Similarly we have

Theorem 9.2.10. Let G and H be Z-valued games, and G an i-game.

• If G is even-tempered and H is odd-tempered, then

L(G+H) ≤ L(G) + L(H) (9.11)

• If G and H are both odd-tempered, then

R(G+H) ≤ R(G) + L(H) (9.12)
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• If G and H are both even-tempered, then

R(G+H) ≤ L(G) + R(H) (9.13)

As an application of this pile of inequalities, we prove some useful results
about i-games.

Theorem 9.2.11. If G and H are i-games, then −G and G+H are i-games.

Proof. Negation is easy, and left to the reader as an exercise. We show G+H
is an i-game inductively. For the base case, G and H are both numbers, so
G+H is one too, and is therefore an i-game. Otherwise, by induction, every
option of G+H is an i-game, so it remains to show that L(G+H) ≥ R(G+H)
if G + H is even-tempered. In this case G and H have the same parity. If
both are even-tempered, then by equations (9.10) and (9.13), we have

R(G+H) ≤ L(G) + R(H) ≤ L(G+H),

and if both are odd-tempered the same follows by equations (9.9) and (9.12)
instead.

Theorem 9.2.12. If G is an i-game, then G+ (−G) is an i-game and

L(G+ (−G)) = R(G+ (−G)) = 0.

Proof. We know in general, by equations (9.6-9.7), that

L(G+ (−G)) ≤ 0 ≤ R(G+ (−G)).

By the previous theorem we know that G + (−G) is an i-game, and it is
clearly even-tempered, so

L(G+ (−G)) ≥ R(G+ (−G))

and we are done.

Theorem 9.2.13. If G is an even-tempered i-game, and R(G) ≥ 0, then for
any X ∈ WZ, we have o#(G+X) ≥ o#(X).
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Proof. If X is even-tempered, then by Equation (9.2),

R(X) ≤ R(G) + R(X) ≤ R(G+X),

and by Equation (9.10) we have

L(X) ≤ R(G) + L(X) ≤ L(G+X).

If X is odd-tempered, then by Equation (9.8),

R(X) ≤ R(G) + R(X) ≤ R(G+X),

and by Equation (9.3) we have

L(X) ≤ R(G) + L(X) ≤ L(G+X).

Theorem 9.2.14. If G is an even-tempered i-game, and L(G) ≤ 0, the for
any X ∈ WZ, we have o#(G+X) ≤ o#(X).

Proof. Analogous to Theorem 9.2.13.

Theorem 9.2.15. If G is an even-tempered i-game, and L(G) = R(G) = 0,
then for any X ∈ WZ, we have o#(G+X) = o#(X).

Proof. Combine Theorems 9.2.13 and 9.2.14.

This last result suggests that if G is an even-tempered i-game with van-
ishing outcomes, then G behaves very much like 0. Let us investigate this
indistinguishability further. . .

9.3 Partial orders on integer-valued games

Definition 9.3.1. If G1, G2 ∈ WZ, then we say that G1 and G2 are equiva-
lent, denoted G1 ≈ G2, iff o#(G1 + X) = o#(G2 + X) for all X ∈ WZ. We
also define a preorder on WZ by G1 . G2 iff o#(G1 +X) ≤ o#(G2 +X) for
all X ∈ WZ.
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So in particular, G1 ≈ G2 iff G1 & G2 and G1 . G2. Taking X = 0 in
the definitions, we see that G1 ≈ G2 implies o#(G1) = o#(G2), and similarly,
G1 & G2 implies that o#(G1) ≥ o#(G2). It is straightforward to see that ≈
is indeed an equivalence relation, and a congruence with respect to addition
and negation, so that the quotient space WZ/ ≈ retains its commutative
monoid structure. If two games G1 and G2 are equivalent, then they are
interchangeable in all context involving addition. Later we’ll see that they’re
interchangeable in all contexts made of weakly-order preserving functions.
Our main goal is to understand the quotient space WZ/ ≈.

We restate the results at the end of last section in terms of ≈ and its
quotient space:

Corollary 9.3.2. If G is an even-tempered i-game, then G . 0 iff L(G) ≤ 0,
G & 0 iff R(G) ≥ 0, and G ≈ 0 iff L(G) = R(G) = 0. Also, if G is any
i-game, then G + (−G) ≈ 0, so every i-game is invertible modulo ≈ with
inverse given by negation.

Proof. Theorems 9.2.13, 9.2.14, and 9.2.15 give the implications in the di-
rection ⇐. For the reverse directions, note that if G . 0, then by definition
L(G + 0) ≤ L(0 + 0) = 0. And similarly G & 0 implies R(G) ≥ 0, and
G ≈ 0 implies o#(G) = o#(0). For the last claim, note that by Theo-
rem 9.2.12, G + (−G) has vanishing outcomes, so by what has just been
shown G+ (−G) ≈ 0.

Note that this gives us a test for ≈ and . between i-games: G . H iff
G + (−H) . H + (−H) ≈ 0, iff L(G + (−H)) ≤ 0. Here we have used the
fact that G . H implies G + X . H + X, which is easy to see from the
definition. And if X is invertible, then the implication holds in the other
direction.

Also, by combining Corollary 9.3.2, and Theorem 9.2.11, we see that
i-games modulo ≈ are an abelian group, partially ordered by ..

We next show that even-tempered and odd-tempered games are never
comparable.

Theorem 9.3.3. If G1, G2 ∈ WZ but G1 is odd-tempered and G2 is even-
tempered, then G1 and G2 are incomparable with respect to the & preorder.
Thus no two games of differing parity are equivalent.

Proof. Since we are only considering finite games, there is some N ∈ Z
such that N is greater in magnitude than all numbers occuring within G1

177



and G2. Since 〈−N |N〉 ∈ WZ, it suffices to show that L(G1 + 〈−N |N〉) is
positive while L(G2 + 〈−N |N〉) is negative. In both sums, G1 + 〈−N |N〉
and G2 + 〈−N |N〉, N is so large that no player will move in 〈−N |N〉 unless
they have no other alternative. Moreover, the final score will be positive iff
Right had to move in this component, and negative iff Left had to move in
this component, because N is so large that it dwarves the score of the other
component. Consequently, we can assume that the last move of the game
will be in the 〈−N |N〉 component. Since G1 + 〈−N |N〉 is even-tempered,
Right will make the final move if Left goes first, so L(G1 + 〈−N |N〉) > 0.
But on the other hand, G2 + 〈−N |N〉 is odd-tempered, so Left will make the
final move if Left goes first, and therefore L(G2 + 〈−N |N〉) < 0, so we are
done.

Thus WZ/ ≈ is naturally the disjoint union of its even-tempered and
odd-tempered components: W0

Z/ ≈ and W1
Z/ ≈.

Although they are incomparable with each other, W0
Z and W1

Z are very
closely related, as the next results show:

Theorem 9.3.4. Let ∗ be 〈0|0〉. If G ∈ WZ, then G+ ∗+ ∗ ≈ G. The map
G → G + ∗ establishes an involution on WZ/ ≈ interchanging W0

Z/ ≈ and
W1

Z/ ≈. In fact, as a commutative monoid, WZ is isomorphic to the direct
product of the cyclic group Z2 and the submonoid W0

Z/ ≈.

Proof. It’s clear that ∗ is an i-game, and it is its own negative, so that
∗+∗ ≈ 0. Therefore G+∗+∗ ≈ G for any G. Because ≈ is a congruence with
respect to addition, G→ G+∗ is a well-defined map onWZ/ ≈. Because ∗ is
odd-tempered, this map will certainly interchange even-tempered and odd-
tempered games. It is an involution by the first claim. Then, since every
G ∈ WZ/ ≈ is of the form H or H + ∗, and since ∗+ ∗ = 0 + ∗+ ∗ = 0, the
desired direct sum decomposition follows.

As a corollary, we see that every fixed-parity (well-tempered) game is
equivalent to a fixed-length game:

Definition 9.3.5. Let G be a well-tempered scoring game. Then G has
length 0 if G is a number, and has length n + 1 if every option of G has
length 0. A well-tempered game is fixed-length if it has length n for any n.

It is easy to see by induction that if G and H have lengths n and m, then
G+H has length n+m.
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Corollary 9.3.6. Every well-tempered game G is equivalent (≈) to a fixed-
length game.

Proof. We prove the following claims by induction on G:

• If G is even-tempered, then for all large enough even n, G ≈ H for
some game H of length n.

• If G is odd-tempered, then for all large enough odd n, G ≈ H for some
game H of length n.

If G is a number, then G is even-tempered. By definition, G already has
length 0. On the other hand, ∗ has length 1, so G + ∗ + ∗ has length 2,
G + ∗ + ∗ + ∗ + ∗ has length 4, and so on. By Theorem 9.3.4, these games
are all equivalent to G. This establishes the base case.

For the inductive step, suppose that G = 〈A,B,C, . . . |D,E, F, . . .〉. If
G is even-tempered, then A,B,C, . . . , D,E, F, . . . are all odd-tempered. By
induction, we can find length n− 1 games A′, B′, . . . with

A ≈ A′,

B ≈ B′,

and so on, for all large enough even n. By Theorem 9.4.4 below, we then
have

G = 〈A,B,C, . . . |D,E, F, . . .〉 ≈ 〈A′, B′, C ′, . . . |D′, E ′, F ′, . . .〉,

where H = 〈A′, B′, C ′, . . . |D′, E ′, F ′, . . .〉 has length n. So G is equivalent
to a game of length n, for large enough even n. The case where G is odd-
tempered is handled in a completely analogous way.

Because of this corollary, the indistinguishability quotient of well-tempered
games is the same as the indistinguishability quotient of fixed-length games.

Unfortunately our definition of ≈ is difficult to use in practice, between
non-i-games, since we have to check all X ∈ WZ. Perhaps we can come up
with a better equivalent definition?
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9.4 Who goes last?

The outcome of a partizan game or a Z-valued game depends on which player
goes first. However, since our Z-valued games are fixed-parity games, saying
who goes first is the same as saying who goes last. We might as well consider
the following:

Definition 9.4.1. The left-final outcome Lf(G) of a S-valued game G is the
outcome of G when Left makes the final move, and the right-final outcome
Rf(G) is the outcome when Right makes the final move. In other words, if
G is odd-tempered (whoever goes first also goes last), then

Lf(G) = L(G)

Rf(G) = R(G)

while if G is even-tempered, then

Lf(G) = R(G)

Rf(G) = L(G).

This may seem arbitrary, but it turns out to be the key to understanding
well-tempered scoring games. We will see in Section 9.5 that a Z-valued game
is schizophrenic in nature, acting as one of two different i-games depending
on which player will make the final move. With this in mind, we make the
following definitions:

Definition 9.4.2. (Left’s partial order) If G and H are two Z-valued games
of the same parity, we define G .+ H if Lf(G + X) ≤ Lf(H + X) for all
X ∈ WZ, and G ≈+ H if Lf(G+X) = Lf(H +X) for all X ∈ WZ.

Definition 9.4.3. (Right’s partial order) If G and H are two Z-valued games
of the same parity, we define G .− H if Rf(G + X) ≤ Rf(H + X) for all
X ∈ WZ, and G ≈− H if Rf(G+X) = Rf(H +X) for all X ∈ WZ.

It is clear that .± are preorders and ≈± are equivalence relations, and
that G . H iff G .+ H and G .− H, and that G ≈ H iff G ≈+ H and
G ≈− H, in light of Theorem 9.3.3. Also, ≈± are still congruences with
respect to addition (though not negation), i.e., if G ≈+ G′ and H ≈+ H ′,
then G+H ≈+ G′ +H ′.

All three equivalence relations are also congruences with respect to the
operation of game formation. In fact, we have
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Theorem 9.4.4. Let � be one of ≈, ≈+, ≈−, ., .+, .−, &, &−, or &+.
Suppose that L1 � L′1, L2 � L′2, . . . , R1 � R′1, R2 �R′2, . . . . Then

〈L1, L2, . . . | R1, R2, . . .〉 � 〈L′1, L′2, . . . | R′1, R′2, . . .〉.

Proof. All have obvious inductive proofs. For example, suppose � is .−.
Let G = 〈L1, L2, . . . | R1, R2, . . .〉 and H = 〈L′1, L′2, . . . | R′1, R′2, . . .〉. Then
for any X ∈ WZ, if G+X is even-tempered then

Lf(G+X) = min{Lf(GR+X),Lf(G+XR)} ≤ min{Lf(HR+X),Lf(H+XR)},

where the inequality follows by induction, and if G + X is odd-tempered,
then

Lf(G+X) = max{Lf(GL+X),Lf(G+XL)} ≤ max{Lf(HL+X),Lf(H+XL)}.

Note that the induction is on G, H, and X all together.

The next four lemmas are key:

Lemma 9.4.5. If G,H ∈ WZ and H is an i-game, then G . H ⇐⇒ G .+

H.

Proof. The direction ⇒ is obvious. So suppose that G .+ H. Since H is
invertible modulo ≈ and therefore ≈+, assume without loss of generality that
H is zero. In this case, we are given that G is even-tempered and Lf(G+X) ≤
Lf(X) for every X ∈ WZ, and we want to show Rf(G+X) ≤ Rf(X) for every
X ∈ WZ. Taking X = −G, we see by Equation (9.6) above that

0 ≤ R(G+ (−G)) = Lf(G+X) ≤ Lf(−G) = −Rf(G) = −L(G),

so that
L(G) ≤ 0.

Now let X be arbitrary. If X is even-tempered, then by Equation (9.4)

Rf(G+X) = L(G+X) ≤ L(G) + L(X) ≤ L(X) = Rf(X).

Otherwise, by Equation (9.5)

Rf(G+X) = R(G+X) ≤ L(G) + R(X) ≤ R(X) = Rf(X).
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Lemma 9.4.6. If G,H ∈ WZ and G is an i-game, then G . H ⇐⇒ G .−
H.

Proof. Analogous to the previous lemma.

Proposition 9.4.7. If G and H are i-games, then G . H ⇐⇒ G .−
H ⇐⇒ G .+ H.

Proof. Follows directly from the preceding two lemmas.

With Corollary 9.3.2, this gives us a way of testing .± between i-games,
but it doesn’t seem to help us compute . for arbitrary games!

Lemma 9.4.8. If G is an even-tempered Z-valued game, and n is an integer,
then G .− n iff L(G) ≤ n. Similarly, n .+ G iff R(G) ≥ n.

Proof. First, note that if G .− n, then certainly L(G) = Rf(G + 0) ≤
Rf(n + 0) = n. Conversely, suppose that L(G) ≤ n. Let X be arbitrary. If
X is even-tempered then by Proposition 9.1.5 and Equation (9.4),

Rf(G+X) = L(G+X) ≤ L(G) + L(X) ≤ n+ L(X) = Rf(n+X).

If X is odd-tempered, we use Equation (9.5) instead:

Rf(G+X) = R(G+X) ≤ L(G) + R(X) ≤ n+ R(X) = Rf(n+X).

So for every X, Rf(G+X) ≤ Rf(n+X) and we have shown the first sentence.
The second is proven analogously.

Lemma 9.4.9. Let G be an even-tempered game, whose options are all i-
games. If L(G) ≤ R(G), then G ≈− L(G) and G ≈+ R(G).

Proof. We show G ≈− L(G), because the other result follows by symmetry.
Let n = L(G). Now since L(G) ≤ n, we have G .− n by the preceding
lemma, so it remains to show that n =.− G. If G is a number, it must be
n, and we are done. Otherwise, by definition of L, it must be the case that
every GL satisfies R(GL) ≤ n.

Let X be an arbitrary game. We show by induction on X that n +
Rf(X) ≤ Rf(G+X). (This suffices because n+ Rf(X) = Rf(n+X).) If X
is even-tempered, then we need to show

n+ L(X) ≤ L(G+X).
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This is obvious if X is a number (since then L(G + X) = L(G) + L(X)), so
suppose X is not a number. Then there is some left option XL of X with
L(X) = R(XL), and by the inductive hypothesis applied to XL,

n+ L(X) = n+ R(XL) ≤ R(G+XL) ≤ L(G+X),

where the last inequality follows because G+XL is a left option in G+X.
Alternatively, if X is odd-tempered, we need to show that

n+ R(X) ≤ R(G+X).

We show that every right option of G+X has left outcome at least n+R(X).
The first kind of right option is of the form GR+X. By assumption, L(GR) ≥
R(G) ≥ L(G) = n, and GR is an odd-tempered i-game, so by Equation (9.9)

L(GR +X) ≥ L(GR) + R(X) ≥ n+ R(X).

The second kind of right option is of the form G + XR. By induction we
know that

n+ R(X) ≤ n+ L(XR) ≤ L(G+XR),

So every right option of G + X has left outcome at least n + R(X), and we
are done.

9.5 Sides

We now put everything together.

Theorem 9.5.1. If G is any Z-valued game, then there exist i-games G−

and G+ such that G ≈− G− and G ≈+ G+, These games are unique, modulo
≈.

Proof. We prove that G+ exists, by induction on G. If G is a number, this
is obvious, taking G+ = G. Otherwise, let G = 〈L1, L2, . . . |R1, R2, . . .〉. By
induction, L+

i and R+
i exist. Consider the game

H = 〈L+
1 , L

+
2 , . . . |R+

1 , R
+
2 , . . .〉.

By the inductive assumptions and Theorem 9.4.4, we clearly have H ≈+ G.
However, H might not be an i-game. This can only happen if G and H are
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even-tempered, and L(H) < R(H). In this case, by Lemma 9.4.9, R(H) ≈+

H ≈+ G, and R(H) is a number, so take G+ = R(H).
A similar argument shows that G− exists. Uniqueness follows by Propo-

sition 9.4.7.

The games G+ and G− in the theorem are called the upside and downside
of G, respectively, because they have formal similarities with the “onside”
and “offside” of loopy partizan game theory. An algorithm for producing the
upside and downside can be extracted from the proof of the theorem.

Here are the key facts about these games

Theorem 9.5.2.

(a) If G and H are Z-valued games, then G .− H iff G− . H−, and
G .+ H iff G+ . H+.

(b) If G is an i-game, then G+ ≈ G− ≈ G.

(c) If G is a Z-valued game, then (−G)− ≈ −(G+) and (−G)+ ≈ −(G−).

(d) If G and H are Z-valued games,then (G + H)+ ≈ G+ + H+ and (G +
H)− ≈ G− +H−.

(e) For any G, G− . G . G+.

(f) For any G, G is invertible modulo ≈ iff it is equivalent to an i-game, iff
G+ ≈ G−. When G has an inverse, it is given by −G.

(g) If S ⊂ Z and G is an S-valued game, then G+ and G− can be taken to
be S-valued games too.

(h) If G is even-tempered, then L(G) = L(G−), and this is the smallest n
such that G− . n. Similarly, R(G) = R(G+), and this is the biggest n
such that n . G+.

(i) If G is odd-tempered, then L(G) = L(G+) and R(G) = R(G−).

Proof.

(a) Since G− ≈− G and H− ≈− H, it’s clear that G− .− H− iff G .− H.
But by Proposition 9.4.7, G− .− H− ⇐⇒ G− . H−, because G−

and H− are i-games. The other case is handled similarly.
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(b) By definition, G− ≈− G. But since both are i-games, Proposition 9.4.7
implies that G− ≈ G. The other case is handled similarly.

(c) Obvious by symmetry. This can be proven by noting that A ≈− B iff
(−A) ≈+ (−B).

(d) Note that since ≈+ is a congruence with respect to addition, we have

(G+H)+ ≈+ (G+H) ≈+ G+ +H+.

But since i-games are closed under addition (Theorem 9.2.11), G++H+

is an i-game, and since (G + H)+ is too, Proposition 9.4.7 shows that
(G+H)+ ≈ G+ +H+. The other case is handled similarly.

(e) By definition G ≈+ G+, so G .+ G+. But G+ is an i-game, so by
Lemma 9.4.5, G . G+. The other case is handled similarly.

(f) We already showed in part (b) that if G is an i-game, then G+ ≈ G−.
Conversely, if G+ ≈ G−, then G ≈+ G+ and G ≈− G− ≈ G+, so
G ≈± G+, so G is equivalent to the i-game G+. Moreover, we showed
in Corollary 9.3.2 that i-games are invertible. Conversely, suppose that
G is invertible. Define the deficit def(G) to be the i-game G+ − G−.
This is an even-tempered i-game. By part (e), def(G) & 0, and by part
(d), def(G + H) ≈ def(G) + def(H). By part (b), def(G) ≈ 0 when
G is an i-game. Now suppose that G is invertible, and G + H ≈ 0.
Then def(G+H) ≈ def(G)+def(H) ≈ 0. Since i-games are a partially
ordered abelian group, it follows that 0 . def(G) ≈ − def(H) . 0, so
that def(G) ≈ 0, or in other words, G+ ≈ G−. This then implies that
G is equivalent to an i-game.

If G has an inverse, then G is equivalent to an i-game, so the inverse
of G is −G, by Corollary 9.3.2.

(g) This is clear from the construction of G+ and G− given in Theorem 9.5.1.
At some points, we replace a game by one of its outcomes. However,
the outcome of an S-valued game is always in S, so this doesn’t create
any new outcomes.

(h) Since G− ≈− G, it follows that L(G−) = Rf(G−) = Rf(G) = L(G).
Then by Lemma 9.4.8, L(G) is the smallest n such that G .− n, which
by part (a) is the smallest n such that G− . n. The other case is
handled similarly.
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(i) Since G+ ≈+ G, it follows that L(G+) = Lf(G+) = Lf(G) = L(G). The
other case is handled similarly.

Borrowing notation from loopy partizan theory, we use A&B to denote
a well-tempered game that has A as its upside and B as its downside. By
Theorem 9.5.2(a), A&B is well-defined modulo ≈, as long as it exists: if
G+ ≈ H+ and G− ≈ H−, then G ≈+ H and G ≈− H, so G ≈ H. So the
elements ofWZ/ ≈ correspond to certain pairs A&B of i-games, with A & B.
In fact, all such pairs A&B with A & B occur.

Theorem 9.5.3. If A & B are i-games, then there is some game G with
G+ ≈ A and G− ≈ B. Moreover, if A and B are both S-valued games for
some S ⊂ Z, then G can also be taken to be S-valued.

This will be proven below, in Chapter 10 Theorem 10.3.5.
A generic well-tempered game G acts like its upside G+ when Left is

going to move last, and like its downside G− when Right is going to move
last. The two sides act fairly independently. For example, we have

A&B + C&D ≈ (A+ C)&(B +D)

by Theorem 9.5.2(d), and

〈A&B,C&D, . . . |E&F, . . .〉 = 〈A,C, . . . |E, . . .〉&〈B,D, . . . |F, . . .〉

by Theorem 9.4.4 (applied to ≈±).

9.6 A summary of results so far

Let’s review what we’ve done so far.
For every set of integers S, we constructed a class WS of (well-tempered)

S-valued games. We then focused on Z-valued games, and considered the
operations of addition and negation. We defined ≈ to be the appropriate
indistinguishability relation to deal with addition and negation, and then
considered the structure of the quotient monoid M = WZ/ ≈. The monoid
M is a partially ordered commutative monoid, and has an additional order-
reversing map of negation, which does not necessarily correspond to the
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inverse of addition. We showed that parity was well defined modulo≈, so that
M can be partitioned into even-tempered gamesM0 and odd-tempered games
M1, and that even-tempered and odd-tempered games are incomparable with
respect to the partial order, and that M0 is a submonoid, and in fact M ∼=
Z2 ×M0.

Moreover, letting I denote the invertible elements of M , we showed that
M is in bijective correspondence with the set of all ordered pairs (a, b) ∈ I
such that a ≥ b. Moreover, addition is pairwise, so that (a, b) + (c, d) =
(a + c, b + d), and negation is pairwise with a flip: −(a, b) = (−b,−a). The
elements of I themselves are in correspondence with the pairs (a, a). The
maps (a, b) → (a, a) and (a, b) → (b, b) are monoid homomorphisms. The
set I forms a partially ordered abelian group. The even-tempered i-games
form an index two subgroup J containing a copy of the integers, and in fact
every even-tempered i-game is ≤ some integers (the least of which is the left
outcome), and is ≥ some integers (the greatest of which is the right outcome).
Moreover, the left outcome of an arbitrary even-tempered game (a, b) is the
left outcome of b, and the right outcome is the right outcome of a.
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Chapter 10

Distortions

10.1 Order-preserving operations on Games

So far, we have been playing the sum of two games G and H by playing
them in parallel, and combining the final scores by addition. Nothing stops
us from using another operation, however. In fact, we can take a function
with any number of arguments.

Definition 10.1.1. Let S1, S2, . . . , Sk, T ⊆ Z, and let f be a function f :
S1 × · · · × Sk → T . Then the extension of f to games is a function

f̃ :WS1 × · · · ×WSk →WT

defined recursively by

f̃(G1, G2, . . . , Gk) = f(G1, G2, . . . , Gk)

when G1, . . . , Gk are all numbers, and otherwise,

f̃(G1, G2, . . . , Gk) =

〈f̃(GL
1 , G2, . . . , Gk), f̃(G1, G

L
2 , G3, . . . , Gk), . . . f̃(G1, . . . , Gk−1, G

L
k )|

f̃(GR
1 , G2, . . . , Gk), f(G1, G

R
2 , G3, . . . , Gk), . . . f̃(G1, . . . , Gk−1, G

R
k )〉

So for example, if f : Z × Z → Z is ordinary addition of integers, then
f̃ is the addition of games that we’ve been studying so far. In general,
f̃(G1, G2, . . . , Gk) is a composite game in which the players play G1, G2, . . . ,
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Figure 10.1: Schematically, we are playing several games in parallel and using
f to combine their final scores.

and Gk in parallel, and then combine the final score of each game using f .
Structurally, f̃(G1, G2, . . . , Gk) is just like G1+· · ·+Gk, except with different
final scores. In particular, the parity of f̃(G1, G2, . . . , Gk) is the same as the
parity of G1 + · · ·+Gk.

Algebraic properties of f often lift to algebraic properties of f̃ . For exam-
ple, since addition of integers is associative and commutative, so is addition
of games. Or if f, g, and h are functions from Z to Z, then f ◦ g = h =⇒
f̃ ◦ g̃ = h̃. Similar results hold for compositions of functions of higher arities.
We will use these facts without comment in what follows.

Exercise 10.1.2. Show than an algebraic identity will be maintained as long
as each variable occurs exactly once on each side. So associativity and com-
mutativity are maintained.

On the other hand, properties like idempotence and distributivity are
not preserved, because even structurally, f̃(G,G) is very different than G,
having many more positions. In fact if G is odd-tempered, then f̃(G,G) will
be even-tempered and so cannot equal or even be equivalent to G.

We are mainly interested in cases where f has the following property:

Definition 10.1.3. We say that f S1 × · · · × Sk → T is (weakly) order-
preserving if whenever (a1, . . . , an) ∈ S1 × · · · × Sk and (b1, . . . , bn) ∈ S1 ×
· · ·×Sk satisfy ai ≤ bi for every 1 ≤ i ≤ k, then f(a1, . . . , an) ≤ f(b1, . . . , bn).
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Order-preserving operations are closed under composition. Moreover,
unary order-preserving functions have the following nice property, which will
be used later:

Lemma 10.1.4. If S, T are subsets of Z, and f : S → T is order-preserving,
then for any G ∈ WS,

R(f̃(G)) = f(R(G)),

and
L(f̃(G)) = f(L(G))

Proof. Easy by induction; left as an exercise to the reader.

We also have

Lemma 10.1.5. Let f and g be two functions from S1× · · ·×Sk → T , such
that f(x1, . . . , xk) ≤ g(x1, . . . , xk) for every (x1, . . . , xk) ∈ S1×· · ·×Sk. Then
for every (G1, . . . , Gk) ∈ WS1 × · · · ×WSk ,

f̃(G1, . . . , Gk) . g̃(G1, . . . , Gk)

and in particular

o#(f̃(G1, . . . , Gk)) ≤ o#(g̃(G1, . . . , Gk))

Proof. An obvious inductive proof using Theorem 9.4.4.

Another easy fact is the following:

Lemma 10.1.6. Let f : S1 × · · · × Sk → T be a function. Then for any
games (G1, G2, . . . , Gk) ∈ WS1 × · · · ×WSk , we have

f(G1 + ∗, G2, . . . , Gk) = f(G1, G2 + ∗, . . . , Gk) = · · · =

f(G1, G2, . . . , Gk + ∗) = f(G1, . . . , Gk) + ∗, (10.1)

where ∗ is 〈0|0〉 as usual.

Proof. Note that for (x1, . . . , xk, y) ∈ S1 × · · · × Sk × {0},

f(x1 + y, x2, . . . , xk) = f(x1, x2 + y, . . . , xk) = · · · =

f(x1, x2, . . . , xk + y) = f(x1, . . . , xk) + y.

It follows that (10.1) is true more generally if we replace ∗ by any {0}-valued
game.
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10.2 Compatibility with Equivalence

We defined ≈ to be indistinguishability for the operation of addition. By
adding new operations into the mix, indistinguishability could conceivably
become a finer relation. In this section, we’ll see that this does not occur
when our operations are extensions of order-preserving functions. In other
words, the ≈ equivalence relation is already compatible with extensions of
order-preserving functions.

Theorem 10.2.1. Let S1, . . . , Sk, T be subsets of Z, f : S1 × · · · × Sk → T
be order-preserving, and f̃ be its extension to WS1 × · · · × WSk → WT . Let
� be one of ., &, .±, &±, ≈, or ≈±. If (G1, . . . , Gk) and (H1, . . . , Hk) are
elements of WS1 × · · ·WSk , such that Gi�Hi as integer-valued games, then

f̃(G1, . . . , Gk)�f̃(H1, . . . , Hk).

This theorem says that extensions of order-preserving maps are com-
patible with equivalence and all our other relations. In particular, order-
preserving extensions are well-defined on the quotient spaces of ≈ and ≈±.

To prove Theorem 10.2.1, we reduce to the case where Gi = Hi for all
but one i, by the usual means. By symmetry, we only need to show that
f̃(G,G2, . . . , Gk) .− f̃(H,G2, . . . , Gk), when G .− H. We also reduce to
the case where the codomain T is {0, 1}. This makes T S1 , the set of order-
preserving functions from S1 to T be itself finite and linearly ordered. We
then view f(·, G2, . . . , Gk), the context into which G and H are placed, as
a T S1-valued game whose score is combined with the final score of G or H.
(See Figure 10.2).

As a finite total order, T S1 can then be identified with a set of integers
slightly larger than S1, and applying this identification to f(·, G2, . . . , Gk),
we make an integer-valued game A such that

o#(G+ A) ≤ o#(H + A) =⇒ o#(G,G2, . . . , Gk) ≤ o#(H,G2, . . . , Gk).

Many of these steps will not be spelled out explicitly in what follows.

Lemma 10.2.2. Let S, S2, . . . , Sk+1 be subsets of the integers, with S finite,
and let f ′ : S × S2 × · · · × Sk+1 → Z be order-preserving. Then for any
n ∈ Z, there is a function gn : S2 × · · · × Sk+1 → Z, such that for any
(x1, . . . , xk+1) ∈ S × S2 × . . . Sk+1,

x1 + gn(x2, x3, . . . , xk+1) > 0 ⇐⇒ f ′(x1, x2, . . . , xk+1) > n. (10.2)
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Figure 10.2: Schematically, we are taking all the component games other
than G, as well as the function f , and bundling them up into a “context” Γ.
In order to pull this off, we have to run the output of the game through a
step function. By varying the cutoff of the step function, the true outcome
of f̃(G1, . . . , Gn) is recoverable, so this is no great loss.

(Note that there is no stipulation that gn be order-preserving.)

Proof. Fix x2, x3, . . . , xk+1. Partition S as A ∪B, where

A = {x ∈ S : f ′(x, x2, . . . , xk+1) > n}

B = {x ∈ S : f ′(x, x2, . . . , xk+1) ≤ n}

Then because f ′ is order-preserving, every element of A is greater than every
element of B. Since S is finite, this implies that there is some integer m such
that A = {x ∈ S : x > m} and B = {x ∈ S : x ≤ m}. Let gn(x2, . . . , xk+1) =
−m. Then clearly (10.2) will hold.

Lemma 10.2.3. With the setup of the previous lemma, if G is an S-valued
game, and Gi is a Si-valued game for 2 ≤ i ≤ k + 1, then

L(G+ g̃(G2, . . . , Gk+1)) > 0 ⇐⇒ L(f̃ ′(G,G2, . . . , Gk+1)) > n
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and similarly

R(G+ g̃(G2, . . . , Gk+1)) > 0 ⇐⇒ R(f̃ ′(G,G2, . . . , Gk+1)) > n

Proof. For any integer m, let δm : Z→ {0, 1} be the function δm(x) = 1 if
x > m and δm(x) = 0 if x ≤ m. Then using Lemma 10.1.4, we have

L(G+g̃n(G2, . . . , Gk+1)) > 0 ⇐⇒ L(δ̃0(G+g̃n(G2, . . . , Gk+1))) = 1, (10.3)

and similarly,

L(f̃ ′(G,G2, . . . , Gk+1)) > n ⇐⇒ L(δ̃n(f̃ ′(G,G2, . . . , Gk+1))) = 1. (10.4)

Now by the previous lemma, we know that for any (x1, . . . , xk+1) ∈ S×S2×
· · · × Sk+1, we have

δ0(x1 + gn(x2, x3, . . . , xk)) = δn(x1, x2, . . . , xk)

But then this equation continues to be true when we extend everything to
games, so that

δ̃0(G+ g̃n(G2, . . . , Gk+1)) = δ̃n(f̃ ′(G,G2, . . . , Gk+1))

and then we are done, after combining with (10.3) and (10.4) above.

Now since G + g̃n(G2, . . . , Gk) has the same parity as f̃(G,G2, . . . , Gk),
the two equations in Lemma 10.2.3 are equivalent to the following two:

Lf(G+ g̃n(G2, . . . , Gk)) > 0 ⇐⇒ Lf(f̃(G,G2, . . . , Gk)) > n (10.5)

Rf(G+ g̃n(G2, . . . , Gk)) > 0 ⇐⇒ Rf(f̃(G,G2, . . . , Gk)) > n (10.6)

Lemma 10.2.4. If (G1, . . . , Gk) and (H1, . . . , Hk) are in WS1 ×WS2 × · · ·×
WSk , and Gi .− Hi for every i, and Gi = Hi for all but one i, then

f̃(G1, . . . , Gk) .− f̃(H1, . . . , Hk).

Also, the same holds if we replace .− with .+.
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Proof. Without loss of generality, Gi = Hi for all i 6= 1. We only need
to consider the case where G1 .− H1, as the G1 .+ H1 case follows by
symmetry.

We want to show that

f̃(G,G2, . . . , Gk) .− f̃(H,G2, . . . , Gk)

given that G .− H are S1-valued games. In particular, we need to show that
for every game K,

Lf(f̃(G,G2, . . . , Gk) +K) ≤ Lf(f̃(H,G2, . . . , Gk) +K). (10.7)

Suppose for the sake of contradiction that there is some K for which (10.7)
doesn’t hold. Then there is some integer n such that

Lf(f̃(H,G2, . . . , Gk) +K) 6> n

but
Lf(f̃(G,G2, . . . , Gk) +K) > n.

Let Sk+1 be Z, so that K is an Sk+1-valued game. Since all our games are
finite, only finitely many values occur within each of G and H. Thus there
is some finite subset S of S1 so that G and H are both S-valued games. Let
f ′ : S × S1 × · · · × Sk × Sk+1 be the function

f ′(x1, . . . , xk+1) = f(x1, . . . , xk) + xk+1,

which is still order-preserving. Then f̃ ′(G1, . . . , Gk+1) = f̃(G1, . . . , Gk) +
Gk+1 for any appropriate G1, . . . , Gk+1. In particular, then, we have that

Lf(f̃ ′(H,G2, . . . , Gk, K)) 6> n

and
Lf(f̃ ′(G,G2, . . . , Gk, K)) > n

Let gn be the function from Lemma 10.2.3. Then by (10.5), it follows that

Lf(H + g̃n(G2, . . . , Gk, K)) 6> 0

and
Lf(G+ g̃n(G2, . . . , Gk, K)) > 0.

Thus, if J = g̃n(G2, . . . , Gk, K), we have Lf(G+J) 6≤ Lf(H+J), contradicting
the fact that G .− H.

The other case, in which G .+ H, follows by symmetry.
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Proof (of Theorem 10.2.1). With the setup of Theorem 10.2.1, first consider
the case where � is .−. So Gi .− Hi for every i. Then by Lemma 10.2.4,

f̃(G1, . . . , Gk) .− f̃(H1, G2 . . . , Gk) .− f̃(H1, H2, G3, . . . , Gk)

.− · · · .− f̃(H1, . . . , Hk−1, Gk) .− f̃(H1, . . . , Hk).

So f̃(G1, . . . , Gk) .− f̃(H1, . . . , Hk) by transitivity of .−. This establishes
Theorem 10.2.1 when � is .−.

The cases where � is one of .+, &+ or &− follow immediately. All the
other remaining possibilities for � can be written as intersections of .± and
&±, so the remaining cases follow easily. For example, if Gi ≈+ Hi for all i,
then we have Gi .+ Hi and Gi &+ Hi for all i, so that

f̃(G1, . . . , Gk) .+ f̃(H1, . . . , Hk)

and
f̃(G1, . . . , Gk) &+ f̃(H1, . . . , Hk)

by the cases where � is .+ or &+. Thus

f̃(G1, . . . , Gk) ≈+ f̃(H1, . . . , Hk).

As a corollary of Theorem 10.2.1, we see that the action of an order-
preserving extension on S-valued games is determined by its action on even-
tempered i-games.

Corollary 10.2.5. Let S1, S2, . . . , Sk, T be subsets of Z, and f : S1 × · · · ×
Sk → T be order-preserving. For 1 ≤ i ≤ k, let Gi be an Si-valued game.
Let ei be 0 or ∗, so that ei has the same parity as Gi. For each Gi, choose
an upside and downside G+

i and G−i which are Si-valued, possible by The-
orem 9.5.2(g). Then for every i, G+

i + ei and G−i + ei are even-tempered
Si-valued i-games, and

f̃(G1, . . . , Gk) ≈ A&B + (e1 + · · ·+ ek),

where
A ≈ f̃(G+

1 + e1, G
+
2 + e2, . . . , G

+
k + ek)

+

B ≈ f̃(G−1 + e2, G
−
2 + e2, . . . , G

−
k + ek)

−

are even-tempered i-games.
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Proof. First consider the case where every Gi is even-tempered, so that all
the ei vanish. Then we need to show that

f̃(G1, . . . , Gk)
+ ≈ A

f̃(G1, . . . , Gk)
− ≈ B

or equivalently,

f̃(G1, . . . , Gk) ≈+ f̃(G+
1 , G

+
2 , . . . , G

+
k )

f̃(G1, . . . , Gk) ≈− f̃(G−1 , G
−
2 , . . . , G

−
k ).

But these follow directly from Theorem 10.2.1 in the case where � is ≈±,
since Gi ≈± G±i for all i.

Now suppose that some of the Gi are odd-tempered. Since ∗ is an i-game,
every G±i + ei is an i-game too, and is Si-valued because G±i is Si-valued and
ei is {0}-valued. Now Gi, G

±
i , and ei all have the same parity, so G±i + ei

will be even-tempered Si-valued i-games.
Letting Hi = Gi + ei, we see that Hi is an even-tempered Si-valued game

for every i, and that H±i ≈ G±i + ei because ei is an i-game. Now 0 + 0 = 0,
and ∗ + ∗ ≈ 0 (as ∗ equals its own negative), so Gi ≈ Hi + ei for every i.
Then by Theorem 10.2.1 and repeated applications of Lemma 10.1.6, we see
that

f̃(G1, . . . , Gk) ≈ f̃(H1 + e1, . . . , Hk + ek) = f̃(H1, . . . , Hk) + (e1 + · · ·+ ek).

But by the even-tempered case that we just proved,

f̃(H1, . . . , Hk) ≈ A&B.

10.3 Preservation of i-games

By Corollary 10.2.5, any order-preserving extension f̃ is determined by two
maps on even-tempered i-games, one that sends

(G1, . . . , Gk)→ f̃(G1, . . . , Gk)
+
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and one that sends

(G1, . . . , Gk)→ f̃(G1, . . . , Gk)
−.

In this section we show that in fact f̃(G1, . . . , Gk) will always be an i-game
itself, so that these two maps in fact agree.1 Thus every order-preserving
map f induces a single map on equivalence classes of even-tempered i-games,
and this map determines the action of f on all games.

We first prove that i-games are preserved for the case where f is unary,
and use it to answer a question from a previous chapter: for which A & B
does A&B exist?

Lemma 10.3.1. Let S be a set of integers, and f : S → Z be weakly order-
preserving. Then for any S-valued i-game G, f̃(G) is an i-game.

Proof. By induction, we only need to show that if G is even-tempered, then

L(f̃(G)) ≥ R(f̃(G)),

which follows by Lemma 10.1.4 and the fact that L(G) ≥ R(G).

Lemma 10.3.2. If G is an S-valued game and f : S → Z is order-preserving,
then

f̃(G)+ ≈ f̃(G+)

f̃(G)− ≈ f̃(G−)

where we take G± to be S-valued.

Proof. We have G± ≈± G, so by Theorem 10.2.1,

f̃(G) ≈± f̃(G±).

But by Lemma 10.3.1, f̃(G±) is an i-game because G± is. So the desired
result follows.

We now complete the description of WZ in terms of i-games:

Lemma 10.3.3. If A is an i-game (necessarily even-tempered) with A & 0,
then there is some Z-valued game H with H− ≈ 0 and H+ ≈ A.

1In this way the theory diverges from the case of loopy partizan games, where there
are distinct upsums and downsums used to add onsides and offsides.
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Proof. For any integers n ≤ m, let Dn,m denote the even-tempered game
〈n + ∗ |m + ∗〉. The reader can verify from the definitions that D+

n,m = m
and D−n,m = n, so that Dn,m acts like either n or m depending on its context.

We create H from A by substituting D0,n for every positive number n
occurring within A. As D+

0,n = n, it follows by an inductive argument using
the ≈+ case of Theorem 9.4.4 that A is still the upside of H.

It is also clear by the ≈− case of Theorem 9.4.4 that the downside of
H is the downside of the game obtained by replacing every positive number
in A with 0. Letting f(n) = min(n, 0), this game is just f̃(A). So H− ≈
f(A)−. But A ≈− A−, so by Theorem 10.2.1 f(A) ≈− f(A−). Then by
Lemma 10.3.1, f(A−) is an i-game, so f(A)− ≈ f(A−). Thus

H− ≈ f(A)− ≈ f(A−) ≈ f(A).

Moreover, since A & 0, Corollary 9.3.2 implies that R(A) ≥ 0. As an even-
tempered i-game, L(A) ≥ R(A) ≥ 0. Therefore f(L(A)) = f(R(A)) = 0.
By Lemma 10.1.4, it then follows that L(f(A)) = R(f(A)) = 0. Then by
Corollary 9.3.2, f(A) ≈ 0, so H− ≈ 0 and we are done.

Using this, we see that all possible pairs A&B occur:

Theorem 10.3.4. If A, B are i-games with A & B, then there is some
Z-valued game G with G+ ≈ A and G− ≈ B.

Proof. Since A − B & 0, we can produce a game H with H+ ≈ A − B and
H− ≈ 0 by the lemma. Then letting G = H +B, we have

G+ ≈ H+ +B+ ≈ A−B +B ≈ A,

G− ≈ H− +B− ≈ 0 +B = B.

Moreover, we can refine this slightly:

Theorem 10.3.5. Let S ⊆ Z and let A and B be S-valued i-games with
A & B. Then there is some S-valued game G with G+ ≈ A and G− ≈ B.

Proof. By the previous theorem, we can construct a game G0 with G+
0 ≈ A

and G−0 ≈ B. Let f : Z → Z be a weakly order-preserving function that
projects Z onto S. That is, f ◦ f = f , and f(Z) = S. We can construct
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such an f by sending every integer to the closest element of S, breaking ties
arbitrarily. (Note that by existence of A and B, S cannot be empty.) Then
by Lemma 10.3.2 and Theorem 10.2.1,

f(G0)
+ ≈ f(G+

0 ) ≈ f(A) = A

and
f(G0)

− ≈ f(G−0 ) ≈ f(B) = B,

so taking G = f(G0), we have G ∈ WS , and G+ ≈ A and G− ≈ B.

So for any S ⊆ Z, the S-valued games modulo ≈ are in one-to-one cor-
respondence with the pairs (a, b) ∈ IS × IS for which a & b, where IS is the
S-valued i-games modulo ≈. In particular, A&B exists and can be S-valued
whenever A and B are S-valued i-games with A & B.

We now return to proving that order-preserving extensions preserve i-
games:

Theorem 10.3.6. Let S1, . . . , Sk, T be subsets of Z, f : S1 × · · · × Sk → T
be order-preserving, and f̃ be the extension of f to WS1 × · · · ×WSk →WT .
If G1, . . . , Gk are i-games, with Gi ∈ WSi, then f̃(G1, . . . , Gk) is also an
i-game. Moreover, if H1, . . . , Hk are general games, with Hi ∈ WSi, then

(f̃(H1, . . . , Hk))
+ ≈ f̃(H+

1 , H
+
2 , . . . , H

+
k )

and
(f̃(H1, . . . , Hk))

− ≈ f̃(H−1 , H
−
2 , . . . , H

−
k ).

In other words, f preserves i-games, and interacts nicely with upsides and
downsides.

Proof. The first claim is the more difficult to show. It generalizes Theo-
rem 9.2.11 and Lemma 10.3.1. We first prove a slightly weaker form:

Lemma 10.3.7. If (G1, . . . , Gk) ∈ WS1 × · · · × WSk are all i-games, then
f̃(G1, . . . , Gk) ≈ H for some i-game H ∈ WZ.

Proof. Since each Gi is finite, it has only finitely many elements of Si as
subpositions - so we can take finite subsets S ′i ⊆ Si such that Gi ∈ WS′i

for
every i. Restricting f from Si to S ′i, we can assume without loss of generality
that Si = S ′i is finite. Then there is some positive integer M so that

|f(x1, . . . , xk)| <
M

2

199



for every (x1, . . . , xk) ∈ S1 × · · · × Sk.
For each i, let Zi = {−s : s ∈ S} and let g : Z1 × · · · × Zk → Z be the

order preserving function

g(x1, . . . , xk) = −f(−x1, . . . ,−xk).

I claim that

f̃(G1, . . . , Gk) + g̃(−G1,−G2, . . . ,−Gk) ≈ 0 (10.8)

so that f̃(G1, . . . , Gk) ≈ an i-game by Theorem 9.5.2(f). To show (10.8) we
need to show that for any integer-valued game K,

o#(f̃(G1, . . . , Gk) + g̃(−G1, . . . ,−Gk) +K) = o#(K). (10.9)

We show that the left hand side is ≥ than the right hand side by essentially
showing that Left can play the sum G1 + · · ·+Gk +(−G1)+ · · ·+(−Gk)+K
in such a way that her score in each Gi component outweighs the score in the
corresponding −Gi component. The other direction of the inequality follows
by symmetry.

First of all, notice that since the Gi are i-games by assumption, Gi−Gi ≈
0 for every i and so

o#((G1 −G1) + · · ·+ (Gk −Gk) +K) = o#(K).

Now we distort this sum by putting exorbitant penalties on Left for failing
to ensure that the final score of any of the Gi − Gi components is ≥ 0.
Specifically, let δ : Z → Z be the function given by δ(x) = 0 if x ≥ 0, and
δ(x) = −M if x < 0. Then by Lemma 10.3.1 δ(Gi−Gi) is an i-game because
Gi − Gi is. Moreover, δ(Gi − Gi) must have outcomes (δ(0), δ(0)) = (0, 0),
so that by Lemma 9.4.8 δ(Gi −Gi) ≈ 0. Therefore,

o#(δ(G1 −G1) + · · ·+ δ(Gk −Gk) +K) = o#(K). (10.10)

Now let h1 and h2 be functions S1 × · · · × Sk ×Z1 × · · · ×Zk ×Z→ Z given
by

h1(x1, . . . , xk, y1, . . . , yk, z) = δ(x1 + y1) + δ(x2 + y2) + · · ·+ δ(xk + yk) + z

and

h2(x1, . . . , xk, y1, . . . , yk, z) = f(x1, . . . , xk) + g(y1, . . . , yk) + z
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Then we can write (10.10) as

o#(h̃1(G1, . . . , Gk,−G1, . . . ,−Gk, K)) = o#(K).

Suppose we know that h1 ≤ h2 for all possible inputs. Then Lemma 10.1.5
implies that

o#(h̃2(G1, . . . , Gk,−G1, . . . ,−Gk, K)) ≥ o#(K)

which is just the ≥ direction of (10.9). By symmetry the ≤ direction of (10.9)
also follows and we are done. So it remains to show that h1 ≤ h2, i.e.,

δ(x1 + y1) + · · ·+ δ(xk + yk) ≤ f(x1, . . . , xk) + g(y1, . . . , yk) (10.11)

for all (x1, . . . , xk, y1, . . . , yk) ∈ S1 × · · · × Sk × Z1 × · · · × Zk.
Suppose first that xi + yi ≥ 0 for all i. Then δ(xi + yi) = 0 for all i so the

left hand side of (10.11) is zero. On the other hand, since −yi ≤ xi for every
i, and f is order preserving,

−g(y1, . . . , yk) = f(−y1, . . . ,−yk) ≤ f(x1, . . . , xk),

so (10.11) holds. Otherwise, xi + yi < 0 for some i, and so the left hand side
of (10.11) is ≤ −M . On the other hand, the right hand side is at least −M ,
by choice of M (and the fact that the range of g is also bounded between
−M and M). Therefore (10.11) again holds, and we are done.

Now the Lemma shows that f̃(G1, . . . , Gk) is equivalent to an i-game. We
can easily use this to show that it is in fact an i-game. Note that every subpo-
sition of f̃(G1, . . . , Gk) is of the form f̃(G′1, . . . , G

′
k) where G′i is a subposition

of Gi for every i. By definition of i-game, the G′i will also be equivalent to
i-games, and so by the previous lemma every subposition of f̃(G1, . . . , Gk) is
equivalent to an i-game. So by the following lemma, f̃(G1, . . . , Gk) is itself
an i-game:

Lemma 10.3.8. If G is an integer-valued game, and every subposition of G
is equivalent (≈) to an i-game, then G is an i-game.

Proof. G is an i-game as long as every even-tempered subposition G′ satisfies
L(G′) ≥ R(G′). But ifG′ is an even-tempered subposition ofG, thenG equals
an i-game H by assumption, and H is even-tempered by Theorem 9.3.3. So
L(H) ≥ R(H). But G′ ≈ H implies that o#(G′) = o#(H).
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For the last claim of Theorem 10.3.6, let H1, . . . , Hk be general games with
Hi ∈ WSi . Then Hi .+ H+

i and H+
i . Hi for every i, so by Theorem 10.2.1,

f̃(H1, . . . , Hk) .+ f̃(H+
1 , . . . , Hk+)

and
f̃(H+

1 , . . . , H
+
k ) .+ f̃(H1, . . . , Hk)

so
f̃(H1, . . . , Hk) ≈+ f̃(H+

1 , . . . , H
+
k ).

But we just showed that f̃(H+
1 , . . . , H

+
k ) is equivalent to an i-game, so there-

fore
f̃(H1, . . . , Hk)

+ ≈ f̃(H+
1 , . . . , H

+
k ).

The proof of the claim for downsides is completely analogous. This completes
the proof of Theorem 10.3.6.
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Chapter 11

Reduction to Partizan theory

11.1 Cooling and Heating

The following definition is an imitation of the standard cooling and heating
operators for partizan games, defined and discussed on pages 102-108 of
ONAG and Chapter 6 of Winning Ways.

Theorem 11.1.1. If G is a Z-valued game and n is an integer (possibly
negative), we define G cooled by n, Gn, to be G is G is a number, and
otherwise 〈(GL)n− n | (GR)n + n〉, where GL and GR range over the left and
right options of G. We define G heated by n to be G−n, G cooled by −n.

The following results are easily verified from the definition:

Theorem 11.1.2. Let G and H be games, and n and m be integers.

(a) (−G)n = −(Gn).

(b) (G+H)n = Gn +Hn.

(c) If G is even-tempered, then L(Gn) = L(G) and R(Gn) = R(G).

(d) If G is odd-tempered, then L(Gn) = L(G)− n and R(Gn) = R(G) + n.

(e) (Gn)m = Gn+m.

(f) G is an i-game iff Gn is an i-game.

Note that there are no references to ≈.
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Proof. We proceed with inductive proofs in the style of ONAG. We mark the

inductive step with
!

=.

(−G)n = 〈(−GR)n − n | (−GL)n + n〉 !
=

〈−(GR
n )− n| − (GL

n) + n〉 = −〈(GL)n − n|(GR)n + n〉 = −(Gn),

unless G is a number, in which case (a) is obvious.

(G+H)n = 〈(G+H)Ln − n|(G+H)Rn + n〉 =

〈(GL +H)n − n, (G+HL)n − n | (GR +H)n + n, (G+HR)n + n〉 !
=

〈GL
n +Hn − n, Gn +HL

n − n |GR
n +Hn + n, Gn +HR

n + n〉 = Gn +Hn,

unless G and H are both numbers, in which case (b) is obvious. If G is
even-tempered, then

L(Gn) = max{R(GL
n − n)} !

= max{R(GL) + n− n} = max{R(GL)} = L(G),

unless G is a number, in which case L(Gn) = L(G) is obvious. And similarly,
R(Gn) = R(G). If G is odd-tempered, then

L(Gn) = max{R(GL
n − n)} !

= max{R(GL)− n} = L(G)− n,

and similarly R(Gn) = R(G) + n.

(Gn)m = 〈(Gn)Lm −m | (Gn)Rm +m〉 = 〈(GL
n − n)m −m | (GR

n + n)m +m〉 ∗=

〈(GL
n)m−(n+m) | (GR

n )m+(n+m)〉 !
= 〈GL

n+m−(n+m) |GR
n+m+(n+m)〉 = Gn+m,

unless G is a number, in which case (e) is obvious. Here the
∗
= follows by

part (b).
Finally, part (f) follows by an easy induction using part (c).

Using these, we show that heating and cooling are meaningful modulo ≈
and ≈±:

Theorem 11.1.3. If G and H are games, n ∈ Z, and � is one of ≈, ≈±,
., .±, etc., then G � H ⇐⇒ Gn � Hn.
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Proof. It’s enough to consider .− and .+. By symmetry, we only consider
.−. By part (e) of the preceding theorem, cooling by −n is exactly the
inverse of cooling by n, so we only show that G .− H ⇒ Gn .− Hn. Let
G .− H. Then G and H have the same parity. Let X be arbitrary. Note
that Gn+X and Hn+X are just (G+X−n)n and (H+X−n). By assumption,
Rf(G+X−n) ≤ Rf(H +X−n), so by part (c) or (d) of the previous theorem
(depending on the parities of G,H, and X) we see that

Rf(Gn +X) = Rf((G+X−n)n) ≤ Rf((H +X−n)n) = Rf(Hn +X).

Then since X was arbitrary, we are done.

So heating and cooling induce automorphisms of the commutative monoid
WZ/ ≈ that we are interested in.

Definition 11.1.4. For n ∈ Z, let In be recursively defined set of Z-valued
games such that G ∈ In iff every option of G is in In, and

• If G is even-tempered, then L(G) ≥ R(G).

• If G is odd-tempered, then L(G)− R(G) ≥ n.

It’s clear that In ⊆ Im when n > m, and that the i-games are precisely
the elements of I =

⋃
n∈Z In. Also, the elements of ∩n∈ZIn are nothing but

the numbers, since any odd-tempered game fails to be in In for some n.
The class I0 consists of the games in which being unexpectedly forced

to move is harmless.1 Just as looking at i-games allowed us to extends
Equations (9.2-9.3) to other parities, the same thing happens here: if G and
H are two games in I0 with R(G) ≥ 0 and R(H) ≥ 0, then R(G + H) ≥ 0,
regardless of parity. We have already seen this if G and H are even-tempered
(Equation (9.2)) or if one of G is odd-tempered (Equation (9.8)), and the
final case, where both games are odd-tempered, comes from the following
results:

Theorem 11.1.5. Let G and H be Z-valued games in In for some n.

• If G is odd-tempered and H is odd-tempered, then

R(G+H) ≥ R(G) + R(H) + n (11.1)

1This makes I0 the class of well-tempered games which are also Milnor games, in the
sense used by Ettinger in the papers “On the Semigroup of Positional Games” and “A
Metric for Positional Games.”
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• If G is even-tempered and H is odd-tempered, then

L(G+H) ≥ L(G) + R(H) + n (11.2)

Proof. We proceed by induction as usual. To see (11.1), note that G+H is
not a number, and every right option ofG+H is of the formGR+H orG+HR.
By induction, Equation (11.2) tells us that L(GR+H) ≥ L(GR)+R(H)+n ≥
R(G) + R(H) + n. Similarly, every option of the form G+HR also has left-
outcome at least R(G) + R(H) + n, establishing (11.1). Likewise, to see
(11.2), note that if G is a number, this follows from Proposition 9.1.5 and
the definition of In, and otherwise, letting GL be a left option of G such that
R(GL) = L(G), we have by induction

L(G+H) ≥ R(GL +H) ≥ R(GL) + R(H) + n = L(G) + R(H) + n.

Similarly we have

Theorem 11.1.6. Let G and H be Z-valued games in In for some n.

• If G and H are both odd-tempered, then

L(G+H) ≤ L(G) + L(H)− n (11.3)

• If G is even-tempered and H is odd-tempered, then

R(G+H) ≤ R(G) + L(H)− n (11.4)

Mimicking the proof that i-games are closed under negation and addition,
we also have

Theorem 11.1.7. The class of games In is closed under negation and addi-
tion.

Proof. Negation is easy. We show closure under addition. Let G,H ∈ In.
By induction, every option of G + H is in In. It remains to show that
L(G+H)−R(G+H) is appropriately bounded. If G+H is even-tempered,
we already handled this case in Theorem 9.2.11, which guarantees that G+H
is an i-game so that L(G+H) ≥ R(G+H). So assume G+H is odd-tempered.
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Without loss of generality, G is odd-tempered and H is even-tempered. Then
by Equation (11.2)

L(G+H) ≥ R(G) + L(H) + n

while by Equation (9.5),

R(G+H) ≤ R(G) + L(H).

Therefore
L(G+H)− R(G+H) ≥ n.

Next we relate the In to cooling and heating:

Theorem 11.1.8. For any G, G ∈ In iff Gm ∈ In−2m.

Proof. By Theorem 11.1.2(d), we know that whenever H is an odd-tempered
game, L(H) − R(H) ≥ n iff L(Hm) − R(Hm) = (L(H) − m) − (R(H) +
m) ≥ n − 2m, while if H is even-tempered, then L(H) − R(H) ≥ 0 iff
L(Hm)− R(Hm) ≥ 0, by Theorem 11.1.2(c).

So heating by 1 unit establishes a bijection from In to In+2 for all n. Also,
note that G is an i-game iff G−n ∈ I0 for some n ≥ 0.

Let I denote the invertible elements ofWZ/ ≈, i.e., the equivalence classes
containing i-games. Also, let In be the equivalence classes containing games
in In. By Theorem 11.1.7 each In is a subgroup of I. And we have a filtration:

· · · ⊆ I2 ⊆ I1 ⊆ I0 ⊆ I−1 ⊆ · · · ⊆ I.

Furthermore, heating by m provides an isomorphism of partially ordered
abelian groups from In to In+2m. Because I is the union

⋃
k∈Z I2k, it follows

that as a partially-ordered abelian group, I is just the direct limit (colimit)
of

· · · ↪→ I−2 ↪→ I−2 ↪→ I−2 ↪→ · · ·

where each arrow is heating by 1. In the next two sections we will show
that the even-tempered component of I−2 is isomorphic to G, the group of
(short) partizan games, and that the action of heating by 1 is equivalent to
the Norton multiplication by {1 ∗ |}, which is the same as overheating from
1 to 1∗.
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11.2 The faithful representation

We construct a map ψ from I−2 to G, the abelian group of short partizan
games. This map does the most obvious thing possible:

Definition 11.2.1. If G is in I−2, then the representation of G, denoted
ψ(G), is defined recursively by ψ(n) = n (as a surreal number) if n ∈ Z, and
by

ψ(G) = {ψ(GL)|ψ(GR)}

if G = 〈GL|GR〉 is not a number.

So for instance, we have
ψ(2) = 2,

ψ(〈3|4〉) = {3|4} = 3.5

ψ(〈2|2||1|3〉) = {2|2||1|3} = {2 ∗ |2} = 2+ ↓ .

Usually, turning angle brackets into curly brackets causes chaos to ensue: for
example 〈0 | 3〉+ 〈0 | 3〉 ≈ 3 but {0 | 3}+ {0 | 3} = 2. But 〈0 | 3〉 isn’t in I−2.

It is clearly the case that ψ(−G) = −ψ(G). But how does ψ interact
with other operations?

The next two results are very straightforward:

Theorem 11.2.2. If G is odd-tempered, then ψ(G) ≥ 0 iff R(G) > 0, and
ψ(G) ≤ 0 iff L(G) < 0.

Proof. By definition ψ(G) ≥ 0 iff ψ(G) is a win for Left when Right goes
first. If Right goes first, then Right goes last, so a move to 0 is a loss for
Left. Thus Left needs the final score of G to be at least 1. The other case is
handled similarly.

Similarly,

Theorem 11.2.3. If G is even-tempered, then ψ(G) ≥ 0 iff R(G) ≥ 0, and
ψ(G) ≤ 0 iff L(G) ≤ 0.

Proof. The same as before, except now when Right makes the first move,
Left makes the last move, so a final score of zero is a win for Left.

But since we are working with I−2 games, we can strengthen these a bit:
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Theorem 11.2.4. If G is an even-tempered I−2 game, and n is an integer,
then ψ(G) ≥ n iff R(G) ≥ n, and ψ(G) ≤ n iff L(G) ≤ n. If G is an
odd-tempered I−2 game instead, then ψ(G) ≥ n iff R(G) > n, and ψ(G) ≤ n
iff L(G) < n.

Proof. We proceed by induction on G and n (interpreting n as a partizan
game). If G is a number, the result is obvious.

Next, supposeG is not a number, but is even-tempered. If n ≤ ψ(G), then
ψ(GR) 6≤ n for any GR. By induction, this means that L(GR) 6< n for every
GR, i.e., L(GR) ≥ n for every GR. This is the same as R(G) ≥ n. Conversely,
suppose that R(G) ≥ n. Then reversing our steps, every GR has L(GR) ≥ n,
so by induction ψ(GR) 6≤ n for any GR. Then the only way that n ≤ ψ(G)
can fail to be true is if ψ(G) ≤ n′ for some n′ that is less than n and simpler
than n. By induction, this implies that L(G) ≤ n′ < n ≤ R(G), contradicting
the definition of In. So we have shown that n ≤ ψ(G) ⇐⇒ n ≤ R(G). The
proof that n ≥ ψ(G) ⇐⇒ n ≥ R(G) is similar.

Next, suppose that G is odd-tempered. If n ≤ ψ(G), then ψ(GR) 6≤ n
for any GR. By induction, this means that L(GR) 6≤ n for every GR, i.e.,
L(GR) > n for every GR. This is the same as n < R(G). Conversely,
suppose that n < R(G). Reversing our steps, every GR has L(GR) > n, so
by induction ψ(GR) 6≤ n for every GR. Then the only way that n ≤ ψ(G) can
fail to be true is if ψ(G) ≤ n′ for some n′ < n, n′ simpler than n. But then by
induction, this implies that L(G) < n′ < n < R(G), so that R(G)−L(G) ≥ 3,
contradicting the definition of I−2.

The gist of this proof is that the I−2 condition prevents the left and right
stopping values of ψ(G) from being too spread out.

Next we show

Theorem 11.2.5. If G and H are in I−2, then ψ(G+H) = ψ(G) + ψ(H).

Proof. We proceed inductively. If G and H are both numbers, this is obvious.
If both are not numbers, this is again straightforward:

ψ(G+H) = {ψ(GL +H), ψ(G+HL) |ψ(GR +H), ψ(G+HR)}

!
= {ψ(GL)+ψ(H), ψ(G)+ψ(HL) |ψ(GR)+ψ(H), ψ(G)+ψ(HR)} = ψ(G)+ψ(H),

where the middle equality follows by induction on subgames. The one re-
maining case is when exactly one of G and H is a number. Consider G+ n,
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where n is a number and G is not. If ψ(G) is not an integer, then by integer
avoidance,

ψ(G)+n = {ψ(GL)+n |ψ(GR)+n} = {ψ(GL+n) |ψ(GR+n)} = ψ(G+n),

where the middle step is by induction.
So suppose that ψ(G) is an integer m. Thus m ≤ ψ(G) ≤ m. If G

is even-tempered, then by Theorem 11.2.4, L(G) ≤ m ≤ R(G). Then by
Proposition 9.1.5, L(G+n) ≤ m+n ≤ R(G+n), so by Theorem 11.2.4 again,
m+n ≤ ψ(G+n) ≤ m+n. Therefore ψ(G+n) = m+n = ψ(G)+n. Similarly,
if G is odd-tempered, then by Theorem 11.2.4, L(G) < m < R(G). So by
Proposition 9.1.5, L(G+ n) < m+ n < R(G+ n), which by Theorem 11.2.4
implies that m+n ≤ ψ(G+n) ≤ m+n, so that again, ψ(G+n) = m+n =
ψ(G) + n.

As in the previous section, let I−2 denote the quotient space of I−2 modulo
≈. Putting everything together,

Theorem 11.2.6. If G,H ∈ I−2 have the same parity, then ψ(G) ≤ ψ(H)
if and only if G . H. In fact ψ induces a weakly-order preserving homo-
morphism from I−2 to G (the group of short partizan games). Restricted
to even-tempered games in I−2, this map is strictly order-preserving. For
G ∈ I−2, ψ(G) = 0 if and only if G ≈ 0 or G ≈ 〈−1|1〉. The kernel of the
homomorphism from I−2 has two elements.

Proof. First of all, suppose that G,H ∈ I−2 have the same parity. Then G−
H is an even-tempered game in I−2. So by Theorem 11.2.4 and Corollary 9.3.2

ψ(G−H) ≤ 0 ⇐⇒ L(G−H) ≤ 0 ⇐⇒ G−H . 0.

Since i-games are invertible, G − H . 0 ⇐⇒ G . H. And by Theo-
rem 11.2.5 and the remarks before Theorem 11.2.2, ψ(G−H) = ψ(G)−ψ(H).
Thus

ψ(G) ≤ ψ(H) ⇐⇒ ψ(G)− ψ(H) ≤ 0 ⇐⇒ G . H.

It then follows that if G ≈ H, then ψ(G) = ψ(H), so ψ is well-defined on
the quotient space I−2. And if G & H, then G and H have the same parity,
so by what was just shown ψ(G) ≥ ψ(H). Thus ψ is weakly order-preserving.
It is a homomorphism by Theorem 11.2.5.
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When G and H are both even-tempered, then G and H have the same
parity, so ψ(G) ≤ ψ(H) ⇐⇒ G . H. Thus, restricted to even-tempered
games, ψ is strictly order preserving on the quotient space.

Suppose that ψ(G) = 0. Then G has the same parity as either 0 which is
even-tempered, or 〈−1|1〉, which is odd-tempered. Both 0 and 〈−1|1〉 are in
I−2. Now

0 = ψ(0) = ψ(G) = ψ(〈−1|1〉),
so by what has just been shown, either G ≈ 0 or G ≈ 〈−1|1〉.

Then considering games modulo ≈, the kernel of ψ has two elements,
because 0 6≈ 〈−1|1〉.

Thus the even-tempered part of I−2 is isomorphic to a subgroup of G. In
fact, it’s isomorphic to all of G:

Theorem 11.2.7. The map ψ is surjective. In fact, for any X ∈ G, there
is some even-tempered H in I−2 with ψ(H) = X. In fact, if X is not an
integer, then we can choose H such that the left options of ψ(H) are equal
to the left options of X and the right options of ψ(H) are equal to the right
options of X.

Proof. We proceed by induction on X. If X equals an integer, the result
is obvious. If not, let X = {L1, L2, . . . |R1, R2, . . .}. By induction, we can
produce even-tempered I−2 games λ1, λ2, . . . , ρ1, ρ2, . . . ∈ I2 with ψ(λi) = Li
and ψ(ρi) = Ri. Replacing λi and ρi by λi + 〈−1|1〉 and ρi + 〈−1|1〉, we can
instead take the λi and ρi to be odd-tempered.

Then consider the even-tempered game

H = 〈λ1, λ2, . . . | ρ1, ρ2, . . .〉.

As long as H ∈ I−2, then H will have all the desired properties. So suppose
that H is not in I−2. As H is even-tempered, and all of its options are in
I−2, this implies that L(H) < R(H). Let n = L(H). Then we have

R(λi) ≤ n

for every i, which by Theorem 11.2.4 is the same as Li = ψ(λi) 6≥ n for every
i. Similarly, we have

n < R(H) ≤ L(ρi)

for every i, so by Theorem 11.2.4 again, Ri = ψ(ρi) 6≤ n for every i. There-
fore, every left option of X is less than or fuzzy with n, and every right
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option of X is greater than or fuzzy with n. So X is n, or something simpler.
But nothing is simpler than an integer, so X is an integer, contradicting our
assumption that it wasn’t.

Therefore, the even-tempered subgroup of I−2 is isomorphic to G. This
subgroup has as a complement the two-element kernel of ψ, so therefore we
have the isomorphism

I−2
∼= Z2 ⊕ G.

11.3 Describing everything in terms of G
As noted above, I as a whole is the direct limit of

· · · ↪→ I−2 ↪→ I−2 ↪→ I−2 ↪→ · · ·

where each arrow is the injection G → G−1. What is the corresponding
injection in G? It turns out to be Norton multiplication by {1 ∗ |}.

Let E be the partizan game form {1 ∗ |}. Note that E = 1, and E +
(EL − E) = EL = 1∗. Thus

n.E = n

for n an integer, and

G.E = 〈GL.E + 1 ∗ |GR.E − 1∗〉

when G is not an integer. So Norton multiplication by {1 ∗ |} is the same as
overheating from 1 to 1∗:

G.E =

∫ 1∗

1

G

(On the other hand, in Sections 6.2 and 6.3 we considered overheating from
1∗ to 1!)

Theorem 11.3.1. If G is an even-tempered game in I−2, then

ψ(G−1) = ψ(G).E (11.5)

and if G is odd-tempered and in I−2, then

ψ(G−1) = ∗+ ψ(G).E. (11.6)
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Proof. Let O = 〈−1|1〉. Then O is an odd-tempered game in I−2 with
ψ(O) = 0, so O + O ≈ 0 and the map G → G + O is an involution on I−2

interchanging odd-tempered and even-tempered games, and leaving ψ(G)
fixed. Also, O−1 = 〈0|0〉, so ψ(O−1) = ∗.

Let H = ψ(G). We need to show that ψ(G−1) = H.E if G is even-
tempered and ψ(G−1) = ∗ + H.E if G is odd-tempered. We proceed by
induction on H, rather than G.

We first reduce the case where G is odd-tempered to the case where G
is even-tempered (without changing H). If G is odd-tempered, then G ≈
G′ +O, where G′ = G+O is even-tempered. Then

H = ψ(G) = ψ(G′ +O) = ψ(G′) + ψ(O) = ψ(G′).

If we can show the claim for H when G is even-tempered, then ψ(G′−1) =
ψ(G′).E = H.E. But in this case,

ψ(G−1) = ψ((G′ +O)−1) = ψ(G′−1) + ψ(O−1) = H.E + ∗,

establishing (11.6).
So it remains to show that if G is even-tempered, and ψ(G) = H, then

ψ(G−1) = H.E. For the base case, if H equals an integer n, then ψ(G) =
H = n = ψ(n), and G and n are both even-tempered, so G ≈ n. Therefore
G−1 ≈ n−1 = n, and so ψ(G−1) = ψ(n) = n = n.E = H.E and we are done.

So suppose that H does not equal any integer. By Theorem 11.2.7 there
exists an even-tempered game K ∈ I−2 for which ψ(K) = H, and the HL

and HR are exactly the ψ(KL) and ψ(KR). Then by faithfulness, ψ(G) =
H = ψ(K), so G ≈ K. Moreover,

ψ(K−1) = ψ(〈KL
−1 + 1|KR

−1 − 1〉) = {ψ(KL
−1) + 1|ψ(KR

−1)− 1}.

Now every ψ(KL) or ψ(KR) is an HL or HR, so by induction,

ψ(KL
−1) = ψ(KL).E + ∗

ψ(KR
−1) = ψ(KR).E + ∗

since KL and KR are odd-tempered. Thus

ψ(K−1) = {ψ(KL).E + ∗+ 1|ψ(KR).E + ∗ − 1} =

{ψ(K)L.E + 1 ∗ |ψ(K)R.E − 1∗} = ψ(K).E,

where the last step follows because ψ(K) = H equals no integer. But then
since G ≈ K, G−1 ≈ K−1 and so ψ(G−1) = ψ(K−1) = ψ(K).E = H.E.
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In light of all this, the even-tempered component of I is isomorphic to
the direct limit of

· · · (−).E−→ G (−).E−→ G (−).E−→ · · ·

where each map is x → x.E. Together with the comments of Section 9.6,
this gives a complete description of WZ in terms of G. The map assigning
outcomes to Z-valued games can be recovered using Theorem 11.2.4 and
Theorem 11.1.2(c,d) - we leave this as an exercise to the reader.

The reduction ofWZ to G has a number of implications, because much of
the theory of partizan games carries over. For example, every even-tempered
Z-valued game is divisible by two:

Theorem 11.3.2. If G is an even-tempered Z-valued game, then there exists
an even-tempered Z-valued game H such that H +H = G.

Proof. Choose n big enough that (G+)−n and (G−)−n are in I−2. Then
(G+)−n is an i-game, by Theorem 11.1.2(f), and

(G+)−n ≈+ G−n

by Theorem 11.1.3, so therefore (G+)−n ≈ (G−n)+. Similarly (G−)−n ≈
(G−n)−. So both the upside and downside of G−n are in I−2.

Let K = G−n. Then ψ(K+) ≥ ψ(K−), so by Corollary 6.2.5 we can find
partizan games H1 and H2 with

H1 +H1 = ψ(K−)

H2 +H2 = ψ(K+)− ψ(K−)

H2 ≥ 0.

Then by Theorem 11.2.7 there are i-games X1 and X2 in I−2 with

ψ(X1) = H1

ψ(X2) = H2

Adding 〈−1|1〉 to X1 or X2, we can assume X1 and X2 are even-tempered.
Then ψ(X2) = H2 ≥ 0, so X2 & 0. Thus X1+X2 & X1, so by Theorem 10.3.4
there is a Z-valued game J ≈ (X1 +X2)&X1. Then

ψ((J + J)+) = ψ(J+ + J+) = ψ(J+) +ψ(J+) = ψ(X1 +X2) +ψ(X1 +X2) =
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ψ(X1) + ψ(X2) + ψ(X1) + ψ(X2) = H1 +H1 +H2 +H2 =

ψ(K−) + ψ(K+)− ψ(K−) = ψ(K+)

and
ψ((J + J)−) = ψ(J− + J−) = ψ(J−) + ψ(J−) =

ψ(X1) + ψ(X1) = H1 +H1 = ψ(K−).

Then J + J ≈ ±K by Theorem 11.2.6, so J + J ≈ K. Then taking H = Jn,
we have

H +H = Jn + Jn = (J + J)n ≈ Kn = (G−n)n = G.

As another example, a theorem of Simon Norton (proven on page 207-209
of On Numbers and Games) says that no short partizan game has odd order.
For instance, if G + G + G = 0, then G = 0. By our results, one can easily
show that the same thing is true inWZ. Or for another corollary, the problem
of determining the outcome of a sum of Z-valued games, given in extensive
form, is PSPACE-complete, because the same problem is PSPACE-complete
for partizan games, as shown by Morris and Yedwab (according to David
Wolfe’s “Go Endgames are PSPACE-Hard” in More Games of No Chance).

It also seems likely that i-games have canonical simplest forms, just like
partizan games, and that this can be shown using the map ψ. Moreover,
the mean-value theorem carries over for i-games, though for non-invertible
games, the two sides can have different mean values. In this case, Lf(n.G)
and Rf(n.G) will gradually drift apart as n goes to∞ - but at approximately
linear rates. We leave such explorations to the reader.
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Chapter 12

Boolean and n-valued games

12.1 Games taking only a few values

For any positive integer n, we follow the convention for von Neumann Ordi-
nals and identify n with the set {0, 1, . . . , n−1}. In this chapter, we examine
the structure of n-valued games. For n = 2, this gives us Boolean games, the
theory we need to analyze To Knot or Not to Knot.

When considering one of these restricted classes of games, we can no
longer let addition and negation be our main operations, because {0, 1, . . . , n−
1} is not closed under either operation. Instead, we will use order-preserving
operations like those of Chapter 10. These alternative sets of games and
operations can yield different indistinguishability relations from ≈.

We will examine four order-preserving binary operations on n = {0, . . . , n−
1}:

• x ∧ y = min(x, y).

• x ∨ y = max(x, y).

• x⊕n y = min(x+ y, n− 1).

• x�n y = max(0, x+ y − (n− 1)).

All four of these operations are commutative and associative, and each has
an identity when restricted to n. The operation ⊕n corresponds to adding
and rounding down in case of an overflow, and � is a dual operation going
in the other direction. Here are tables showing what these fuctions look like
for n = 3:
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⊕3 0 1 2

0 0 1 2
1 1 2 2
2 2 2 2

�3 0 1 2

0 0 0 0
1 0 0 1
2 0 1 2

∧ 0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

∧ 0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

Definition 12.1.1. If G and H are n-valued games, we define G∧H, G∨H,
G ⊕n H and G �n H by extending these four operations to n-valued games,
in the sense of Definition 10.1.1.

Clearly G ∧ H and G ∨ H don’t depend on n, justifying the notational
lack of an n. For n = 2, ∧ is the same as �2 and ∨ is the same as ⊕2. It
is this case, specifically the operation of ∨ = ⊕2, that is needed to analyze
sums of positions in To Knot or Not to Knot.

Our goal is to understand the indistinguishability quotients of n-valued
games for various combinations of these operations. The first main result,
which follows directly from Theorem 10.2.1, is that indistinguishability is
always as coarse as the standard ≈ relation.

Theorem 12.1.2. Let f1, f2, . . . , fk be order-preserving operations fi : (n)i →
n, and ∼ be indistinguishability on n-valued games with respect to f̃1, f̃2, . . . , f̃k.
Then ∼ is as coarse as ≈.

Proof. If A ≈ B, then o#(A) = o#(B), so ≈ satisfies condition (a) of
Theorem 7.7.1. Part (b) of Theorem 7.7.1 follows from Theorem 10.2.1.

So at this point, we know that ≈ does a good enough job of classifying
n-valued games, and much of the theory for addition and negation carries
over to this case. However we can possibly do better, in specific cases, by
considering the coarser relation of indistinguishability.

12.2 The faithful representation revisited: n

= 2 or 3

Before examining the indistinguishability quotient in the cases of ∧, ∨, ⊕n
and �n, we return to the map ψ : I−2 → G.

217



Theorem 12.2.1. If G is an n-valued i-game, then G ∈ I−n+1.

Proof. In other words, whenever G is an n-valued odd-tempered i-game,
L(G)−R(G) ≥ −n+1. This follows from the fact that L(G) and R(G) must
both lie in the range n = {0, 1, . . . , n− 1}.

So in particular, if n = 2 or 3, then G is in I−2, the domain of ψ, so we
can apply the map ψ to G. Thus if G and H are two 2- or 3-valued i-games,
then G ≈ H if and only if

ψ(G) = ψ(H) and G and H have the same parity.

In fact, in these specific cases we can do better, and work with non-i-
games, taking sides and representing them in G in one fell swoop:

Definition 12.2.2. If G is a 3-valued game, then we recursively define ψ+(G)
to be

ψ+(n) = n

when n = 0, 1, 2, and otherwise

ψ+(G) = “{ψ+(GL)|ψ+(GR)}”,

where “{HL|HR}” is {HL|HR} unless there is more than one integer x sat-
isfying HLCxCHR for every HL and HR, in which case we take the largest
such x.

Similarly, we define ψ−(G) to be

ψ−(n) = n

when n = 0, 1, 2, and otherwise

ψ−(G) = ,,{ψ−(GL)|ψ−(GR)},,,

where ,,{HL|HR},, is {HL|HR} unless there is more than one integer x sat-
isfying HLCxCHR for every HL and HR, in which case we take the smallest
such x.

As an example of funny brackets,

“{∗|2∗}” = 2 6= 0 = {∗|2∗}

The point of these functions ψ± is the following:
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Theorem 12.2.3. If G is a 3-valued game, then ψ+(G) = ψ(G+) and
ψ−(G) = ψ(G−), where we take G+ and G− to be 3-valued games, as made
possible by Theorem 9.5.2(g).

Proof. We prove ψ+(G) = ψ(G+); the other equation follows similarly. Pro-
ceed by induction. If G is one of 0, 1, 2, this is obvious. Otherwise, let
G = 〈GL|GR〉 and let H = 〈HL|HR〉 be a game whose options are HL ≈
(GL)+ and HR ≈ (GR)+, similar to the proof of Theorem 9.5.1. By Theo-
rem 9.5.2(g), we can assume that HL, HR, H are 3-valued games, because G
is. Then G ≈+ H, and in fact G+ ≈ H as long as H is an i-game. We break
into two cases:

(Case 1) H is an i-game. Then G+ ≈ H, so we want to show that
ψ+(G) = ψ(H). By induction, ψ+(GL) = ψ(HL) and ψ+(GR) = ψ(HR).
Then we want to show the equality of

ψ(H) = {ψ(HL)|ψ(HR)}

and
ψ+(G) = “{ψ+(GL)|ψ+(GR)}” = “{ψ(HL)|ψ(HR)”.

So, in light of the simplicity rule, it suffices to show that there is a most one
integer n with ψ(HL)CnCψ(HR) for all HL and HR. Suppose for the sake
of contradiction that

ψ(HL)C n ≤ n+ 1C ψ(HR) (12.1)

for all HL and HR.
Now if H is even-tempered, then by Theorem 11.2.4 this indicates that

R(HL) ≤ n and n + 1 ≤ L(HR) for every HL and HR. Thus L(H) ≤ n <
n+1 ≤ R(H) contradicting the assumption that H is an i-game. Similarly, if
H is odd-tempered, then Theorem 11.2.4 translates (12.1) into R(HL) < n <
n + 1 < L(HR) for every HL and HR so that L(H) < n and R(H) > n + 1.
Thus L(H)− R(H) ≤ 3, which is impossible since H is a 3-valued game.

(Case 2) H is not an i-game. Then H is even-tempered (and thus G is
also) and L(H) − R(H) < 0. Then by Lemma 9.4.9, G ≈+ H ≈+ R(H).
Since R(H) is a number, it is an i-game and G+ ≈ R(H).

Since HR is odd-tempered, if n is an integer then nC ψ(HR) ⇐⇒ n ≤
L(HR), by Theorem 11.2.4. Similarly, ψ(HL) C n ⇐⇒ R(HL) ≤ n. So an
integer n satisfies

ψ(HL)C nC ψ(HR)
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for every HL and HR iff R(HL) ≤ n ≤ L(HR) for every HL and HR, which
is the same as saying that L(H) ≤ n ≤ R(H). Since L(H) − R(H) < 0, it
follows that

ψ+(G) = “{ψ+(GL)|ψ+(GR)}” = “{ψ(HL)|ψ(HR)” = R(H) = ψ(R(H)).

Since G+ ≈ R(H), ψ(G+) = ψ(R(H)) and we are done.

It then follows that a 3-valued game G is determined up to ≈ by its parity,
ψ+(G), and ψ−(G).

Also, we see that ψ−(G) could have been defined using ordinary {·|·}
brackets rather than funny ,,{·|·},, brackets, since by the simplicity rule, a
difference could only arise if ψ−(G) equaled an integer n < 0, in which case
ψ(G−) = ψ−(G) = n, so that G− ≈ n or G− ≈ 〈n − 1|n + 1〉 = n + 〈−1|1〉.
But neither n nor 〈n − 1|n + 1〉 could equal a 3-valued game, because both
games have negative left outcome, and the left outcome of a 3-valued game
should be 0, 1, or 2. Then taking G− to be a 3-valued game, we would get a
contradiction.

12.3 Two-valued games

If we restrict to 2-valued games, something nice happens: there are only
finitely many equivalence classes, modulo ≈.

Theorem 12.3.1. Let G be a 2-valued game. If G is even-tempered, then
ψ−(G) is one of the following eight values:

0, a = {1

2
|∗}, b = {{1|1

2
∗}|∗}, c =

1

2
∗,

d = {1 ∗ |∗}, e = {1 ∗ |{1

2
∗ |0}}, f = {1 ∗ |1

2
}, 1

Similarly, if G is odd-tempered, then ψ−(G) is one of the following eight
values:

∗, a∗ = {1

2
∗ |0}, b∗ = {{1 ∗ |1

2
}|0}, c∗ =

1

2
,

d∗ = {1|0}, e∗ = {1|{1

2
|∗}}, f∗ = {1|1

2
∗}, 1∗
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Proof. Let S = {0, a, b, c, d, e, f, 1} and T = {∗, a∗, b∗, c∗, d∗, e∗, f∗, 1∗}. Be-
cause of the recursive definition of ψ−, it suffices to show that

1. 0, 1 ∈ S.

2. If A,B are nonempty subsets of S, then {A|B} ∈ T .

3. If A,B are nonempty subsets of T , then {A|B} ∈ S.

Because S and T are finite, all of these can be checked by inspection: (1) is
obvious, but (2) and (3) require a little more work. To make life easier, we
can assume that A and B have no dominated moves, i.e., that A and B are
antichains. Now as posets S and T look like:

and it is clear that these posets have very few antichains. In particular,
each of S and T has only nine nonempty antichains.

Using David Wolfe’s gamesman’s toolkit, I produced the following tables.
In each table, Left’s options are along the left side and Right’s options are
along the top. For even-tempered games:
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A \ B 0 a b c,d c d e f 1

0 * c* c* c* c* c* c* c* c*
a * c* c* c* c* c* c* c* c*
b * c* c* c* c* c* c* c* c*
d * c* c* c* c* c* c* c* c*
c a* c* c* c* c* c* c* c* c*
c,d a* c* c* c* c* c* c* c* c*
e a* c* c* c* c* c* c* c* c*
f b* c* c* c* c* c* c* c* c*
1 d* e* f* f* f* 1* 1* 1* 1*

and for odd-tempered games:

A \ B * a* b* c*,d* c* d* e* f* 1*

* 0 0 0 0 0 0 0 0 0
a* 0 0 0 0 0 0 0 0 0
b* 0 0 0 0 0 0 0 0 0
d* 0 0 0 0 0 0 0 0 0
c* a c c c c 1 1 1 1
c*,d* a c c c c 1 1 1 1
e* a c c c c 1 1 1 1
f* b c c c c 1 1 1 1
1* d e f f f 1 1 1 1

In fact, by monotonicity, only the bold entries need to be checked.

Corollary 12.3.2. If G is an even-tempered 2-valued game, then ψ+(G) and
ψ−(G) are among S = {0, a, b, c, d, e, f, 1}, and if G is an odd-tempered 2-
valued game, then ψ+(G) and ψ−(G) are among T = {∗, a∗, b∗, c∗, d∗, e∗, f∗, 1∗}.
Moreover, all these values can occur: if x, y ∈ S or x, y ∈ T have x ≤ y then
there is a game G with ψ−(G) = x and ψ+(G) = y. Modulo ≈, there are
exactly sixteen 2-valued i-games and seventy 2-valued games.

Proof. All eight values of ψ− actually occur, because they are (by inspection)
built up in a parity-respecting way from 0, 1, 1

2
= {0|1}, and ∗ = {0|0}. Now

if G is an i-game, then ψ(G) = ψ(G−) = ψ−(G) ∈ S ∪ T , and so if H is
any two-valued game, then ψ+(H) = ψ(H+) = ψ−(H+) ∈ S ∪ T . Moreover,
ψ(G) and ψ+(H) will clearly be in S if G or H is even-tempered, and T if
odd-tempered. All pairs of values occur because of Theorem 10.3.5. Since
S and T have eight elements, and an i-game is determined by its image
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under ψ, it follows that there are exactly eight even-tempered i-games and
eight odd-tempered i-games, making sixteen total. Similarly, by inspecting
S and T as posets, we can see that there are exactly 35 pairs (x, y) ∈ S × S
with x ≤ y. So there are exactly 35 even-tempered games and similarly 35
odd-tempered games, making 70 in total.

A couple of things should be noted about the values in S and in T . First
of all, S ∩ T = ∅. It follows that a 2-valued game G is determined modulo ≈
by ψ+(G) and ψ−(G), since they in turn determine the parity of G. Second
and more importantly, by direct calculation one can verify that the values of
S are actually all obtained by Norton multiplication with 1 ≡ {1

2
|}:

0 = 0.1, a =
1

4
.1, b =

3

8
.1, c =

1

2
.1

d =
1

2
∗ .1, e =

5

8
.1, f =

3

4
.1, 1 = 1.1

So the poset structure of S comes directly from the poset structure of

U = {0, 1

4
,
3

8
,
1

2
,
1

2
∗, 5

8
,
3

4
, 1}.

Similarly, T is just {s+ ∗ : s ∈ S}, so T gets its structure in the same way.
Understanding these values through Norton multiplication makes the

structure of 2-valued games more transparent.

Lemma 12.3.3. For G ∈ G, G.1 ≥ ∗ ⇐⇒ G ≥ 1/2 and similarly G.1 ≤
∗ ⇐⇒ G ≤ −1/2.

Proof. We prove the first claim, noting that the other follows by symmetry.
If G is an integer, then G.1 = G, so G ≥ ∗ ⇐⇒ G > 0 ⇐⇒ G ≥ 1

2
.

Otherwise, by definition of Norton multiplication,

G.1 = {GL.1 +
1

2
|GR.1− 1

2
}.

So ∗ ≤ G.1 unless and only unless G.1 ≤ 0 or some GR.1 − 1
2
≤ ∗. But

1
2
∗ = 1

2
.1, so ∗ ≤ G.1 unless and only unless

G.1 ≤ 0 or some GR.1 ≤ 1

2
∗ =

1

2
.1.
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By basic properties of Norton multiplication, these happen if and only if

G ≤ 0 or some GR ≤ 1

2
,

which happen if and only if 1
2

= {0|1} 6≤ G, by Theorem 3.3.7. So ∗ 6≤
G ⇐⇒ 1

2
6≤ G.

Using this we can determine the outcome of every 2-valued game:

Theorem 12.3.4. Let G be a 2-valued game, and let

U = {0, 1

4
,
3

8
,
1

2
,
1

2
∗, 5

8
,
3

4
, 1}

as above. If G is even-tempered, let ψ+(G) = u+.1 and ψ−(G) = u−.1, where
u+, u− ∈ U . Then R(G) is the greatest integer ≤ u+ and L(G) is the least
integer ≥ u−. Similarly, if G is odd-tempered, and ψ±(G) = u±.1 + ∗, where
u+, u− ∈ U , then R(G) is the greatest integer ≤ u− + 1/2 and L(G) is the
least integer ≥ u+ − 1/2.

Proof. When G is even-tempered, Theorem 9.5.2(h) tells us that L(G) =
L(G−) and R(G) = R(G+). So by Theorem 11.2.4,

n ≤ R(G) ⇐⇒ n ≤ R(G+) ⇐⇒ n ≤ ψ(G+).

But by Theorem 12.2.3, ψ(G+) = ψ+(G) = u+.1. So since n.1 = n,

n ≤ R(G) ⇐⇒ n ≤ u+.1 ⇐⇒ (n− u+).1 ≤ 0 ⇐⇒ n ≤ u+.

So R(G) is as stated. The case of L(G) is similar.
When G is odd-tempered, Theorem 9.5.2(i) tells us that L(G) = L(G+)

and R(G) = R(G−). So by Theorem 11.2.4,

n < R(G) ⇐⇒ n < R(G−) ⇐⇒ n ≤ ψ(G−).

But by Theorem 12.2.3, ψ(G−) = ψ−(G) = u−.1 + ∗. So since n.1 = n,

n < R(G) ⇐⇒ n ≤ u−.1 + ∗ ⇐⇒ (n− u−).1 ≤ ∗ ⇐⇒ n ≤ u− − 1

2

using Lemma 12.3.3. Letting m = n + 1 and using the fact that R(G) is an
integer, we see that

m ≤ R(G) ⇐⇒ n ≤ R(G)− 1 ⇐⇒ n < R(G) ⇐⇒ m ≤ u− +
1

2
.

So R(G) is as stated. The case of L(G) is similar.
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In particular then, if G is even-tempered then L(G) = 1 unless u− = 0 and
R(G) = 0 unless u+ = 1. When G is odd-tempered, L(G) = 0 iff u+ ≤ 1/2,
and R(G) = 1 iff u− ≥ 1/2.

Next, we show how ∧ and ∨ act on 2-valued games.

Lemma 12.3.5. If x, y ∈ U , then there is a maximum element z ∈ U such
that z ≤ x+ y.

Proof. The set U is almost totally ordered, with 1/2 and 1/2∗ its only pair of
incomparable elements. So the only possible problem would occur if 1/2 and
1/2∗ are both ≤ x + y, but 5/8 is not. However, every number of the form
x+y must be of the form n.1

8
or n.1

8
+∗ for some integer n. Then n.1

8
≥ 1/2∗

implies that n > 4, so that 5/8 is indeed ≤ n.1
8
. Similarly, n.1

8
+ ∗ ≥ 1/2

implies that n > 4, so again 5/8 ≤ n.1
8
.

Theorem 12.3.6. If G1 and G2 are even-tempered 2-valued i-games, with
ψ(Gi) = ui.1, then ψ(G1 ∨ G2) = v.1, where v is the greatest element of U
that is less than or equal to u1 + u2.

In other words, to ∨ two games together, we add their u values and round
down.

Proof. By Theorem 10.3.6, G1∨G2 is another i-game, clearly even-tempered.
So ψ(G1∨G2) = u3.1 for some u3 ∈ U . Let H be an even-tempered 2-valued
i-game with ψ(H) = v.1, with v as in the theorem statement. Then clearly

ψ(G1 +G2) = ψ(G1) + ψ(G2) = (u1 + u2).1 ≥ v.1 = ψ(H),

so that H . G1 +G2.
Now let µ : Z→ Z be the function n→ min(n, 1). Then µ̃(G1 +G2) =

G1 ∨G2. So by Theorem 10.2.1

H = µ̃(H) . µ̃(G1 +G2) = G1 ∨G2,

so that H . G1 ∨G2. Therefore

v.1 = ψ(H) ≤ ψ(G1 ∨G2) = u3.1,

so v ≤ u3.
On the other hand, G1 ∨G2 . G1 +G2 by Lemma 10.1.5, so

u3.1 = ψ(G1 ∨G2) ≤ ψ(G1 +G2) = (u1 + u2).1

and thus u3 ≤ u1 + u2. By choice of v, it follows that u3 ≤ v, so u3 = v, and
ψ(G1 ∨G2) = u3.1 = v.1.
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So we can describe the general structure of 2-valued games under ∨ as
follows:

Definition 12.3.7. If G is a 2-valued game, let u+(G) and u−(G) be the
values u+ and u− such that

ψ+(G) = u+.1 and ψ−(G) = u−.1

if G is even-tempered, and

ψ+(G) = u+.1 + ∗ and ψ−(G) = u−.1 + ∗

if G is odd-tempered.
If x, y are elements of U , we let x∪ y be the greatest element of U that is

less than or equal to x+ y, and we let x∩ y be the least element of U that is
greater than or equal to x+ y − 1 (which exists by symmetry).

If x is an element of G, we let dxe be the least integer n with n ≥ x and
bxc be the greatest integer n with n ≤ x.

We now summarize our results for two-valued games, mixing in the results
of Section 10.3.

Corollary 12.3.8. If G and H are 2-valued games, then G ≈ H iff u+(G) =
u+(H), u−(G) = u−(H), and G and H have the same parity. For any G,
u−(G) ≤ u+(G), and all such pairs (u1, u2) ∈ U2 with u1 ≤ u2 occur, in both
parities.

When G is even-tempered, L(G) = du−(G)e and R(G) = bu+(G)c. Simi-
larly, if G is odd-tempered, then

L(G) =

⌈
u+(G)− 1

2

⌉

R(G) =

⌊
u−(G) +

1

2

⌋
.

Moreover,
u+(G ∨H) = u+(G) ∪ u+(H)

u−(G ∨H) = u−(G) ∪ u−(H)

u+(G ∧H) = u+(G) ∩ u+(H)

u−(G ∧H) = u−(G) ∩ u−(H).
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∪ 0 1/4 3/8 1/2 1/2∗ 5/8 3/4 1

0 0 1/4 3/8 1/2 1/2∗ 5/8 3/4 1
1/4 1/4 1/2 5/8 3/4 5/8 3/4 1 1
3/8 3/8 5/8 3/4 3/4 3/4 1 1 1
1/2 1/2 3/4 3/4 1 3/4 1 1 1
1/2∗ 1/2∗ 5/8 3/4 3/4 1 1 1 1
5/8 5/8 3/4 1 1 1 1 1 1
3/4 3/4 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

∩ 0 1/4 3/8 1/2 1/2∗ 5/8 3/4 1

0 0 0 0 0 0 0 0 0
1/4 0 0 0 0 0 0 0 1/4
3/8 0 0 0 0 0 0 1/4 3/8
1/2 0 0 0 0 1/4 1/4 1/4 1/2
1/2∗ 0 0 0 1/4 0 1/4 3/8 1/2∗
5/8 0 0 0 1/4 1/4 1/4 3/8 5/8
3/4 0 0 1/4 1/4 3/8 3/8 1/2 3/4
1 0 1/4 3/8 1/2 1/2∗ 5/8 3/4 1

Figure 12.1: the ∪ and ∩ operations. Compare the table for ∪ with Figure 8.1

12.4 Three-valued games

Unlike two-valued games, there are infinitely many 3-valued games, modulo
≈. In fact, there is a complete copy of G in W3 modulo ≈.

Lemma 12.4.1. If ε is an all-small partizan game, then 1 + ε = ψ(G) for
some 3-valued i-game G.

Proof. By Theorem 12.2.3 and part (g) of Theorem 9.5.2, it suffices to show
that there is some 3-valued game G with ψ−(G) = 1+ε. In fact we show that
G can be taken to be both odd-tempered or even-tempered, by induction on
ε. We take ε to be all-small in form, meaning that every one of its positions
ε′ has options for both players or for neither.

227



If ε = 0, then we can take G to be either the even-tempered game 1 or
the odd-tempered game 〈0|2〉, since ψ−(1) = 1 and

ψ−(〈0|2〉) = {0|2} = 1.

Otherwise, ε = {εL|εR} and at least one εL and at least one εR exist. By
number avoidance, 1 + ε = {1 + εL|1 + εR}. By induction, there are odd-
tempered 3-valued games GL and GR with ψ−(GL) = 1 + εL and ψ−(GR) =
1 + εR. So G = 〈GL|GR〉 is an even-tempered 3-valued game, and has

ψ−(G) = {ψ−(GL)|ψ−(GR)} = {1 + εL|1 + εR} = ε.

Similarly, there are even-tempered 3-valued gamesHL andHR with ψ−(HL) =
1 + εL and ψ−(HR) = 1 + εR. So H = 〈HL|HR〉 is an odd-tempered 3-valued
game, and has

ψ−(H) = {ψ−(HL)|ψ−(HR)} = {1 + εL|1 + εR} = 1 + ε.

By Corollary 6.2.3, G. ↑ is an all-small game for every G ∈ G, so the
following definition makes sense:

Definition 12.4.2. For every G ∈ G, let φ(G) be a 3-valued even-tempered
i-game H satisfying ψ(H) = 1 +G. ↑.

Note that φ(G) is only defined up to ≈.
The following result shows how much more complicated 3-valued games

are than 2-valued games.

Theorem 12.4.3. For any G ∈ G,

R(φ(G)) ≥ 1 ⇐⇒ G ≥ 0

and
L(φ(G)) ≤ 1 ⇐⇒ G ≤ 0.

Moreover, if G and H are in G, then

φ(G+H) ≈ φ(G) + φ(H)− 1. (12.2)

Let ? : W3 × W3 → W3 be the extension of the operation (x, y) →
max(0,min(2, x+ y − 1)) (see Figure 12.2). Then we also have

φ(G+H) ≈ φ(G) ? φ(H) (12.3)
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This shows that if we look atW3 modulo ?-indistinguishability, it contains
a complete copy of G.

Proof. Since φ(G) is even-tempered, Theorem 11.2.4 implies that

1 ≤ R(φ(G)) ⇐⇒ 1 ≤ ψ(φ(G)) = 1 +G. ↑ ⇐⇒ G ≥ 0

and similarly,

1 ≥ L(φ(G)) ⇐⇒ 1 ≥ ψ(φ(G)) = 1 +G. ↑ ⇐⇒ G ≤ 0,

where in both cases we use the fact that G. ↑ has the same sign as G.
To see (12.2), note that

ψ(φ(G+H)) = 1 + (G+H). ↑= 1 +G. ↑ +1 +H. ↑ −1 =

ψ(φ(G)) + ψ(φ(H)) + ψ(−1) = ψ(φ(G) + φ(H)− 1),

so
φ(G+H) ≈ φ(G) + φ(H)− 1

because both sides are even-tempered. Finally, to see (12.3), let q : Z →
{0, 1, 2} be the map n→ max(0,min(2, n)). Then by Theorem 10.2.1,

φ(G) ? φ(H) = q̃(φ(G) + φ(H)− 1) ≈ q̃(φ(G+H)).

But since q acts as the identity on {0, 1, 2} and φ(G+H) ∈ W3, q̃(φ(G+H)) =
φ(G+H), establishing (12.3).

⊕3 0 1 2

0 0 0 1
1 0 1 2
2 1 2 2

Figure 12.2: The operation ? of Theorem 12.4.3.

Since we can embed 3-valued games in n-valued games in an obvious way,
these results also show that n-valued games modulo ≈ are complicated.
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12.5 Indistinguishability for rounded sums

In this section and the next, we examine the structure of n-valued games
modulo certain types of indistinguishability. We specifically consider the
following kinds of indistinguishability:

• {⊕n,�n}-indistinguishability, which we show is merely ≈.

• {⊕n}-indistinguishability (and similarly {�n} indistinguishability) which
turns out to be slightly coarser.

• {∧,∨}- and {∨}-indistinguishability, which turn out to have only finitely
many equivalence classes for every n, coming from the finitely many
classes of 2-valued games.

In a previous section we showed that for all these operations, indistinguisha-
bility is as coarse as ≈, in the sense that whenever G ≈ H, then G and H are
indistinguishable with respect to all these operations. We begin by showing
that for {⊕n,�n}, indistinguishability is ≈ exactly.

Theorem 12.5.1. Suppose n > 1. Let G and H be n-valued games, and
G 6≈ H. Then there is some n-valued game X such that o#(G �n X) 6=
o#(H �n X) or o#(G⊕n X) 6= o#(H ⊕n X).

Proof. We break into cases according to whether G and H have the same
or opposite parity. First of all suppose that G and H have opposite parity.
Say G is odd-tempered and H is even-tempered. Let µ be the map µ(x) =
min(x, n−1) and ν(x) = max(x−(n−1), 0), and let Q be the even-tempered
n-valued game 〈∗|(n− 1)∗〉, which has Q+ ≈ n− 1 and Q− ≈ 0. Then using
Theorem 9.5.2(h-i) and Lemma 10.1.4, we have

L(G+Q) = L(G+ +Q+) = L(G+ + (n− 1)) = L(G) + (n− 1) ≥ n− 1.

Thus
L(G⊕n Q) = L(µ̃(G+Q)) = µ(L(G+Q)) = n− 1,

and

L(G�nQ) = L(ν̃(G+Q)) = ν(L(G+Q)) = L(G)+(n−1)− (n−1) = L(G).

Similarly,

L(H +Q) = L(H− +Q−) = L(H−) = L(H) ≤ n− 1,
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so that
L(H ⊕n Q) = L(µ̃(H +Q)) = µ(L(H +Q)) = L(H),

and
L(H �n Q) = L(ν̃(H +Q)) = ν(L(H +Q)) = 0.

Then taking X = Q, we are done unless

L(H) = L(H ⊕n Q) = L(G⊕n Q) = n− 1

L(G) = L(G�n Q) = L(H �n Q) = 0.

But then,
L(H ⊕n 0) = L(H) 6= L(G) = L(G⊕n 0),

so we can take X = 0 and be done.
Now suppose that G and H have the same parity. Since G 6≈ H, it must

be the case that G− 6≈ H− or G+ 6≈ H+. Suppose that G− 6≈ H−. Without
loss of generality, G− 6. H−. By Theorem 9.5.2(g) we can assume that G−

and H− are also n-valued games. Because they are i-games, it follows from
Corollary 9.3.2 that L(G− −H−) > 0. Then by Theorem 9.5.2(h),

L(G−H−) = L((G−H−)−) = L(G− −H−) > 0,

since G, H, G−, and H− all have the same parity. (Note that (H−)+ ≈ H−.)
On the other hand,

L(H −H−) = L((H −H−)−) = L(H− −H−) = L(0) = 0.

Now let X be the game n− 1−H−. It follows that L(G + X) > n− 1 and
L(H + X) = n − 1. Letting δ be the map x → max(x − (n − 1), 0), we see
that

L(G�n X) = L(δ̃(G+X)) = δ(L(G+X)) = L(G+X)− (n− 1) > 0,

while

L(H �n X) = L(δ̃(H +X)) = δ(L(H +X)) = δ(n− 1) = 0.

So o#(G�n X) 6= o#(H �n X).
If we had G+ 6≈ H+ instead, a similar argument would produce X such

that o#(G⊕n X) 6= o#(H ⊕n X).
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Corollary 12.5.2. Indistinguishability with respect to {⊕n,�n} is exactly
≈.

Proof. Let ∼ be {⊕n,�n}-indistinguishability. Then we already know that
G ≈ H =⇒ G ∼ H. Conversely, suppose G ∼ H. Then by definition of
indistinguishability,

G�n X ∼ H �n X and so o#(G�n X) = o#(H �n X)

G⊕n X ∼ H ⊕n X and so o#(G⊕n X) = o#(H ⊕n X)

so that by the theorem, G ≈ H.

So if we look at 2-valued games modulo {⊕2,�2}-indistinguishability,
there are exactly 70 of them, but if we looked at 3-valued games instead,
there are infinitely many, in a complicated structure.

The situation for {⊕n}-indistinguishability of n-valued games is a little
bit more complicated than {⊕n,�n}-indistinguishability, because indistin-
guishability turns out to be a little coarser. But at least we have a simpler
criterion:

Lemma 12.5.3. If G and H are n-valued games, and ∼ denotes {⊕n}-
indistinguishability, then G ∼ H iff ∀X ∈ Wn : o#(G⊕n X) = o#(H ⊕n X).

Proof. This was Theorem 7.7.3.

The same proof works if we replaced ⊕n with any commutative and as-
sociative operation with an identity. We’ll use this same fact later for ∧ and
∨.

To determine {⊕n}-indistinguishability, we’ll need a few more lemmas:

Lemma 12.5.4. Let N denote the nonnegative integers. Then for any N-
valued even-tempered game G,

m ≤ L(G) ⇐⇒ 〈〈0|m〉|∗〉 . G.

Proof. One direction is obvious: if 〈〈0|m〉|∗〉 . G, then

m = L(〈〈0|m〉|∗〉) ≤ L(G).

Conversely, suppose that m ≤ L(G) = L(G−), where we can take G− to be
N-valued. I claim that

R(〈∗|〈−m|0〉〉+G−) ≥ 0.
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Since we took G− to be N-valued, the only way that the outcome can fail
to be ≥ 0 is if the outcome of the 〈∗|〈−m|0〉〉 component is −m. So in the
sum 〈∗|〈−m|0〉〉 + G−, with Right moving first, Left can move to ∗ at the
first available moment and guarantee an outcome of at least 0, unless Right
moves to 〈−m|0〉 on his first turn. But if Right moves to 〈−m|0〉 on the
first move, then Left can use her first-player strategy in G− to ensure that
the final outcome of G− is at least m, guaranteeing a final score for the sum
of at least 0. This works as long as Right doesn’t ever move in the 〈−m|0〉
component to 0. But if he did that, then the final score would automatically
be at least 0, because G− is N-valued.

So R(〈∗|〈−m|0〉〉 + G−) ≥ 0. But note that Q = 〈〈m|0〉|∗〉 is an even-
tempered i-game, and we just showed that R(−Q + G−) ≥ 0. By Theo-
rem 9.5.2, it follows that

0 . −Q+G−,

so that Q . G−, because i-games are invertible. But then Q . G− . G, so
we are done.

Similarly, we have

Lemma 12.5.5. For any N-valued odd-tempered game G,

m ≤ R(G) ⇐⇒ 〈0|m〉 . G.

Proof. Again, one direction is easy: if 〈0|m〉 . G, then

m = R(〈0|m〉) . R(G).

Conversely, suppose that m ≤ R(G) = R(G−). Take a G− which is
N-valued (possible by Theorem 9.5.2(g)). I claim that

R(G− + 〈−m|0〉) ≥ 0

By the same argument as in the previous lemma, Left can use her strategy
in G− to ensure that the final score of G− is at least m, unless Right moves
prematurely in 〈−m|0〉 to 0, in which case Left automatically gets a final
score of at least 0, becaues G− is N-valued.

Again, if Q = 〈0|m〉, then Q is an odd-tempered i-game and we just
showed that R(G− − Q) ≥ 0. So using Theorem 9.5.2, and the fact that
G− −Q is an even-tempered i-game,

0 . G− −Q,

233



so that
Q . G− . G.

Lemma 12.5.6. For m > 0, let Qm = 〈〈0|m〉|∗〉. Then

Qm +Qm ≈ 〈〈0|m〉|〈0|m〉〉 ≈ 〈0|m〉+ ∗

Qm +Qm +Qm ≈ 〈m ∗ |〈0|m〉〉
Qm +Qm +Qm +Qm ≈ m

Proof. If m = 1, all these results follow by direct computation, using the
map ψ and basic properties of Norton multiplication

ψ(〈〈0|1〉|∗〉) = {{0|1}|∗} = {1

2
|∗} =

1

4
.{1

2
|}

ψ(〈〈0|1〉|〈0|1〉〉) = {{0|1}|{0|1}} = {1

2
|1
2
} =

1

2
∗ =

1

2
.{1

2
|}

ψ(〈0|1〉+ ∗) = ψ(〈0|1〉) + ψ(∗) = {0|1}+ ∗ =
1

2
∗ =

1

2
.{1

2
|}

ψ(〈1 ∗ |〈0|1〉〉) = {1 ∗ |{0|1}} = {1 ∗ |1
2
} =

3

4
.{1

2
|}

ψ(1) = 1 =
4

4
.{1

2
|}

For m > 1, let µ be the order-preserving map of multiplication by m.
Then Qm = µ̃(Q1), and the fact that µ(x + y) = µ(x) + µ(y) for x, y ∈ Z
implies that µ̃(G+H) = µ̃(G) + µ̃(H) for Z-valued games G and H. So

Qm +Qm = µ̃(Q1) + µ̃(Q1) = µ̃(Q1 +Q1) ≈ µ̃(〈〈0|1〉|〈0|1〉〉) = 〈〈0|m〉|〈0|m〉〉

and

µ̃(〈〈0|1〉|〈0|1〉〉) ≈ µ̃(〈0|1〉+ ∗) = µ̃(〈0|1〉) + µ̃(∗) = 〈0|m〉+ ∗.

The other cases are handled analogously.

Lemma 12.5.7. Let µ : Z → N be the map µ(x) = max(0, x). Then for
any Z-valued game X and any N-valued game Y ,

X . Y ⇐⇒ µ̃(X) . Y.
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Proof. By Lemma 10.1.5 (applied to the fact that x ≤ µ(x) for all x), X .
µ̃(X), so the⇐ direction is obvious. Conversely, suppose that X . Y . Then
by Theorem 10.2.1,

µ̃(X) . µ̃(Y ) = Y.

Lemma 12.5.8. If G is an n-valued even-tempered game, then 0 . G.

Proof. By Theorem 9.5.2, we can take G+ and G− to be n-valued games.
Then R(G+),R(G−) ∈ n = {0, . . . , n − 1}, so that 0 ≤ R(G+) and 0 ≤
R(G−). By another part of Theorem 9.5.2, it follows that 0 . G+ and
0 . G−, so therefore 0 . G.

Theorem 12.5.9. Let G and H be n-valued games of the same parity. Let
Q = 〈〈0|n−1〉|∗〉, and let µ be the map µ(x) = max(0, x) from Lemma 12.5.7.
Then the following statements are equivalent:

(a) For every n-valued game X,

Rf(G⊕n X) ≤ Rf(H ⊕n X)

(b) For every n-valued game X,

Rf(G+X) ≥ n− 1 =⇒ Rf(H +X) ≥ n− 1.

(c) For every n-valued i-game Y , if G+ Y is even-tempered then

L(G− + Y ) ≥ n− 1 =⇒ L(H− + Y ) ≥ n− 1,

and if G+ Y is odd-tempered, then

R(G− + Y ) ≥ n− 1 =⇒ R(H− + Y ) ≥ n− 1.

(d) For every n-valued i-game Y ,

〈0|n− 1〉 . G− + Y =⇒ 〈0|n− 1〉 . H− + Y

and
Q . G− + Y =⇒ Q . H− + Y.
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(e)
µ̃(〈0|n− 1〉 −H−) . µ̃(〈0|n− 1〉 −G−)

and
µ̃(Q−H−) . µ̃(Q−G−).

(f) G− ⊕n 〈0|n− 1〉 . H− ⊕n 〈0|n− 1〉.

Proof. Let ν be the order-preserving map ν(x) = min(x, n− 1).

(a) ⇒ (b) Suppose that (a) is true, and Rf(G+X) ≥ n−1. Then G⊕nX =
ν̃(G+X), so that by Lemma 10.1.4,

Rf(G⊕n X) = ν(Rf(G+X)) = n− 1.

Then by truth of (a), it follows that Rf(H⊕nX) ≥ Rf(G⊕nX) = n−1.
So since

n− 1 ≤ Rf(H ⊕n X) = ν(Rf(H +X)) = min(Rf(H +X), n− 1),

it must be the case that Rf(H +X) ≥ n− 1 too.

(b) ⇒ (a) Suppose that (a) is false, so that

Rf(G⊕n Y ) > Rf(H ⊕n Y )

for some Y . Let k = (n− 1)− Rf(G⊕n Y ), so that

Rf(G⊕n Y ) + k = n− 1

Rf(H ⊕n Y ) + k < n− 1.

Since G⊕n Y is an n-valued game, k ≥ 0. Then

Rf(G⊕nY ⊕nk) = min(Rf(G⊕nY )+k, n−1) = min(n−1, n−1) = n−1,

while

Rf(H⊕nY ⊕nk) = min(Rf(H⊕nY )+k, n−1) = Rf(H⊕nY )+k < n−1.

So letting X = Y ⊕n k, we have

min(Rf(G+X), n− 1) = Rf(G⊕n X) = n− 1 >

Rf(H ⊕n X) = min(Rf(H +X), n− 1),

implying that Rf(G+X) ≥ n− 1 and Rf(H +X) < n− 1, so that (b)
is false.
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(b) ⇔ (c) An easy exercise using Theorem 9.5.2(b,d,g,h,i). Apply part (b)
to Y , part (g) to see that Y ranges over the same things as X−, and
parts (d,h,i) to see that

Rf(G+X) = L(G− +X−)

when G+X is even-tempered and

Rf(G+X) = R(G− +X−)

when G+X is odd-tempered. And similarly for Rf(H +X).

(c) ⇔ (d) An easy exercise using Lemma 12.5.4, Lemma 12.5.5, and Theo-
rem 9.3.3.

(d) ⇔ (e) For any n-valued game Y , by Lemma 12.5.7 we have

Q . G− + Y ⇐⇒ Q−G− . Y ⇐⇒ µ̃(Q−G−) . Y,

and similarly

Q . H− + Y ⇐⇒ µ̃(Q−G−) . Y

〈0|n− 1〉 . G− + Y ⇐⇒ µ̃(〈0|n− 1〉 −G−) . Y

〈0|n− 1〉 . H− + Y ⇐⇒ µ̃(〈0|n− 1〉 −H−) . Y.

Using these, (d) is equivalent to the claim that for every n-valued i-
game Y ,

µ̃(Q−G−) . Y ⇒ µ̃(Q−H−) . Y (12.4)

and

µ̃(〈0|n− 1〉 −G−) . Y ⇒ µ̃(〈0|n− 1〉 −H−) . Y. (12.5)

Then (e) ⇒ (d) is obvious. For the converse, let Z1 = µ̃(Q−G−) and
Z2 = µ̃(〈0|n−1〉−G−). Then Z1 and Z2 are i-games, by Theorem 10.3.6
and the fact that Q, G−, and 〈0|n − 1〉 are i-games. Additionally, Z1

and Z2 are n-valued games because µ(x − y) ∈ n whenever x, y ∈ n,
and all of Q, G−, and 〈0|n − 1〉 are n-valued games. So if (d) is true,
we can substitute Z1 into (12.4) and Z2 into (12.5), yielding (e).
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(e) ⇔ (f) It is easy to verify that

(n− 1)− µ(i− j) = ν((n− 1− i) + j) = (n− 1− i)⊕n j

for i, j ∈ n. Consequently

(n− 1)− µ̃(Q−H−) = ν̃((n− 1−Q) +H−) = (n− 1−Q)⊕n H−

and similarly

(n− 1)− µ̃(Q−G−) = ν̃((n− 1−Q) +G−) = (n− 1−Q)⊕n G−

(n− 1)− µ̃(〈0|n− 1〉 −H−) = (n− 1− 〈0|n− 1〉)⊕n H−

(n− 1)− µ̃(〈0|n− 1〉 −G−) = (n− 1− 〈0|n− 1〉)⊕n G−.

So (e) is equivalent to

G− ⊕n (n− 1−Q) . H− ⊕n (n− 1−Q)

and

G− ⊕n (n− 1− 〈0|n− 1〉) . H− ⊕n (n− 1− 〈0|n− 1〉).

But by Lemma 12.5.6

n− 1− 〈0|n− 1〉 = 〈0|n− 1〉,

and
n− 1−Q = 〈n ∗ |〈0|n〉〉 ≈ Q+ 〈0|n− 1〉.

So then

n− 1−Q = ν̃(n− 1−Q) ≈ ν̃(Q+ 〈0|n− 1〉) = Q⊕n 〈0|n− 1〉.

So (e) is even equivalent to

G− ⊕n 〈0|n− 1〉 . H− ⊕n 〈0|n− 1〉 (12.6)

and
G− ⊕n 〈0|n− 1〉 ⊕n Q . H− ⊕n 〈0|n− 1〉 ⊕n Q. (12.7)

However (12.7) obviously follows from (12.6), so (e) is equivalent to
(12.6), which is (f).
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On a simpler note, we can reuse the proof of the same-parity case of
Theorem 12.5.1 to prove the following:

Theorem 12.5.10. If G and H are n-valued games with the same parity,
then G+ . H+ if and only if

Lf(G⊕n X) ≤ Lf(H ⊕n X)

for all n-valued games X.

Proof. Clearly if G+ . H+, then G+ +X+ . H+ +X+, so that

Lf(G+X) = Lf(G+ +X+) ≤ Lf(H+ +X+) = Lf(H +X),

using the fact from Theorem 9.5.2 that Lf(K) = Lf(K+) for any game K.
But then

Lf(G⊕nX) = min(Lf(G+X), n−1) ≤ min(Lf(H+X), n−1) = Lf(H⊕nX).

Conversely, suppose that G+ 6. H+. By Theorem 9.5.2(g) we can assume
that G+ and H+ are n-valued games too. Because they are i-games, it follows
from Corollary 9.3.2 that R(H+ −G+) < 0. Then by Theorem 9.5.2(h),

R(H −G+) = R((H −G+)+) = R(H+ −G+) < 0,

since G,H,G+, and H+ all have the same parity. On the other hand,

R(G−G+) = R(G+ −G+) = R(0) = 0.

Now let X be the game n−1−G+, so that R(H+X) < n−1 and R(G+X) =
n− 1. Let ν be the map ν(x) = min(x, n− 1). Then

R(H ⊕n X) = R(ν̃(H +X)) = ν(R(H +X)) < n− 1,

while
R(G⊕n X) = ν(R(G+X)) = ν(n− 1) = n− 1.

So then

Lf(G⊕n X) = R(G⊕n X) = n− 1 > R(H ⊕n X) = Lf(H ⊕n X),

where Lf is R because X has the same parity as G and H. Then we are done,
because X is clearly an n-valued game.
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Finally, in the case where G and H have different parities, it is actually
possible for G and H to be {⊕n}-indistinguishable, surprisingly:

Theorem 12.5.11. If G and H are n-valued games of different parities, then
G and H are ⊕n indistinguishable if and only if

o#(G) = o#(G+ ∗) = o#(H) = o#(H + ∗) = (n− 1, n− 1). (12.8)

Proof. First of all, suppose that (12.8) is true. I claim that for every game
X,

o#(G⊕n X) = o#(H ⊕n X) = (n− 1, n− 1).

If X is even-tempered, then 0 . X by Lemma 12.5.8, so that

G . G⊕n X and H . H ⊕n X,

and therefore o#(G ⊕n X) and o#(H ⊕n X) must be at least as high as
o#(G) and o#(H). But o#(G) and o#(H) are already the maximum values,
so o#(G⊕n X) and o#(H ⊕n X) must also be (n− 1, n− 1).

On the other hand, if X is odd-tempered, then X ⊕n ∗ = X + ∗ is even-
tempered, and the same argument applied to X + ∗, G+ ∗, and H + ∗ shows
that

o#(G⊕n X) = o#((G+ ∗)⊕n (X + ∗)) = (n− 1, n− 1)

and
o#(H ⊕n X) = o#((H + ∗)⊕n (X + ∗)) = (n− 1, n− 1).

(Note that for any n-valued game K, K ⊕n ∗ = K + ∗, by Lemma 10.1.6.)
Now for the converse, suppose that G and H are indistinguishable. With-

out loss of generality, G is odd-tempered and H is even-tempered. Let
Q = 〈∗|(n − 1)∗〉, so that Q− ≈ 0, Q+ ≈ n − 1, and Q is even-tempered.
Then

n− 1 = L(G+ ⊕n (n− 1)) = L(G+ ⊕n Q+) = L((G⊕n Q)+) =

L(G⊕n Q) = L(H ⊕n Q) = L((H ⊕n Q)−) = L(H− ⊕n Q−) =

L(H− ⊕n 0) = L(H−) = L(H)

and
R(G) = R(G−) = R(G− ⊕n 0) = R(G− ⊕n Q−) =

R((G⊕n Q)−) = R(G⊕n Q) = R(H ⊕n Q) = R((H ⊕n Q)+) =
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R(H+ ⊕n Q+) = R(H+ ⊕n (n− 1)) = n− 1.

So
L(H) = n− 1 = R(G).

But if G and H are indistinguishable, then

o#(G) = o#(G⊕n 0) = o#(H ⊕n 0) = o#(H),

so it must be the case that

L(G) = L(H) = n− 1

and
R(H) = R(G) = n− 1.

So every outcome of G or H is n − 1. And by the same token, G + ∗ and
H + ∗ are also indistinguishable n-valued games of opposite parity, so every
outcome of G+ ∗ and of H + ∗ must also be n− 1.

Combining Theorems 12.5.9, 12.5.10, and 12.5.11, we get a more explicit
description of {⊕n}-indistinguishability:

Theorem 12.5.12. Let ∼ be {⊕n}-indistinguishability on n-valued games.
Then when G and H have the same parity, G ∼ H iff G+ ≈ H+ and

G− ⊕n 〈0|n− 1〉 ≈ H− ⊕n 〈0|n− 1〉. (12.9)

When G is odd-tempered and H is even-tempered, G ∼ H if and only if

G+ ≈ G− ⊕n 〈0|n− 1〉 ≈ n− 1 (12.10)

and
H+ ≈ H− ⊕n 〈0|n− 1〉 ≈ (n− 1)∗ (12.11)

Proof. By Lemma 12.5.3, G ∼ H if and only if

∀X ∈ Wn : o#(G⊕n X) = o#(H ⊕n X).

If G and H have the same parity, then this is equivalent to

Rf(G⊕n X) = Rf(H ⊕n X)
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and
Lf(G⊕n X) = Lf(H ⊕n X)

for all n-valued games X. By Theorems 12.5.9 and 12.5.10, respectively,
these are equivalent to G+ ∼ H+ and to (12.9) above. This handles the case
when G and H have the same parity.

Let A be the set of all even-tempered n-valued games X with o#(X) =
o#(X + ∗) = (n − 1, n − 1), and B be the set of all odd-tempered n-valued
games with the same property. Then Theorem 12.5.11 says that when G is
odd-tempered and H is even-tempered, G ∼ H iff G ∈ A and H ∈ B. Now
both A and B are nonempty, since (n−1) ∈ A and (n−1)∗ ∈ B, easily. So by
transitivity, A must be an equivalence class, specifically the equivalence class
of (n − 1), and similarly B must be the equivalence class of (n − 1)∗. Then
(12.10) and (12.11) are just the conditions we just determined for comparing
games of the same parity, because of the easily-checked facts that

(n− 1)⊕n 〈0|n〉 = (n− 1)∗

(n− 1) ∗ ⊕n〈0|n〉 = (n− 1) + ∗+ ∗ ≈ (n− 1).

So as far as {⊕n} indistinguishability is concerned, a game G is deter-
mined by G+, G− ⊕n 〈0|n − 1〉, and its parity - except that in one case
one of the even-tempered equivalence classes gets merged with one of the
odd-tempered equivalence classes.

In the case that n = 2, 〈0|1〉 = 1
2
.{1

2
|}+∗, so the thirty five possible pairs

of (u−, u+) give rise to the following nineteen pairs of (u− ∪ 1
2
, u+):(

1

2
, 0

)
,

(
1

2
,
1

4

)
,

(
1

2
,
3

8

)
,

(
1

2
,
1

2

)
,

(
1

2
,
1

2
∗
)
,

(
1

2
,
5

8

)
,

(
1

2
,
3

4

)
,

(
1

2
, 1

)
,(

3

4
,
1

4

)
,

(
3

4
,
3

8

)
,

(
3

4
,
1

2

)
,

(
3

4
,
1

2
∗
)
,(

3

4
,
5

8

)
,

(
3

4
,
3

4

)
,

(
3

4
, 1

)
,

(
1,

1

2

)
,
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(
1,

5

8

)
,

(
1,

3

4

)
, (1, 1)

So there are 2 · 19 − 1 = 37 equivalence classes of 2-valued games, modulo
{⊕2} indistinguishability.

We leave as an exercise to the reader the analogue of Theorem 12.5.12
for {�n}-indistinguishability.

12.6 Indistinguishability for min and max

Unlike the case of {⊕n,�n}- and {⊕n}- indistinguishability, {∧,∨}- and
{∨}- indinstinguishability are much simpler to understand, because they
reduce in a simple way to the n = 2 case (where ⊕2 = ∨ and �2 =
∧). In particular, there will be only finitely many equivalence classes of
n-valued games modulo {∧,∨}-indistinguishability (and therefore modulo
{∨}-indistinguishability too, because {∨}-indistinguishability is a coarser re-
lation). The biggest issue will be showing that all the expected equivalence
classes are nonempty.

For any n, let δn : Z→ {0, 1} be given by δn(x) = 0 if x < n, and δn(x) =
1 if x ≥ n. Then for m = 1, 2, . . . , n − 1, δ̃m produces a map from n-valued
games to 2-valued games. By Lemma 10.1.5, δ̃m(G) ≤ ˜δm′(G) when m ≥ m′.
We will see that a game is determined up to {∧,∨}-indistinguishability by
the sequence (δ̃1(G), δ̃2(G), . . . , δ̃n−1(G)).

Theorem 12.6.1. If G is an n-valued game, then L(G) is the maximum
m between 1 and n − 1 such that L(δ̃m(G)) = 1, or 0 if no such m exists.
Similarly, R(G) is the maximum m between 1 and n−1 such that R(δ̃m(G)) =
1, or 0 if no such m exists.

In particular, then, the outcome of a game is determined by the values
of δ̃m(G), so that if δ̃m(G) ≈ δ̃m(H) for every m for some game H, then
o#(G) = o#(H).

Proof. Note that by Lemma 10.1.4,

δm(L(G)) = L(δ̃m(G)) and δm(R(G)) = R(δ̃m(G)).

Then by definition of δm, we see that L(δ̃m(G)) = 1 iff m ≤ L(G), and
similarly for R(δ̃m(G)) and R(G). So since L(G) and R(G) are integers
between 0 and n− 1, the desired result follows.
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Theorem 12.6.2. If G and H are n-valued games, then

δ̃m(G ∧H) = δ̃m(G) ∧ δ̃m(H) = δ̃m(G)�2 δ̃m(H)

and
δ̃m(G ∨H) = δ̃m(G) ∨ δ̃m(H) = δ̃m(G)⊕2 δ̃m(H).

Proof. This follows immediately from the fact that when restricted to 2-
valued games, ∧ = �2 and ∨ = ⊕2, together with the obvious equations

δm(min(x, y)) = min(δm(x), δm(y)) and δm(max(x, y)) = max(δm(x), δm(y))

Let ∼ be the equivalence relation on n-valued games given by

G ∼ H ⇐⇒ ∀1 ≤ m ≤ n− 1 : δ̃m(G) ≈ δ̃m(H)

Then Theorem 12.6.1 implies that o#(G) = o#(H) when G ∼ H, and The-
orem 12.6.2 implies that G ∧ H ∼ G′ ∧ H ′ and G ∨ H ∼ G′ ∨ H ′, when
G ∼ G′ and H ∼ H ′. So by definition of indistinguishability, G ∼ H implies
that G and H are {∧,∨}-indistinguishable (and {∨}-indistinguishable too,
of course).

Theorem 12.6.3. If G and H are {∧,∨}-indistinguishable, then G ∼ H.
In particular then, ∼ is {∧,∨}-indistinguishability.

Proof. Suppose that G 6∼ H, so that δ̃m(G) 6≈ δ̃m(H) for some 1 ≤ m ≤ n−1.
Then by Theorem 12.5.1, there is a two-valued game Y such that

o#(δ̃m(G)�2 Y ) 6= o#(δ̃m(H)�2 Y ) or o#(δ̃m(G)⊕2 Y ) 6= o#(δ̃m(H)⊕2 Y ).
(12.12)

Let X = (m− 1) +Y , which will be a n-valued game because 1 ≤ m ≤ n− 1
and Y is {0, 1}-valued. Then since δm((m − 1) + y) = y for y ∈ {0, 1}, it
follows that δ̃m(X) = Y . So by Theorem 12.6.2,

δ̃m(G ∧X) ≈ δ̃m(G)�2 Y

δ̃m(H ∧X) ≈ δ̃m(H)�2 Y

δ̃m(G ∨X) ≈ δ̃m(G)⊕2 Y

δ̃m(G ∨ Y ) ≈ δ̃m(H)⊕2 Y
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Combining this with (12.12), we see that

o#(δ̃m(G ∧X)) 6= o#(δ̃m(H ∧X)) or o#(δ̃m(G ∨X)) 6= o#(δ̃m(H ∨X)).

By Lemma 10.1.4, this implies that either

o#(G ∧X) 6= o#(H ∧X) or o#(G ∨X) 6= o#(H ∨X),

so that G and H are not indistinguishable.
The converse direction, that G ∼ H implies that G and H are {∧,∨}-

indistinguishable, follows by the remarks before this theorem.

By a completely analogous argument we see that

Theorem 12.6.4. If G and H are n-valued games, then G and H are {∨}-
indistinguishable if and only if δ̃m(G) and δ̃m(H) are {⊕2}-indistinguishable
for all 1 ≤ m ≤ n− 1.

Now since there are only finitely many classes of 2-valued games modulo
≈, it follows that there are only finitely many n-valued games modulo {∧,∨}-
indistinguishability, and a game’s class is determined entirely by its parity
and the values of u+(δ̃m(G)) and u−(δ̃m(G)) for 1 ≤ m ≤ n− 1. We can see
that these sequences are weakly decreasing, by Lemma 10.1.5, and it is also
clear that u−(δ̃m(G)) ≤ u+(δ̃m(G)), but are there any other restrictions?

It turns out that there are none: given any weakly decreasing sequence
of 2-valued games modulo ≈, some n-valued game has them as its sequence.
Unfortunately the proof is fairly complicated. We begin with a technical
lemma.

Lemma 12.6.5. Let A be the subgroup of G generated by short numbers
and ∗, and let B be the group of Z-valued even-tempered i-games G in I−2

such that ψ(G) ∈ A, modulo ≈. Let P be either A or B. Suppose we have
sequences a1, . . . , an and b1, . . . , bn of elements of P such that ai ≥ bi, ai ≥
ai+1, and bi ≥ bi+1 for all appropriate i. Then for 0 ≤ j ≤ i ≤ n, we can
choose cij ∈ P , such that cij ≥ 0 for (i, j) 6= (n, n), and

ak =
∑

0≤j≤i≤n, k≤i

cij (12.13)

and
bk =

∑
0≤j≤i≤n, k≤j

cij (12.14)

for all 1 ≤ k ≤ n.
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So for instance, in the n = 2 case, this is saying that if the rows and
columns of (

a1 a2

b1 b2

)
are weakly decreasing, then we can find cij ∈ P such that(
a1 a2

b1 b2

)
=

(
c10 0
0 0

)
+

(
c11 0
c11 0

)
+

(
c20 c20

0 0

)
+

(
c21 c21

c21 0

)
+

(
c22 c22

c22 c22

)
,

where c10, c11, c20, and c21 ≥ 0. This is not trivial - if P was instead the group
of partizan games generated by the integers and ∗, then no such cij ∈ P could
be found for the following matrix:(

2 1∗
1 0

)
.

Proof (of Lemma 12.6.5). Since A and B are isomorphic as partially-ordered
abelian groups (by Theorem 11.2.7), we only consider the P = A case. The
elements of A are all of the form x or x∗, for x a dyadic rational, and are
compared as follows:

x∗ ≥ y∗ ⇐⇒ x ≥ y

x∗ ≥ y ⇐⇒ x ≥ y∗ ⇐⇒ x > y

We specify an algorithm for finding the cij as follows. First, take cnn = bn,
because cnn is always the only cij that appears in the sum (12.14) for bn. Then
subtract off cnn from every ak and bk. This clear the bottom right corner of
the matrix (

a1 a2 · · · an
b1 b2 · · · bn

)
and preserves the weakly-decreasing property of rows and columns, leaving
every element ≥ 0.

Now, we find ways to clear more and more entries of this matrix by
subtracting off matrices of the form(

x x · · · x x · · · x 0 · · · 0
x x · · · x 0 · · · 0 0 · · · 0

)
or (

x · · · x 0 · · · 0
x · · · x 0 · · · 0

)
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for x ∈ P, x ≥ 0. Once the matrix is cleared, we are done. At every step, the
rows and columns of the matrix will be weakly decreasing and there will be a
zero in the bottom right corner. Each step increases the number of vanishing
entries, so the algorithm eventually terminates.

Let the current state of the matrix be(
a′1 · · · a′n−1 a′n
b′1 · · · b′n−1 0

)
, (12.15)

and find the biggest i and j such that a′i and b′j are nonzero. Since the rows
and columns are weakly decreasing, j ≤ i. Also a′i and b′j are both > 0, so
they must each be of the form x or x∗ for some number x > 0.

First of all suppose that a′i and b′j are comparable. Let k be min(a′i, b
′
j).

Then every nonzero element of the matrix (12.15) is at least k, so subtracting
off a matrix of type cij having value k in the appropriate places, we clear
either a′i or b′j (or both) and do not break the weakly-decreasing rows and
columns requirement.

Otherwise, a′i and b′j are incomparable. I claim that we can subtract a
small ε > 0 from all the entries which are ≥ a′i and preserve the weakly-
decreasing rows and columns condition. For this to work, we need

a′k − a′k+1 ≥ ε (12.16)

whenever a′k+1 6≥ a′i but a′k ≥ a′i,

b′k − b′k+1 ≥ ε (12.17)

whenever b′k+1 6≥ a′i but b′k ≥ a′i, and

a′k − b′k ≥ ε (12.18)

whenever b′k 6≥ a′i but a′k ≥ a′i. Now there are only finitely many positions
in the matrix, the dyadic rational numbers are dense, and ∗ is infinitesimal.
Consequently, it suffices to show that all of the upper bounds (12.16-12.18)
on ε are greater than zero. In other words,

a′k > a′k+1

whenever a′k+1 6≥ a′i but a′k ≥ a′i,

b′k > b′k+1
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whenever b′k+1 6≥ a′i but b′k ≥ a′i, and

a′k > b′k

whenever b′k 6≥ a′i but a′k ≥ a′i. But all of these follow from the obvious fact
that if x, y ∈ P , x ≥ y, y 6≥ a′i, and x ≥ a′i, then x > y.

So such an ε > 0 exists. Because rows and columns are weakly decreasing,
the set of positions in the matrix whose values are ≥ a′i is the set of nonzero
positions in a cij matrix for some i, j. So we are allowed to subtract off ε
from each of those entries. After doing so, a′i − ε is no longer incomparable
with b′i, so we can clear one or the other in the manner described above.

To prove that all possible sequences u+ and u− values occur, we use some
specific functions, in a proof that generalizes the technique of Theorems 10.3.4
and 10.3.5. Fix n, the number of values that the n-valued games can take.
Here are the functions we will use:

• δm(x), as above, will be 1 if x ≥ m and 0 otherwise.

• µ(x) will be min(0, x).

• For 1 ≤ k ≤ n− 1, fk : Zn(n+1)/2−1 → Z will be

fk(x10, x11, x20, x21, x22, x30, . . .) =∑
0≤j≤i≤n−1,k≤i

xij +
∑

0≤j≤i≤n−1,k>i

µ(xij).

In other words, fk is the sum of all its arguments except for its positive
arguments xij where i ≥ k.

• For 1 ≤ k ≤ n− 1, gk : Zn(n+1)/2−1 → Z will be

gk(x10, x11, x20, x21, x22, x30, . . .) =∑
0≤j≤i≤n−1,k≤j

xij +
∑

0≤j≤i≤n−1,k>j

µ(xij).

In other words, gk is the sum of all its arguments except for its positive
arguments xij where j ≥ k.
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• h+ : Zn(n+1)/2−1 → {0, 1} will be given by

h+(x10, x11, x20, . . .) = a,

where a is the unique number in n = {0, 1, . . . , n− 1} such that

δm(a) = δ1(fm(x10, . . .))

for every 1 ≤ m ≤ n− 1. Such a number exists because fm(x10, . . .) is
decreasing as a function of m.

• h−(x10, x11, x20, . . .) will be the unique a such that

δm(a) = δ1(gm(x10, . . .))

for every 1 ≤ m ≤ n− 1.

It is not difficult to show that all of these functions are order-preserving,
and that fm ≥ gm for every m. Note that h+ and h− can alternatively be
described as

n−1∑
m=1

δ1(fm(x10, . . .)) and
n−1∑
m=1

δ1(gm(x10, . . .)),

respectively. So they are order-preserving, and h− ≤ h+.
Repeating an argument we used in Theorem 10.3.5, we have

Lemma 12.6.6. Let G be an Z-valued i-game G & 0. Then µ̃(G) ≈ 0.
Similarly, for 0 ≤ j ≤ i ≤ n − 1, let Gij be Z-valued i-games Gij & 0.

Then for 1 ≤ k ≤ n− 1,

f̃k(G10, G11, G20, . . .) ≈
∑

0≤j≤i≤n−1,k≤i

Gij

and
g̃k(G10, G11, G20, . . .) ≈

∑
0≤j≤i≤n−1,k≤j

Gij

Proof. For the first claim, notice that G & 0 implies that L(G) ≥ 0 and
R(G) ≥ 0. Thus L(µ̃(G)) = 0 = R(µ̃(G)). But since µ̃(G) is an i-game
(by Lemma 10.3.1 or Theorem 10.3.6), it follows from Corollary 9.3.2 that
µ̃(G) ≈ 0.
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For the second claim, the definition of fk implies that

f̃k(G10, . . .) =
∑

0≤j≤i≤n−1,k≤i

Gij +
∑

0≤j≤i≤n−1,k>i

µ̃(Gij) ≈
∑

0≤j≤i≤n−1,k≤i

Gij,

and gk is handled similarly.

Using these we can find all the equivalence classes of n-valued games
modulo {∧,∨}-indistinguishability.

Theorem 12.6.7. Let

U = {0, 1/4, 3/8, 1/2, 1/2∗, 5/8, 3/4, 1}.

Let a1, . . . , an−1 and b1, . . . , bn−1 be sequences of elements of U such that
aj ≥ ak and bj ≥ bk for j ≤ k, and ai ≥ bi for all i. Then there is at least
one even-tempered n-valued game G such that

u+(δ̃i(G)) = ai and u−(δ̃i(G)) = bi

for all 1 ≤ i ≤ n− 1.

Proof. Let Ai and Bi be 2-valued even-tempered i-games with u+(Ai) = ai
and u+(Bi) = bi (note that if A is a 2-valued i-game, then u+(A) = u−(A)).
By Lemma 12.6.5 (taking P to be the group of Z-valued even-tempered
i-games in the domain of ψ generated by numbers and ∗), we can find Z-
valued even-tempered i-games Gij for 0 ≤ j ≤ i ≤ n − 1 such that Gij & 0
for (i, j) 6= (n− 1, n− 1), and

Ak =
∑

0≤j≤i≤n−1,k≤i

Gij

and
Bk =

∑
0≤j≤i≤n−1,k≤j

Gij.

But then since Bn−1 = G(n−1)(n−1), and all 2-valued even-tempered games
are & 0 (by Theorem 9.5.2(g,h,i)), it follows that even G(n−1)(n−1) is & 0.

Then by Lemma 12.6.6, we have

f̃k(G10, G11, . . .) ≈ Ak
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and
g̃k(G10, G11, . . .) ≈ Bk

for all k. Now by definition above, the functions h+ and h− have the property
that

δm(h+(x10, . . .)) = δ1(fm(x10, . . .))

and
δm(h−(x10, . . .)) = δ1(gm(x10, . . .))

for all m. It then follows that letting

H± = h̃±(G10, . . .),

we have
δ̃m(H+) = δ̃1(f̃m(G10, . . .)) ≈ δ̃1(Am) = Am

and
δ̃m(H−) = δ̃1(g̃m(G10, . . .)) ≈ δ̃1(Bm) = Bm

for all m. Moreover, H− . H+ because of Lemma 10.1.5 and the fact that
h− ≤ h+. Also, H± are both n-valued games because they are in the image of
h̃±. So by Theorem 10.3.5, there is a n-valued game G for which G± = H±.
Thus

δ̃m(G)+ ≈ δ̃m(G+) ≈ Am

and
δ̃m(G)− ≈ δ̃m(G−) ≈ Bm

for all m, so that u+(δ̃m(G)) = am and u−(δ̃m(G)) = bm for all m.

Corollary 12.6.8. The class of n-valued games modulo {∧,∨}-indistinguishability
is in one-to-one correspondence with weakly-decreasing length-(n − 1) se-
quences of 2-valued games modulo ≈.

As an exercise, it is also easy to show the following

Corollary 12.6.9. The class of n-valued games modulo {∨}-indistinguishability
is in one-to-one correspondence with weakly-decreasing length-(n − 1) se-
quences of 2-valued games modulo {∨}-indistinguishability.

The only trick here is to let u− be 0, 1/4, or 1/2, when u− ∪ 1/2 needs to
be 1/2, 3/4, or 1, respectively.

Since there are only finitely many 2-valued games modulo ≈ or mod-
ulo {∨}-indistinguishability, one could in principle write down a formula for
the number of n-valued games modulo {∧,∨}-indistinguishability or {∨}-
indistinguishability, but we do not pursue the matter further here.
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Part III

Knots
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Chapter 13

To Knot or Not to Knot

In Chapter 1 we defined the game To Knot or Not to Knot, in which
two players, King Lear, and Ursula take turns resolving crossings in a knot
pseudodiagram, until all crossings are resolved and a genuine knot diagram
is determined. Then Ursula wins if the knot is equivalent to the unknot,
and King Lear wins if it is knotted. We will identify King Lear with Left,
and Ursula with Right, and view TKONTK as a Boolean (2-valued) well-
tempered scoring game.

For instance, the following pseudodiagram has the value ∗ = 〈0|0〉, be-
cause the game lasts for exactly one move, and Ursula wins no matter how
the crossing is resolved.

Similarly, the following position is 1∗ = 〈1|1〉, because it lasts one move,
but King Lear is guaranteed to win:
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Figure 13.1: One move remains, but King Lear has already won.

On the other hand,

Figure 13.2: The next move decides and ends the game.

is 〈0, 1|0, 1〉 ≈ 〈1|0〉, because the remaining crossing decides whether the
resulting knot will be a knotted trefoil or an unknot.

The natural way to add TKONTK positions is the ⊕2 = ∨ operation of
Section 12.5. For example, when we add Figures 13.1 and 13.2 ,
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we get a position with value {1|0} ∨ 1∗ ≈ {1|1}+ ∗ ≈ 1. So the resulting
position is equivalent to, say

13.1 Phony Reidemeister Moves

Definition 13.1.1. A pseudodiagram S is obtained by a phony Reidemeister
I move from a pseudodiagram T if S is obtained from T by removing a loop

with an unresolved crossing from T , as in Figure 13.3. We denote this T
1→

S.
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Figure 13.3: Phony Reidemeister I move

Definition 13.1.2. A pseudodiagram S is obtained by a phony Reidemeister
II move from a pseudodiagram T if S is obtained from T by uncrossing two
overlapped strings, as in Figure 13.4, where the two crossings eliminated are

unresolved. We denote this T
2→ S.
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Figure 13.4: Phony Reidemeister II move

Note that we only use these operations in one direction: T
i→ S doesn’t

imply S
i→ T . We also use the notation T

i⇒ S to indicate that S is obtained
from T by a sequence of zero or more type i moves, and T

∗⇒ S to indicate
that S is obtained by zero or more moves of either type.

If T is a knot pseudodiagram, we let val(T ) be the value of T as a game of
TKONTK, and we abuse notation and write u+(T ) and u−(T ) for u+(val(T ))
and u−(val(T )).

The importance of the phony Reidemeister moves is the following:

Theorem 13.1.3. If T
1→ S then val(T ) = val(S) + ∗, so u+(T ) = u+(S)

and u−(T ) = u−(S).

If T
2→ S, then val(T ) &+ val(S) and val(T ) .− val(S). So u+(T ) ≥

u+(S) and u−(T ) ≤ u−(S).

Proof. If S is obtained from T by a phony Reidemeister I move, then T is
obtained from S by adding an extra loop (with an unresolved crossing). In
other words T is S#K where K is the following pseudodiagram:
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As noted above, val(K) = ∗, so

val(T ) = val(S)⊕2 ∗ = val(S)⊕2 (0 + ∗) = (val(S) + ∗)⊕2 = val(S) + ∗,

using Lemma 10.1.6 and the fact that 0 is the identity element for ⊕2.
For the second claim, we need to show that undoing a phony Reidemeister

II move does not hurt whichever player moves last, even if the pseudodiagram
is being added to an arbitrary integer-valued game. To see this, suppose

that T
2→ S and that Alice have a strategy guaranteeing a certain score in

val(S)+G for some G ∈ WZ, when Alice is the player who will make the last
move. Then Alice can use this same strategy in val(T ) +G, except that she
applies a pairing strategy to manage the two new crossings. If her opponent
moves in one, then she moves in the other, in a way that produces one of the
following configurations:

Figure 13.5: After the first move, it is always possible to reply with a move
to one of the configurations on the right.

Otherwise, she does not move in either of the two new crossings, and
pretends that she is in fact playing val(S) + G. Since she is the player who
will make the last move in the game, she is never forced to move in one of the
two crossings before her opponent does, so this pairing strategy always works.
And if the two crossings end up in one of the configurations on the right side
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of Figure 13.5, then they can be undone by a standard Reidemeister II move,
yielding a position identical to the one that Alice pretends she has reached,
in val(S) +G. Since Alice had a certain guaranteed score in val(S) +G, she
can ensure the same score in val(T ) + G. This works whether Alice is Left
or Right, so we are done.

13.2 Rational Pseudodiagrams and Shadows

We use [] to denote the rational tangle

and [a1, . . . , an] to denote the rational tangle obtained from [a1, . . . , an−1]
by reflection over a 45 degree axis and adding an twists to the right. We
also generalize this notation, letting [a1(b1), . . . , an(bn)] denote a tangle-like
pseudodiagram in which there are a1 legitimate crossings and b1 unresolved
crossings at each step. See Figure 13.6 for examples.

So the ai ∈ Z and the bi ∈ N, where N are the nonnegative integers. If
ai = 0, we write (bi) instead of ai(bi), and similarly if bi = 0, we write ai
instead of ai(bi). A shadow is a pseudodiagram in which all crossings are
unresolved, so a rational shadow tangle would be of the form [(b1), . . . , (bn)].

We abuse notation, and use the same [a1(b1), . . . , an(bn)] notation for the
pseudodiagram obtained by connecting the top two strands of the tangle and
the bottom two strands:
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Figure 13.6: Examples of our notation.
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Note that this can sometimes yield a link, rather than a knot:

We list some fundamental facts about rational tangles:

Theorem 13.2.1. If [a1, . . . , am] and [b1, . . . , bn] are rational tangles, then
they are equivalent if and only if

am +
1

am−1 + 1

...+ 1
a1

= bn +
1

bn−1 + 1

...+ 1
b1

.
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The knot or link [a1, . . . , am] is a knot (as opposed to a link) if and only if

am +
1

am−1 + 1

...+ 1
a1

=
p

q
,

where p, q ∈ Z and p is odd. Finally, [a1, . . . , am] is the unknot if and only if
q/p is an integer.

Note that [a1(b1), . . . , an(bn)] is a knot pseudodiagram (as opposed to a
link pseudodiagram) if and only if [a1 + b1, . . . , an + bn] is a knot (as opposed
to a link), since the number of components in the diagram does not depend
on how crossings are resolved.

The proofs of the following lemmas are left as an exercise to the reader.
They are easily seen by drawing pictures, but difficult to prove rigorously
without many irrelevant details.

Lemma 13.2.2. The following pairs of rational shadows are topologically
equivalent (i.e., equivalent up to planar isotopy):

[(1), (a1), . . . , (an)] = [(a1 + 1), (a2) . . . , (an)] (13.1)

[(a1), . . . , (an), (1)] = [(a1), . . . , (an−1), (an + 1)] (13.2)

[(0), (0), (a1), . . . , (an)] = [(a1), . . . , (an)] (13.3)

[(a1), . . . , (ai), (0), (ai+1), . . . , (an)] = [(a1), . . . , (ai + ai+1), . . . , (an)] (13.4)

[(a1), . . . , (an), 0, 0] = [(a1), . . . , (an)] (13.5)

[(a1), (a2), . . . , (an)] = [(an), . . . , (a2), (a1)] (13.6)

Only (13.6) is non-obvious. The equivalence here follows by turning ev-
erything inside out, as in Figure 13.7.
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Figure 13.7: These two knot shadows are essentially equivalent. One is
obtained from the the other by turning the diagram inside out, exchanging
the red circle on the inside and the blue circle on the outside.

This works because the diagram can be thought of as living on the sphere,
mainly because the following operation has no effect on a knot:

Figure 13.8: Moving a loop from one side of the knot to the other has no
effect on the knot. So we might as well think of knot diagrams as living on
the sphere.

Similarly, we also have

Lemma 13.2.3.

[(0), (a1 + 1), (a2), . . . , (an)]
1→ [(0), (a1), (a2), . . . , (an)] (13.7)

[(a1), . . . , (an−1), (an + 1), 0]
1→ [(a1), . . . , (an−1), (an), 0] (13.8)

[. . . , (ai + 2), . . .]
2→ [. . . , (ai), . . .] (13.9)

Note that [] is the unknot.
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Lemma 13.2.4. If T is a rational shadow, that resolves to be a knot (not a

link), then T
∗⇒ [].

Proof. Let T = [(a1), . . . , (an)] be a minimal counterexample. Then T cannot
be reduced by any of the rules specified above. Since any ai ≥ 2 can be
reduced by (13.9), all ai < 2. If n = 0, then T = [] which turns out to be
the unknot. If a0 = 0 and n > 1, then either a1 can be decreased by 1 using
(13.7), or a0 and a1 can be stripped off via (13.3). On the other hand, if
a0 = 0 and n = 1, then T = [(0)], which is easily seen to be a link (not a
knot). So a0 = 1. If n > 1, then T reduces to [(a2 + 1), . . . , (an)] by (13.1).
So n = 1, and T is [(1)] which clearly reduces to the unknot via a phony
Reidemeister I move:

Because of this, we see that every rational shadow has downside 0 or ∗,
viewed as a TKONTK position:

Theorem 13.2.5. Let T be a rational knot shadow (not a link). Then
val(T ) ≈− 0 or val(T ) ≈− ∗.

Proof. By the lemma, T
∗⇒ []. But then by Theorem 13.1.3, u−(T ) ≤

u−([]) = 0, since val([]) = 0 and u−(0) = 0. But the only possible val-
ues for u−(T ) are 0, 1

4
, 3

8
, . . ., so u−(T ) ≤ 0 implies that u−(T ) = 0. Then

val(T ) is equivalent to either 0 or ∗.

Now d0e = 0 and b0 + 1
2
c = 0, so by Corollary 12.3.8, we see that if T is a

rational shadow with an even number of crossings, then L(val(T )) = 0, and
if T has an odd number of crossings, then R(val(T )) = 0. So in particular,
there are no rational shadows for which King Lear can win as both first
and second player. And since games with u−(G) = 0 are closed under ⊕2,
the same is true for any position which is a connected sum of rational knot
shadows.

Rational pseudodiagrams, on the other hand, can be guaranteed wins for
King Lear. For example, in [0, (1), 3], King Lear can already declare victory:
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13.3 Odd-Even Shadows

Definition 13.3.1. An odd-even shadow is a shadow of the form

[(a1), (a2), . . . , (an)] ,

where all ai ≥ 1, exactly one of a1 and an is odd, and all other ai are even.

Note that these all have an odd number of crossings (so they yield odd-
tempered games). It is straightforward to verify from (13.1-13.9) that every
odd-even shadow reduces by phony Reidemeister moves to the unknot. In
particular, by repeated applications of (13.9), we reduce to either [(0), . . . , (0), (1)]
or [(1), (0), . . . , (0)]. Then by applying (13.3) or (13.5), we reach one of the
following:

[(1)], [(0), (1)], [(1), (0)].

Then all of these are equivalent to [(1)] by (13.1) or (13.2). So since every
odd-even shadow reduces to the unknot, ever odd-even shadow is an actual
knot shadow, not a link shadow. Thus any odd-even shadow can be used as
a game of TKONTK.

Theorem 13.3.2. If T is an odd-even shadow, then u+(T ) = 0.

Proof. Suppose that L(val(T )⊕2 〈0|1〉 ⊕2 ∗) = 0. Then by Corollary 12.3.8,⌈
(u+(T ) ∪ u+(〈0|1〉) ∪ u+(∗))− 1

2

⌉
= 0,
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since val(T ) ⊕2 〈0|1〉 ⊕2 ∗ is odd-tempered. But u+(∗) = 0, u+(〈0|1〉) = 1
2
,

and 1
2
∪ 0 = 1

2
. And dxe ≤ 0 if and only if x ≤ 0. So

u+(T ) ∪ 1

2
≤ 1

2
.

But if u+(T ) 6= 0, then u+(T ) ≥ 1
4
, so that u+(T ) ∪ 1

2
≥ 1

4
∪ 1

2
= 3

4
6≤ 1

2
, a

contradiction. So it suffices to show that

L(val(T )⊕2 〈0|1〉 ⊕2 ∗) = 0,

i.e., that Ursula has a winning strategy as the second player in

val(T )⊕2 G (13.10)

where G = 〈0|1〉 ⊕2 ∗ = 〈0|1〉+ ∗.
Let T = [(a1), . . . , (an)]. Suppose first that a1 is odd and the other ai are

even. Then Ursula’s strategy in (13.10) is to always move to a position of
one of the following forms:

(A) val([(b1), . . . , (bm)])⊕2G
′, where b1 is odd and the other bi are even, and

G′ is G or 0.

(B) val([1(b1), . . . , (bm)])⊕2 G
′, where the bi are all even and G′ is an odd-

tempered subposition of G.

Note that the initial position is of the first form, with bi = ai and G′ = G.
To show that this is an actual strategy, we need to show that Ursula can
always move to a position of one of the two forms.

• In a position of type (A), if Lear moves in one of the bi, from (bi)
to ±1(bi − 1), then Ursula can reply with a move to (bi − 2), as in
Figure 13.9, unless bi = 1.

Figure 13.9: Ursula responds to a twisting move by King Lear with a can-
celling twist in the opposite direction.
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But if bi = 1, then King Lear has just moved to

val([±1, (b2), . . . , (bn)])⊕2 G
′ = val([±1(b2), . . . , (bn)])⊕2 G

′,

using the fact that [±1, (b2), . . . , (bn)] = [±1(b2), (b3), . . . , (bn)] (obvious
from a picture). So now Ursula can reply using b2 instead of b1, and
move back to a position of type A, unless King Lear has just moved to

val([±1])⊕2 G
′.

But [±1] are unknots, so val([±1]) = 0, and G′ is 0 or G, both of which
are first player wins for Ursula, so King Lear has made a losing move.

• In a position of type (A), if Lear moves in G′ = G to 0+∗, then Ursula
replies by moving from 0+∗ to 0+0, getting back to a position of type
(A).

• In a position of type (A), if Lear moves in G′ = G to 〈0|1〉 + 0, then
Ursula moves (b1)→ 1(b1 − 1), creating a position of type (B).

• In a position of type (B), if Lear moves in G′ to 0 (this is the only left
option of either possibility for G′), then Ursula replies with a move from
1(b1) to 0(b1−1), where 0 = 1−1. This works as long as b1 6= 0. But if
b1 = 0, then we could have rewritten [1(b1), (b2), . . .] as [1(b2), (b3), . . .]
as before. If b2 = 0 too, then we can keep on sliding over, until even-
tually Ursula finds a move, or it turns out that King Lear moved to a
position of the form

[1]⊕2 0

which is 0, a win for Ursula.

• In a position of type (B), if Lear moves in any bi, then Ursula makes
the cancelling move

(bi)→ ±1(bi − 1)→ 0(bi − 2),

this is always possible because if bi ≥ 1, then bi ≥ 2.

From the discussion above, Ursula can keep following this strategy until Lear
makes a losing move. So this is a winning strategy for Ursula and we are
done.

The other case, in which an is odd and the other ai are even, is handled
completely analogously.
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13.4 The other games

Lemma 13.4.1. The following rational shadows have u+(T ) = 1:

[(3), (1), (3)] , [(2), (1), (2), (2)] , [(2), (2), (1), (2)] , [(2), (1), (1), (2)] ,

[(2), (2), (1), (2), (2)] , [(2), (2)]

Proof. To show that u+(T ) = 1, it suffices by Corollary 12.3.8 to show that
G is a win for King Lear when Ursula moves first, where G is val(T ) if T has
an even number of crossings, and G is val(T ) + ∗ otherwise. For R(G) = 1
iff bu+(G)c = 1, which happens if and only if 1 ≤ u+(G) = u+(T ).

Unfortunately, the only way I know to prove this criterion for all the knots
listed above is by computer, making heavy use of Theorem 13.2.1.

These are shown in Figure 13.10.

Figure 13.10: The shadows of Lemma 13.4.1.
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Lemma 13.4.2. If T = [(a1), . . . , (an)] is a rational shadow corresponding

to a knot (not a link) with at least one crossing, then either T
1⇒ O for

some odd-even shadow O, or T
∗⇒ A, where A is equivalent to one of the six

shadows in Lemma 13.4.1.

Proof. Without loss of generality, T is irreducible as far as phony Reidemeis-
ter I moves go. Then we can make the assumption that all ai > 0. If all of
the ai are even, then by applying (13.9) and (13.3-13.5), we can reduce T
down to either [(2), (2)] or [(2)]. But the second of these is easily seen to be

a link, so T
∗⇒ [(2), (2)]. Otherwise, at least one of the ai is odd. If the only

odd ai are i = 1 and/or i = n, then either T is an odd-even shadow, or a1

and an are both odd. But if both a1 and an are odd, then by applying (13.9)
and (13.4), we can reduce to one of the cases [(1), (0), (1)] or [(1), (1)]. By
(13.4) or (13.1), both of these are equivalent to [(2)], which is not a knot.

This leaves the case where at least one ai is odd, 1 < i < n. Let T be (a)
not reducible by phony Reidemeister I moves or by (13.1-13.2), and (b) as
reduced as possible by phony Reidemeister II moves, without breaking the
property of having one of the ai be odd, for 1 < i < n. If aj > 2 for any
1 < j < n, then we can reduce aj by two, via (13.9). So for every 1 < j < n,
aj ≤ 2. Similarly, a1 and an must be either 2 or 3. (They cannot be 1 or else
T would be reducible by (13.1) or (13.2).)

Choose i for which ai is odd. If a1 = 3 and i > 2, then we can reduce
a1 by two (13.9) and combine it (13.1) into a2 to yield a smaller T . So if
a1 = 3, then a2 = 1 and aj 6= 1 for j > 2 (or else we could have chosen a
different i and reduced). Similarly, if an = 3, then an−1 = 1 and aj 6= 1 for
j < n−1. Thus, if a sequence begins with (3), the next number must be (1),
and the (1) must be unique. For example, the sequence [(3), (1), (1), (3)] can
be reduced to [(1), (1), (1), (3)] and thence to [(2), (1), (3)].

On the other hand, suppose a1 = 2. If i > 4 then we can reduce T farther
by decreasing a1 by (13.9), and then decreasing a2 one by one via (13.7) until
both a1 and a2 are zero. Then both can be removed by (13.3), yielding a
smaller T . A further application of (13.1) may be necessary to remove an
initial 1. Moreover, if (13.1) is unnecessary, because a3 > 1, then this also
works if i = 4.

Therefore, what precedes any ai = 1 must be one of the following:

• (3)

• (2)
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• (2)(2)

• (2)(1)

• (2)(2)(1)

• (2)(1)(1)

and only the first three of these can precede the first (1). The same sequences
reversed must follow any (1) in sequence. Then the only combinations which
can occur are:

• [(3), (1), (3)]

• [(3), (1), (2)] and its reverse

• [(3), (1), (2), (2)] and its reverse

• Not [(3), (1), (1), (2)] because more than just (3) precedes the second
(1).

• [(2), (1), (2)]

• [(2), (1), (2), (2)] and its reverse

• [(2), (1), (1), (2)]

• [(2), (1), (1), (2), (2)] and its reverse

• [(2), (1), (1), (1), (2)]

• [(2), (2), (1), (2), (2)]

• [(2), (2), (1), (1), (2), (2)]

• Not [(2), (2), (1), (1), (1), (2)] because too much precedes the last (1).

So either T is one of the combinations in Lemma 13.4.1 or one of the following
happens:

• [(3), (1), (2)] reduces by (13.9) to [(1), (1), (2)] = [(2), (2)]. So does its
reverse.
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• [(3), (1), (2), (2)] reduces by two phony Reidemeister II moves to

[(3), (1), (0), (0)] = [(3), (1)] = [(4)]

which is a link, not a knot. Nor is its reverse.

• [(2), (1), (2)] reduces by a phony Reidemeister II move to [(0), (1), (2)],
which in turn reduces by a phony Reidemeister I move to [(0), (0), (2)] =
[(2)] which is a link, not a knot. So this case can’t occur.

• [(2), (1), (1), (2), (2)] reduces by phony Reidemeister moves to

[(2), (1), (1), (0), (2)] = [(2), (1), (3)]

so it isn’t actually minimal.

• [(2), (1), (1), (1), (2)] likewise reduces by a phony Reidemeister II move
and a I move to

[(0), (0), (1), (1), (2)] = [(1), (1), (2)] = [(2), (2)]

• [(2), (2), (1), (1), (2), (2)] reduces by a phony Reidemeister II move to

[(2), (0), (1), (1), (2), (2)] = [(3), (1), (2), (2)] ,

so it isn’t actually minimal.

In summary then, every T that does not reduce by phony Reidemeister I
moves to an odd-even shadow reduces down to a finite set of minimal cases.
Each of these minimal cases is either reducible to one of the six shadows in
Lemma 13.4.1, or is not actually a knot.

13.5 Sums of Rational Knot Shadows

Putting everything together we have

Theorem 13.5.1. Let T be a rational knot shadow, and let T ′ = [a1, a2, . . . , an]
be the smallest T ′ such that T →∗1 T ′. Then if T ′ is an odd-even shadow, T ,
u+(T ) = u−(T ) = 0, and otherwise, u+(T ) = 1, u−(T ) = 0.
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Proof. We know that val(T ′) and val(T ) differ by 0 or ∗, so u+(T ) = u+(T ′)
and u−(T ) = u−(T ′). We already know that if T ′ is an odd-even shadow,
then u−(T ′) = 0. Otherwise, by Lemma 13.4.2, T ′ must reduce by phony
Reidemeister I and II moves to a rational shadow T ′′ that is one of the
six shadows in Lemma 13.4.1. By Lemma 13.4.1, u+(T ′′) = 1. Then by
Theorem 13.1.3, u+(T ) ≥ u+(T ′) ≥ u+(T ′′). But u+(T ′′) is already the
maximum value 1, so u+(T ) = 1 too. On the other hand, we know that
u−(T ) = 0 by Theorem 13.2.5, regardless of what T is.

Definition 13.5.2. A rational knot shadow reduces to an odd-even shadow
if it reduces to an odd-even shadow via phony Reidemeister I moves.

The previous theorem can be restated to say that a rational knot shadow
has u+ = 0 if it reduces to an odd-even shadow, and u+ = 1 otherwise.

Theorem 13.5.3. If T1, T2, . . . Tn are rational knot shadows, and T = T1 +
T2 + . . .+Tn is their connected sum, then T is a win for Ursula if all of the Ti
reduce to odd-even shadows. Otherwise, if T has an odd number of crossings,
then T is a win for whichever player goes first, and if T has an even number
of crossings, then T is a win for whichever player goes second.

Proof. Note that 0 ∪ 0 = 0 and 1 ∪ 0 = 1 ∪ 1 = 1. So by Theorem 13.5.1,
if every Ti reduces to an odd-even shadow, then u±(T1 + · · · + Tn) = 0. So
then val(T1 + · · ·+ Tn) ≈ 0, and so T1 + · · ·+ Tn is a win for Right (Ursula)
no matter who goes first.

Otherwise, it follows by Theorem 13.5.1 that u−(T1 + · · · + Tn) = 0 and
u+(T1 + · · · + Tn) = 1. So by Corollary 12.3.8, if val(T1 + · · · + Tn) is even-
tempered, then

L(val(T1 + · · ·+ Tn)) = d0e = 0

so that Ursula wins if King Lear goes first, and

R(val(T1 + · · ·+ Tn)) = b1c = 1

so that King Lear wins if Ursula goes first.
On the other hand, if val(T1 + · · ·+ Tn) is odd-tempered, then

L(val(T1 + · · ·+ Tn)) = d1− 1

2
e = 1

so that King Lear wins when he goes first, and similarly

R(val(T1 + · · ·+ Tn)) = b0− 1

2
c = 0

so that Ursula wins when she goes first.
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13.6 Computer Experiments and Additional

Thoughts

So far, we have determined the value of rational shadows, that is, ratio-
nal pseudodiagrams in which no crossings are resolved. Although we have
“solved” the instances of To Knot or Not to Knot that correspond to
rational knots, we have not strongly solved them, by finding winning strate-
gies in all their subpositions. This would amount to determining the values
of all rational pseudodiagrams.

Since rational pseudodiagrams resolve to rational knots, a computer can
check whether the outcome of a game is knotted or not. I wrote a program
to determine the values of small rational pseudodiagrams. Interestingly, the
only values of u+ and u− which appeared were 0, 1, and 1

2
∗. This also

appeared when I analyzed the positions of the following shadow:

Figure 13.11: The simplest shadow which does not completely reduce via
phony Reidemeister I and II moves.

which is the simplest shadow which does not reduce via phony Reidemeis-
ter I and II moves to the unknot. So Theorem 13.2.5 does not apply, and in
fact, by a computer, I verified that this knot does not have u− = 0.

Since Figure 13.11 is not a rational shadow or sum of rational shadows,
I used another invariant called the knot determinant to check whether the
final resolution was an unknot.

Definition 13.6.1. Let K be a knot diagram with n crossings and n strands.
Create a matrix M such that Mij is -1 if the ith strand terminates at the jth
crossing, 2 if the ith strand passes over the jth crossing, and 0 otherwise. The
knot determinant is defined as | det(M ′)|, where M ′ is any (n− 1)× (n− 1)
submatrix of M .
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It turns out that the knot determinant is well defined, and is even a
knot invariant. In fact, if ∆(z) is the Alexander polynomial, then the knot
determinant is just |∆(−1)|. The knot determinant of the unknot equals 1.

Lemma 13.6.2. If the knot shadow in Figure 13.11 is resolved into a knot
K, then K is the unknot iff the knot determinant of K equals 1.

Proof. We can use a computer to check whether a resolution of the diagram
has knot determinant 1. There are only 256 resolutions, so it is straightfor-
ward to iterate over all resolutions. Up to symmetry, it turns out that the
only resolutions with knot determinant 1 are those shown in Figure 13.12.
It is straightforward to check that all of these are the unknot. Conversely,
any knot whose determinant is not 1 cannot be the unknot, since the knot
determinant is a knot invariant.

Figure 13.12: Up to symmetry, these are the only ways to resolve Figure 13.11
and have the knot determinant equal 1. They are all clearly the unknot.

Because of this, we can use a computer to determine the value of the game
played on the diagram in Figure 13.11. The value turned out to be u+ = 1.
Then by Corollary 12.3.8, this game is a win for King Lear, no matter who
goes first. This answers a question posed in A Midsummer Knot’s Dream.

The program used to analyze the shadow of Figure 13.11 also determined
the values that occur in subpositions of this game. Again, only the values 0,
1, and 1

2
∗ were seen for u± values.
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This led me to conjecture that these were the only possible values for
any knot pseudodiagrams. However, it seems very unlikely that this could
be due to some special property of knots. In fact, it seems like it might be
true of a larger class of games, in which Left and Right take turns setting
the arguments of a fixed function f : {0, 1}n → {0, 1}, and then the value of
f determines who wins.

I tried for a long time to prove that for such games, the only possible u±

values were 0, 1, and 1
2
∗. This was unlikely, for the following reason:

Theorem 13.6.3. If G is an odd-tempered Boolean game, and u±(G) ∈
{0, 1, 1

2
∗}, then G is not a second-player win.

Proof. If G is a first-player win, then L(G) = 0 and R(G) = 1. By Corol-
lary 12.3.8, this means that

0 = du+(G)− 1

2
e,

so that u+(G) ≤ 1
2
. Similarly,

1 = bu−(G) +
1

2
c,

so that u−(G) ≥ 1
2
. Then we have

1

2
≤ u−(G) ≤ u+(G) ≤ 1

2
,

so that u−(G) = u+(G) = 1
2
, a contradiction.

Projective Hex 1 is a positional game like Hex, in which the two players
take turns placing pieces of their own colors on a board until somebody
creates a path having a certain property. In Hex, the path needs to connect
your two sides of the board, but in projective Hex, played on a projective
plane, the path needs to wrap around the world an odd number of times:

1Invented by Bill Taylor and Dan Hoey, according to the Internet.
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Figure 13.13: Hex (left) and Projective Hex (right, here played on the faces
of a dodecahedron). In both games, Blue has won. In the Hex game, she
connected her two sides, and in the Projective Hex game, she created a path
which wrapped around the world an odd number of times.

By a standard strategy-stealing argument, Hex and Projective Hex are
necessarily wins for the first player. When Projective Hex is played on the
faces of a dodecahedron (or rather on the pairs of opposite faces) it has the
property that every opening move is a winning move, by symmetry.

Now modify dodecahedral projective hex by adding another position
where the players can play (making seven positions total). If a white piece
ends up in the extra position, then the outcome is reversed, and otherwise
the outcome is as before. Also, let players place pieces of either color.

Effectively, the players are playing dodecahedral projective Hex, but
XOR’ing the outcome with the color of the piece in the extra position.

The resulting game comes from a function {0, 1}7 → {0, 1}, and I claim
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that it is a second-player win. If the first player places a white piece on
the dodecahedron, the second player can choose to be the white player in
dodecahedral projective Hex, by making an appropriate move in the special
location. The fact that players can place pieces of the wrong color then
becomes immaterial, because playing pieces of the wrong color is never to
your advantage in projective Hex or ordinary Hex.

On the other hand, if the first player tries playing the special location,
then he has just selected what color he will be, and given his opponent the
first move in the resulting game of projective Hex, so his opponent will win.

Therefore, the resulting modified projective Hex is a counterexample to
the idea that only {0, 1, 1

2
∗} can occur as u± values for games coming from

Boolean functions {0, 1}n → {0, 1}. For all I know, it might be possible to
embed this example within a game of To Knot or Not to Knot. Con-
sequently, I now conjecture that all of the possible values occur in positions
of TKONTK, though I don’t know how to prove this.
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