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Abstract. We introduce and investigate d-convex union representable complexes: the sim-
plicial complexes that arise as the nerve of a finite collection of convex open sets in Rd whose
union is also convex. Chen, Frick, and Shiu recently proved that such complexes are col-
lapsible and asked if all collapsible complexes are convex union representable. We disprove
this by showing that there exist shellable and collapsible complexes that are not convex
union representable; there also exist non-evasive complexes that are not convex union repre-
sentable. In the process we establish several necessary conditions for a complex to be convex
union representable such as: that such a complex ∆ collapses onto the star of any face of ∆,
that the Alexander dual of ∆ must also be collapsible, and that if k facets of ∆ contain all
free faces of ∆, then ∆ is (k − 1)-representable. We also discuss some sufficient conditions
for a complex to be convex union representable. The notion of convex union representability
is intimately related to the study of convex neural codes. In particular, our results provide
new families of examples of non-convex neural codes.

1. Introduction

The goal of this paper is to initiate the study of convex union representable complexes
— a certain subfamily of representable complexes. An abstract simplicial complex is called
d-representable if it is the nerve of a family of convex sets in Rd. The research on d-
representable complexes has a rich and fascinating history starting with Helly’s theorem (see
for instance the survey articles [10, 19] and the references therein), yet for d > 1, the problem
of characterizing d-representable complexes remains wide open.

We say that a simplicial complex is d-convex union representable if it arises as the nerve of
a finite collection of convex open sets in Rd whose union is also convex, and that a complex
is convex union representable if it is d-convex union representable for some d. (It is worth
stressing right away that convex union representability does not change if we replace the
openness requirement with closedness, see Proposition 4.2.)

Our motivation for investigating such complexes comes from the theory of convex neural
codes — a much younger subject, see for instance [6, 7, 8, 9, 12, 16]. We defer precise
definitions until later sections, and for now only mention that a convex neural code C is a
combinatorial code that records the regions cut out by a collection of convex open sets in
some Euclidean space. The smallest simplicial complex that contains C, denoted ∆(C), is
called the simplicial complex of C. If C is a convex neural code and σ is an element of ∆(C)
but not of C, then the link of σ in ∆(C) must be convex union representable, see Section 9.
Thus, to shed light on the fundamental question of which (combinatorial) codes are convex,
it is imperative to deepen our understanding of convex union representable complexes — the
task we begin in this paper.
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It follows from Borsuk’s nerve lemma [5, Theorem 10.6] that every convex union repre-
sentable complex is acyclic, and even contractible. In [6, Section 5], Chen, Frick, and Shiu
used a technique of [20] to show that, in fact, convex union representable complexes are
collapsible. They also raised the question of whether all collapsible complexes are convex
union representable. We disprove this, and in the process establish several further neces-
sary conditions for a complex to be convex union representable. Among our results are the
following:

• A convex union representable complex collapses onto the star of any of its faces; see
Corollary 3.3.
• The Alexander dual of a convex union representable complex is also collapsible; see

Theorem 6.3.
• Convex union representable complexes are similar in spirit to constructible complexes;

see Theorem 5.1 for a precise statement.
• A convex union representable complex that has k or fewer free faces is (k−1)-convex

union representable. In particular, it is (k− 1)-representable, and hence also (k− 1)-
Leray; see Theorem 7.1.
• For every d ≥ 2, there exists a d-dimensional shellable and collapsible simplicial

complex that is not convex union representable. Similarly, for every d ≥ 2, there
exists a d-dimensional non-evasive complex that is not convex union representable;
see Corollary 3.5 for both results. On the other hand, a 1-dimensional complex is
convex union representable if and only if it is collapsible, which happens if and only
if it is a tree; see Corollary 8.7.

The structure of the rest of the paper is as follows. In Section 2, we set up basic notation
as well as review some necessary background related to simplicial complexes, polytopes,
nerves, and representability. In Section 3 we discuss several properties that convex union
representable complexes possess and use them to construct examples of collapsible complexes
that are not convex union representable. Section 4 provides proofs of some auxiliary results;
this is the most technical part of the paper. These results are then used in Sections 5–7
to establish several further interesting properties that convex union representable complexes
satisfy such as constructible-like behavior, collapsibility of the Alexander dual, etc. These
properties in turn lead to additional examples of collapsible complexes that are not convex
union representable. Section 8 discusses a few sufficient conditions for a complex to be
convex union representable. In Section 9 we describe how our results apply to the theory of
convex neural codes. We conclude in Section 10 with some open questions.

2. Preliminaries

2.1. Simplicial complexes. We begin with several basic definitions pertaining to abstract
simplicial complexes. From here on out we omit “abstract” for brevity. For all undefined
terminology we refer the readers to [5]. A simplicial complex ∆ on a finite ground set V is a
collection of subsets of V that is closed under inclusion. The elements of ∆ are called faces,
the inclusion-maximal faces are called facets, and 1-element faces are vertices. (An element
of the ground set may not form a vertex.) The dimension of a face σ ∈ ∆ is the cardinality
of σ minus one, and the dimension of ∆ is the maximum dimension of its faces. If σ is any
subset of V , then the simplex on σ is the collection σ := 2σ (i.e., the down-closure of σ).

We regard the empty set as a face. Also, following standard combinatorial conventions,
see for instance [17, p. 20], we distinguish between the void simplicial complex ∅ that has no
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faces, and the empty simplicial complex {∅} that has a single empty face. One reason for
such a distinction is that the void complex is acyclic, i.e., all its reduced homology vanishes,
while the empty complex is not: it has a non-zero H̃−1. (In the same vein, the Alexander
dual of a nonempty simplex σ is ∅, while the Alexander dual of the boundary of σ is {∅}.)

A simplicial complex ∆ gives rise to several new simplicial complexes. The restriction of
∆ to ω ⊆ V (or the induced subcomplex of ∆ on ω) is ∆|ω := {σ ∈ ∆ | σ ⊆ ω}. If σ ∈ ∆,
then the star and the link of σ in ∆ are the following subcomplexes of ∆:

St∆(σ) = St(σ) := {τ ∈ ∆ | τ ∪ σ ∈ ∆}, Lk∆(σ) = Lk(σ) := {τ ∈ St∆(σ) | τ ∩ σ = ∅}.

Similarly, the contrastar of σ in ∆ (also known as the deletion of σ from ∆) is the subcomplex
∆ \σ := {τ ∈ ∆ | τ 6⊇ σ}. If v is a vertex of ∆, it is customary to write v ∈ ∆, St(v), Lk(v),
and ∆ \ v instead of {v} ∈ ∆, St({v}), Lk({v}), and ∆ \ {v}, respectively.

The join of two simplicial complexes ∆1 and ∆2 with disjoint vertex sets is the complex

∆1 ∗∆2 := {σ1 ∪ σ2 | σ1 ∈ ∆1, σ2 ∈ ∆2}.

Note that if ∆ is a simplicial complex and σ ∈ ∆, then St∆(σ) = σ ∗ Lk∆(σ).
Of a particular interest are the cone and the suspension of ∆. The cone over ∆ with

apex v is the join of ∆ with a 0-dimensional simplex v, where v is not a vertex of ∆; it is
customary to denote this complex by v ∗∆ instead of v ∗∆. The suspension Σ∆ of ∆ is the
join of ∆ with the zero-dimensional sphere. The two vertices of that sphere are called the
suspension vertices.

A pair of simplicial complexes ∆ ⊇ Γ gives rise to a relative simplicial complex denoted
(∆,Γ) and defined as the set-theoretic difference of ∆ and Γ. In other words, faces of (∆,Γ)
are faces of ∆ that are not faces of Γ. If ∅ 6= Γ ( ∆, then (∆,Γ) is not a simplicial complex.

The following notion is due to Whitehead. Assume ∆ is a simplicial complex, and σ is a
face of ∆ that is not a facet. If σ is contained in a unique facet of ∆, then we say that σ is
a free face of ∆. In such a case, the operation ∆ → ∆ \ σ is called an elementary collapse
of ∆ induced by σ. A sequence of elementary collapses starting with ∆ and ending with Γ
is a collapse of ∆ onto Γ.

We say that ∆ is collapsible if it collapses to the void complex ∅. Observe that if ∆ is a
simplicial complex with at least one vertex, then the empty face of ∆ is a free face if and
only if ∆ is a simplex. In particular, a complex with at least one vertex is collapsible if and
only if it collapses to a nonempty simplex which happens if and only if it collapses to a single
vertex. It is known that all nonempty collapsible complexes are contractible.

A related notion, introduced in [14] (see also [5, Section 11]), is that of a non-evasive
complex. It is worth mentioning that any cone is a non-evasive complex, and that any
non-evasive complex is collapsible.

2.2. Polytopes. A polytope P in Rd is the convex hull of finitely many (possibly zero)
points in Rd. Equivalently, a polytope is a compact subset of Rd that can be written as
the intersection of finitely many closed half-spaces. The dimension of P is defined as the
dimension of the affine span of P . The interior of a polytope (as well as of any subset)
P ⊆ Rd is denoted by int(P ). A (proper) face of a d-dimensional polytope P ⊂ Rd is the
intersection of P with a supporting hyperplane in Rd. We say that P is a simplicial polytope
if all proper faces of P are geometric simplices (i.e., convex hulls of affinely independent
points). In this case, there is an associated simplicial complex — the boundary complex of
P , denoted ∂P . The facets of ∂P are the vertex sets of the maximal faces of P and the
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dimension of ∂P is dimP − 1. We refer the readers to Ziegler’s book [23] for an excellent
introduction to the theory of polytopes.

2.3. Minkowski sums and distances. For two subsets X, Y of Rd, their Minkowski sum
is X + Y := {x + y | x ∈ X, y ∈ Y }. (Note that ∅ + Y = ∅.) We will often consider the
Minkowski sum of X and the open ball Bε of radius ε centered at the origin.

For ∅ 6= X, Y ⊆ Rd, the distance between X and Y is defined as inf{‖x− y‖ | x ∈ X, y ∈
Y }. Note that the distance between X and Y is at least ε if and only if X + Bε is disjoint
from Y . In Lemma 4.1 (and only there), we will also consider a very different notion — the
Hausdorff distance distH(X, Y ) between bounded subsets X and Y of Rd; it is defined as

distH(X, Y ) := inf{ε ≥ 0 | X ⊆ Y +Bε and Y ⊆ X +Bε}.

The Hausdorff distance makes the space of compact subsets of Rd into a metric space.

2.4. Nerves and representability. Let [n] denote the set of integers {1, 2, . . . , n}. We
will often work with collections {U1, . . . , Un} of convex subsets of Rd. (The empty set is
considered convex; it is open and closed.) When working with such a collection we let Uσ
denote

⋂
i∈σ Ui for all σ ⊆ [n], with the convention that U∅ = conv(

⋃n
i=1 Ui). The nerve of a

collection of sets U = {U1, . . . , Un} is the simplicial complex

N (U) := {σ ⊆ [n] | Uσ 6= ∅}.

In particular, if all Ui are empty sets, then N (U) = ∅. As a result, N (U) is never {∅}.
A simplicial complex ∆ ⊆ 2[n] is called d-representable if there exists a collection of convex

sets U = {U1, . . . , Un} in Rd such that ∆ = N (U). The class of d-representable complexes
is well-studied, see for instance [19] and [20]. In particular, it is known that (i) every finite
simplicial complex is d-representable for d large enough, and that (ii) every d-representable
complex is d-Leray.

In this paper we initiate the study of the following subfamily of d-representable complexes.

Definition 2.1. Let ∆ ⊆ 2[n] be a simplicial complex. We say that ∆ is d-convex union
representable if there is a collection of convex open sets U = {U1, . . . , Un} in Rd such that

(i)
⋃
i∈[n] Ui is a convex open set, and

(ii) ∆ = N (U).

We say that ∆ is convex union representable if there exists some d such that ∆ is d-convex
union representable. The collection {Ui}ni=1 is called a d-convex union representation of ∆.

3. Collapsible complexes that are not convex union representable

In this section we discuss some of the properties that convex union representable complexes
satisfy. We then use these properties to show the existence of collapsible complexes that are
not convex union representable. Our starting point is [6, Lemma 5.9] asserting that convex
union representable complexes are collapsible. Here we further strengthen this result. Our
main tool in doing so is the following theorem, whose proof is a consequence of the methods
used in [6] and [20].

Theorem 3.1. Let {Ui}ni=1 be a d-convex union representation of a simplicial complex ∆,
and let H ⊆ Rd be a closed or open halfspace of Rd. Then ∆ collapses onto N

(
{Ui∩H}ni=1

)
.
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Note that if H is disjoint from all Ui, then N
(
{Ui ∩H}ni=1

)
= ∅. In this case Theorem 3.1

simply says that ∆ is collapsible, and hence recovers [6, Lemma 5.9].
From Theorem 3.1, whose proof we postpone until the next section, a number of remarkable

results (including the promised examples of collapsible but not convex union representable
complexes) follow quickly. Below we summarize several.

Corollary 3.2. Let {Ui}ni=1 be a d-convex union representation of a simplicial complex ∆,
and let C ⊆ Rd be a convex set. Then ∆ collapses onto N

(
{Ui ∩ C}ni=1

)
.

Proof. For all Uσ such that Uσ∩C 6= ∅, choose a point pσ ∈ Uσ∩C, and let C ′ be the convex
hull of these points. Observe that C ′ is a polytope contained in C such that N ({Ui ∩C}) =
N ({Ui∩C ′}). Since C ′ is the intersection of finitely many closed halfspaces, we can repeatedly
apply Theorem 3.1 to obtain that ∆ collapses to N ({Ui ∩ C ′}ni=1), proving the result. �

Corollary 3.3. Let ∆ be a convex union representable complex, and let σ ∈ ∆ be an arbitrary
face. Then ∆ collapses onto the star of σ. In particular, if σ 6= ∅, then ∆ collapses onto σ.

Proof. Let {Ui}ni=1 be a d-convex union representation of ∆, and let C = Uσ. Then C is a
nonempty convex subset of Rd. Therefore, by Corollary 3.2, ∆ collapses ontoN

(
{Ui∩C}ni=1

)
.

The result follows sinceN ({Ui∩C}) = St∆(σ). Indeed, if τ ⊆ [n], then
⋂
j∈τ (Uj∩Uσ) = Uτ∪σ.

Thus, τ ∈ N ({Ui ∩ C}) if and only if τ ∪ σ ∈ N ({Ui}) = ∆, which happens if and only if
τ ∈ St∆(σ). �

Corollary 3.4. Let ∆ be a convex union representable complex. Then the free faces of ∆
cannot all share a common vertex.

Proof. Suppose the free faces of ∆ share a common vertex v. Then no collapse of ∆ other
than ∆ itself would contain St∆(v). Since ∆ collapses to St∆(v), this implies ∆ = St∆(v).
Thus ∆ is a cone over v. But then any facet of ∆ \ v is a free face of ∆. Such a free face
does not contain v, a contradiction. �

In [1, Theorem 2.3] the authors construct examples for all d ≥ 2 of a d-dimensional
collapsible simplicial complex Σd with only one free face. According to Corollary 3.4, these
provide an example of collapsible complexes that are not convex union representable. (The
complex Σ2 has only 7 vertices, see [1, Figure 2].) The authors also give examples for all
d ≥ 2 of a d-dimensional simplicial complex Ed which is pure and non-evasive, has only two
free faces, and, furthermore, these two free faces share a common ridge (see [1, Theorem 2.5]).
By Corollary 3.4 these complexes are not convex union representable either. We formalize
these observations in the following corollary.

Corollary 3.5. The simplicial complexes Σd of [1] are pure, collapsible, and shellable, but
not convex union representable. Similarly, the simplicial complexes Ed of [1] are pure and
non-evasive, but not convex union representable.

4. Proof of Theorem 3.1

The goal of this section is to verify Theorem 3.1. This result is then used in the rest of
the paper to establish several additional necessary conditions for a simplicial complex to be
convex union representable. We begin with a lemma that allows us to modify a given convex
union representation. While it is clear that one can slightly shrink the sets of a convex union
representation to preserve the nerve, some care is needed to make sure that this shrinking
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also preserves convexity of the union (e.g., that it does not create “holes”). In the following,
for V ⊆ Rd, we denote by V the closure of V .

Lemma 4.1. Let {Ui}ni=1 be a convex union representation of a simplicial complex ∆, where
all Ui are bounded. Then for all ε > 0 there exists a convex union representation {Vi}ni=1 of
∆ with the following properties:

(i) Vi is a polytope contained in Ui for all i ∈ [n],
(ii) The union

⋃n
i=1 Vi is the interior of a polytope, and

(iii) The Hausdorff distance between Vσ and Uσ is less than ε for all ∅ 6= σ ∈ ∆.

Proof. The result holds if all Ui are empty sets: simply take all Vi to be empty. Thus, assume
∆ has at least one vertex, and for each face ∅ 6= σ ∈ ∆, fix a d-dimensional polytope Pσ ⊆ Uσ
with the property that distH

(
Uσ, Pσ

)
< ε/3. Let C be the convex hull of the union of all Pσ.

Then C is a d-dimensional polytope (hence compact) covered by {Ui}ni=1, so we may choose
a Lebesgue number δ > 0 for this cover.

Consider the lattice (δZ)d. For every point p in this lattice, let Wp be the closed d-cube
with side length 2δ centered at p. Then Wp ∩ C is a polytope. Let S denote the collection
of vertices of all nonempty polytopes of this form. Note that S is finite and that S might
not be a subset of (δZ)d since some of the cells of the lattice may only partially intersect C.

By shrinking δ, we may assume that the following conditions hold:

(1) Every nonempty set of the form Uσ ∩ C contains some Wp,
(2) for every p ∈ (δZ)d with Wp ∩ C 6= ∅, there exists i ∈ [n] such that Wp ⊆ Ui, and
(3) the diameter of Wp is less than ε/3.

For i ∈ [n], define

Vi = int(conv(S ∩ Ui)), so that Vi = conv(S ∩ Ui)
is a polytope contained in Ui. In the remainder of the proof, we use conditions (1)-(3) to
show that {Vi}ni=1 is the desired convex union representation of ∆.

By choice of C, Uσ ∩ C 6= ∅ for every face ∅ 6= σ ∈ ∆. Condition (1) then implies that
Uσ ∩ C contains Wp for some p ∈ (δZ)d, which, in turn, implies that p ∈ Vi for all i ∈ σ.
Thus σ ∈ N ({Vi}ni=1). Since Vi ⊆ Ui for all i, we conclude that N ({Vi}ni=1) = ∆.

To verify property (ii), we show that
⋃n
i=1 Vi = intC. Indeed, intC is the union of all

sets in the collection {intWp ∩ intC 6= ∅ | p ∈ (δZ)d}. Furthermore, by condition (2), each
polytope Wp∩C is contained in Ui for some i, and so its vertices are in Ui∩S. By definition of
Vi this implies that int(Wp∩C) ⊆ Vi. The assertion follows since int(Wp∩C) = intWp∩intC.

For property (iii), note that Pσ ⊆ Uσ ∩ C ⊆ Uσ, and so by choice of Pσ,

distH
(
Uσ, Uσ ∩ C) ≤ distH

(
Uσ, Pσ) < ε/3.

Also, distH
(
Uσ∩C, Vσ

)
< ε/3 by definition of the sets Vi and by condition (3). Property (iii)

follows since the Hausdorff distance is a metric on the space of compact subsets of Rd. �

An interesting consequence of this lemma (see Proposition 4.2) is that convex union rep-
resentability does not change if we replace the openness requirement with closedness. (How-
ever, dropping this requirement outright would change the notion: consider for example
U1 = (0, 1) and U2 = [1, 2) in R1. The nerve of this collection is not even a connected
simplicial complex, but U1 ∪U2 is a convex subset of R1.) In contrast, this equivalence does
not hold for convex realizations of neural codes; for details, see Remark 9.8 below.
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Proposition 4.2. For a simplicial complex ∆ with n vertices, the following are equivalent:

(1) ∆ is d-convex union representable.
(2) There exists a d-convex union representation {Vi}ni=1 of ∆ such that (i) the collection
{Vi}ni=1 of closures of the Vi has nerve ∆, (ii) each Vi is a polytope, and (iii) the
union of all Vi is the interior of a polytope.

(3) ∆ is the nerve of a collection {Pi}ni=1 of d-dimensional polytopes whose union is a
polytope in Rd.

(4) ∆ is the nerve of a collection {Ai}ni=1 of convex closed sets whose union is a closed
convex set in Rd.

Proof. We first show that (1) implies (2). Let {Ui}ni=1 be a convex union representation of ∆.
By intersecting with an open ball of a sufficiently large radius, we can assume that all sets
Ui are bounded. Choose a representation {Vi}ni=1 as guaranteed by Lemma 4.1. Properties
(ii) and (iii) of (2) follow from the statement of Lemma 4.1, so we just need to check that
the nerve of {V i}ni=1 is ∆. This is immediate from the fact that Vi ⊆ V i ⊆ Ui for all i ∈ n.

The implications (2) ⇒ (3) and (3) ⇒ (4) are straightforward: the former by taking
closures of the Vi, and the latter since polytopes are closed and convex.

For the implication (4)⇒ (1), assume that all Ai are compact by intersecting with a closed
ball of sufficiently large radius. Then if Aσ and Aτ are disjoint, they have positive distance,
(i.e., min{‖x − y‖ | x ∈ Aσ, y ∈ Aτ} > 0), and so we can take the Minkowski sum of all Ai
with an open ball Bε of sufficiently small radius while preserving the nerve. The resulting
collection {Ai + Bε}ni=1 is a convex union representation of ∆ in Rd: the sets Ai + Bε are
convex open sets, and so is their union

⋃n
i=1

(
Ai +Bε

)
=
(⋃n

i=1Ai
)

+Bε. �

The proof of Theorem 3.1 relies on an application of Lemma 4.1, paired with the methods
of [20] and the following lemma.

Lemma 4.3. Let Γ ( ∆ be acyclic simplicial complexes. Then (∆,Γ) contains at least two
faces.

Proof. Since {∅} is not acyclic, (∆,Γ) contains at least one nonempty face. Suppose for
contradiction that (∆,Γ) contains a unique face σ, and let k = dimσ ≥ 0. Observe that
σ ∩ Γ = ∂σ, and that ∆ = Γ ∪ σ. We obtain a Mayer-Vietoris sequence

· · · → H̃k(∆)→ H̃k−1(∂σ)→ H̃k−1(Γ)⊕ H̃k−1(σ)→ · · · .

Since ∆, Γ, and σ are all acyclic this part of the sequence becomes 0→ H̃k−1(∂σ)→ 0. This
is a contradiction to the fact that the boundary of σ has nonzero (k − 1)-homology. �

If A is a(n oriented) hyperplane in Rd, then Rd \A consists of two open halfspaces which
we denote by A+ and A− — the positive and negative side of A, respectively.

Proof of Theorem 3.1. Observe that it is enough to prove the result in the case that all Ui
are bounded. It also suffices to consider the case that H is an open halfspace, since for a
closed halfspace the nerve is unaffected by replacing the halfspace with its interior. Thus
throughout the proof we assume that all Ui are bounded and that H is open.

We work by induction on the number of faces in ∆. There is nothing to prove if ∆ = ∅.
If ∆ is a single vertex, then every convex union representation consists of a single convex
open set, and the nerve N ({U1∩H}) is either ∆ or the void complex, depending on whether
U1 ∩H is empty. In either case ∆ collapses to N ({U1 ∩H}) and the result follows.
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Otherwise ∆ has more than two faces. Again if N ({Ui ∩ H}ni=1) = ∆ we are done. If
not, let A be the hyperplane defining the halfspace H, oriented so that H = A+. Choose ε
so that every nonempty Uσ ∩ H contains an ε-ball, and apply Lemma 4.1 to obtain a new
convex union representation {Vi}ni=1 of ∆. Observe that by choice of ε and property (iii) of
Lemma 4.1, N ({Ui ∩H}ni=1) = N ({Vi ∩H}ni=1). Property (i) and the boundedness of the Ui
imply that if Vσ∩H = ∅, then Vσ and H have positive distance to one another. Thus we may
perturb the position and angle of H slightly without changing the nerve N ({Vi ∩H}ni=1).

Perform a perturbation of H so that it is in general position relative to {Vi}ni=1 in the
following sense: no hyperplane parallel to A simultaneously supports two disjoint nonempty
Vσ and Vτ . For all facets σ in the relative complex

(
∆,N ({Vi∩H}ni=1)

)
, let dσ be the distance

from Vσ to H. There is at least one such facet σ since we are assuming that N ({Vi ∩H}ni=1)
is a proper subcomplex of ∆. The distances dσ are finite since each Vσ is bounded, and they
are distinct by genericity of A. Let Vσ0 be the region whose distance to H is largest. Let
A0 be the hyperplane separating Vσ0 from H and supporting Vσ0 , oriented so that H lies on
its positive side. Finally, let Γ = N ({Vi ∩ A+

0 }ni=1). Then Γ is a proper acyclic subcomplex
of ∆ containing N ({Vi ∩H}ni=1) and σ0 is the unique facet of (∆,Γ). Applying Lemma 4.3
we conclude that there is a minimal face τ0 ∈ ∆ \ Γ with τ0 ( σ0. Uniqueness of σ0 implies
that τ0 is a free face of ∆.

We modify our representation one last time. By property (i) of Lemma 4.1, disjoint Vσ
and Vτ have nonzero distance between them, and furthermore any Vσ with Vσ ∩ H = ∅
has nonzero distance to H. Let δ > 0 be smaller than one half the minimum of all these
distances, and let Bδ be the open ball with radius δ centered at the origin. For i ∈ [n], define

Wi =

{
Vi i ∈ τ0

(Vi +Bδ) ∩
⋃n
i=1 Vi i /∈ τ0.

By choice of δ the nerve of {Wi}ni=1 is equal to ∆. Moreover the union of the Wi is the same
as the union of the Vi. Since Wi = Vi for i ∈ τ0, it follows that Vτ0 = Wτ0 and that Wσ0 is
supported by A0. Finally, by choice of δ, N ({Wi ∩H}ni=1) = N ({Vi ∩H}ni=1).

Now for i ∈ [n] define Xi = Wi ∩A+
0 . Then N ({Xi ∩H}ni=1) = N ({Wi ∩H}ni=1) and Xσ0 =

Wσ0 ∩A+
0 = ∅. By inductive hypothesis, the nerve N ({Xi}ni=1) collapses to N ({Xi∩H}ni=1).
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We claim that N ({Xi}ni=1) is equal to ∆ \ τ0. It suffices to show that Xγ = Wγ ∩ A+
0 is

not empty for every γ ∈ (∆,Γ) with τ0 6⊆ γ. Note that for such a γ, τ0 ∩ γ ( τ0, and so
by minimality of τ0, Wτ0∩γ ∩ A+

0 = Vτ0∩γ ∩ A+
0 6= ∅. Since Vσ0 ⊆ Wσ0 ⊆ Wτ0∩γ and Vσ0 is

supported by A0, we may choose a point p ∈ Wτ0∩γ ∩A+
0 which is arbitrarily close to Vσ0 . By

construction of Wi the region Wγ\τ0 contains the Minkowski sum Vσ0 +Bδ. But then it must
contain p, so Wγ = Wγ∩τ0 ∩Wγ\τ0 contains p. In particular, Wγ has nonempty intersection
with A+

0 . This situation is illustrated in the figure above. In the figure the shaded area is
equal to Wγ.

Since Wγ ∩ A+
0 6= ∅ for all γ ∈ ∆ \ Γ with τ0 6⊆ γ, we conclude that N ({Xi}ni=1) =

∆ \ τ0. Furthermore, since ∆ → ∆ \ τ0 is a collapse, we conclude that ∆ collapses to
N ({Xi ∩H}ni=1) = N ({Ui ∩H}ni=1), proving the result. �

5. Constructible-like behavior

As we saw in Corollary 3.5, not all collapsible complexes are convex union representable.
Thus our goal is to establish some additional necessary conditions for convex union rep-
resentability. The corollaries enumerated in Section 3 provide some such conditions. The
following theorem is another step in this direction, and shows that convex union representable
complexes are similar in spirit to constructible complexes — a notion introduced in [22].

Theorem 5.1. Let ∆ be a d-convex union representable simplicial complex, and let τ1, τ2 ∈ ∆
be such that τ1 ∪ τ2 /∈ ∆. Then there exist simplicial complexes ∆1 ⊆ ∆ \ τ1 and ∆2 ⊆ ∆ \ τ2

satisfying

(i) ∆ = ∆1 ∪∆2;
(ii) ∆ collapses onto ∆i (for i = 1, 2);

(iii) ∆i (for i = 1, 2) collapses onto ∆1 ∩∆2;
(iv) ∆1 and ∆2 are d-convex union representable, and
(v) ∆1 ∩∆2 is (d− 1)-convex union representable.

Proof. Let {U1, . . . , Un} be a convex union representation of ∆. The condition that τ1∪τ2 /∈ ∆
implies that Uτ1 and Uτ2 are disjoint. Thus we may choose a hyperplane H separating Uτ1
and Uτ2 , oriented such that Uτ2 lies on the open positive side H+ of H. Apply Lemma 4.1
to obtain a new representation {V1, . . . , Vn} of ∆. This representation has the property that
if σ ∈ ∆ and Vσ ∩H = ∅, then there is a positive distance between Vσ and H. In particular,
there is a small ε so that the Minkowski sum of H with an ε-ball induces the same nerve as
H when intersected with the various Vi.

Now, let ∆1 be the nerve of {V1 ∩ H+, . . . , Vn ∩ H+} and let ∆2 be the nerve of {V1 ∩
H−, . . . , Vn ∩H−}. We claim that ∆1 and ∆2 satisfy the conditions stated above.

First let us argue that ∆1 ⊆ ∆ \ τ1 and ∆2 ⊆ ∆ \ τ2. Note that ∆1 ⊆ ∆ since the sets
representing ∆1 are subsets of the sets representing ∆. Moreover τ1 /∈ ∆1 since Vτ1∩H+ = ∅,
and thus ∆1 ⊆ ∆ \ τ1. A symmetric argument shows that ∆2 ⊆ ∆ \ τ2.

For (i), let σ ∈ ∆. Then Vσ 6= ∅, and since Vσ is open it has nonempty intersection with
H+ or with H−. In the former case σ ∈ ∆1 and in the latter σ ∈ ∆2. Thus ∆ = ∆1 ∪∆2.
For (ii) we can apply Theorem 3.1 with the open halfspaces H+ and H−.

To prove (iii), we first claim that ∆1 ∩ ∆2 = N ({Vi ∩ H}ni=1). If σ ∈ ∆1 ∩ ∆2, then
Vσ contains points on both sides of H, and by convexity it contains points in H. Thus
σ ∈ N ({Vi ∩H}ni=1). Conversely, if σ ∈ N ({Vi ∩H}ni=1), then Vσ contains points in H, and
by openness it contains points in both H+ and H−.
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To see that ∆i collapses to N ({Vi∩H}ni=1), let C be the Minkowski sum of H with a small
ε-ball, so that N ({Vi ∩ H}ni=1) = N ({Vi ∩ C}ni=1). Then observe that C ∩ H+ induces the
nerve ∆1 ∩∆2 when intersected with the convex union representation {Vi ∩H+}ni=1 of ∆1.
By Corollary 3.2 this implies that ∆1 collapses onto ∆1 ∩∆2. A symmetric argument shows
that ∆2 collapses onto ∆1 ∩∆2.

For (iv) simply observe that {V1 ∩ H+, . . . , Vn ∩ H+} and {V1 ∩ H−, . . . , Vn ∩ H−} are
d-convex union representations for ∆1 and ∆2 respectively.

To prove (v) recall that ∆1 ∩ ∆2 = N ({Vi ∩ H}ni=1). Since H ∼= Rd−1, this yields a
(d− 1)-convex union representation of ∆1 ∩∆2. �

Corollary 5.2. Let ∆ be a simplicial complex that is not d-convex union representable.
Then the suspension of ∆ is not (d + 1)-convex union representable. In particular, if ∆ is
not convex union representable, then neither is Σ∆.

Proof. Assume Σ∆ is (d+ 1)-convex union representable, and let u and v be the suspension
vertices. Observe that {u, v} is not a face of Σ∆, so by Theorem 5.1 there exist complexes
∆1 ⊆ Σ∆\u = v∗∆ and ∆2 ⊆ Σ∆\v = u∗∆ satisfying (i)-(v) in the theorem statement. But
since ∆1 ∪∆2 = Σ∆ = v ∗∆ ∪ u ∗∆, it must be the case that ∆1 = v ∗∆ and ∆2 = u ∗∆.
Then ∆1 ∩ ∆2 = ∆, and by (v) we conclude that ∆ is d-convex union representable, a
contradiction. �

Note that Corollary 5.2 together with Corollary 3.5 provides us with additional examples
of collapsible complexes that are not convex union representable. In some situations, see
Corolary 8.5 below, it also allows us to establish lower bounds on the minimum dimension
of a convex union representation.

6. Alexander duality

Recall that if ∆ is a simplicial complex with vertex set [n], then the Alexander dual of ∆
is

∆∗ := {σ ⊆ [n] | [n] \ σ /∈ ∆}.
The goal of this section is to show that if ∆ is convex union representable and n ≥ 1, then
the Alexander dual of ∆ is collapsible. It is worth mentioning that there exist collapsible
complexes whose Alexander dual is not collapsible (see, for instance [21, Example 3.3])
— such complexes thus provide additional examples of collapsible complexes that are not
convex union representable. On the other hand, a complex is non-evasive if and only if its
Alexander dual is non-evasive (see [14] and [21, Lemma 2.5]). This suggests that convex
union representability may imply non-evasiveness.

For our result we require the following standard lemma, which is proven in [14].

Lemma 6.1. Let ∆ ⊆ Γ be simplicial complexes. Then Γ collapses onto ∆ if and only if ∆∗

collapses onto Γ∗.

Corollary 6.2. Let ∆ be a simplicial complex with vertex set [n]. Then ∆∗ is collapsible if
and only if 2[n] collapses onto ∆.

Proof. Take Γ = 2[n] and use Lemma 6.1, noting that Γ∗ = ∅. �

With Corollary 6.2 in hand, we are ready to prove the main result of this section:

Theorem 6.3. Let ∆ be a convex union representable complex with n ≥ 1 vertices. Then
∆∗ is collapsible.
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Proof. Let {Ui}ni=1 be a convex union representation of ∆ in Rd such that the collection of
closures {Ui}ni=1 has nerve equal to ∆, as guaranteed by Proposition 4.2. Embed {Ui} into
Rd+1 on the hyperplane xd+1 = 0. Let U =

⋃
i∈[n] Ui, and let V be the shifted copy of U

contained in the hyperplane xd+1 = 1. Then for i ∈ [n] define Vi = int(conv(Ui ∪ V )). This
construction is illustrated below.

Observe that the nerve of {Vi}ni=1 is 2[n]. Since the Ui were chosen such that their closures
have the same nerve, it follows that for a sufficiently small ε > 0, the halfspace Hε =
{(x1, . . . , xd, xd+1) ∈ Rd+1 | xd+1 < ε} has the property that

N ({Ui}) = N ({Vi ∩Hε}).

But by Theorem 3.1, this implies that 2[n] collapses to ∆. Corollary 6.2 then yields that ∆∗

is collapsible. �

7. Convex union representable complexes with a few free faces

In this section we bound the minimum dimension of a representation of a convex union
representable complex ∆ by the number of free faces of ∆. More specifically, we establish
the following result.

Theorem 7.1. If ∆ is a convex union representable complex with k facets that contain all
free faces of ∆, then ∆ is (k − 1)-convex union representable.

Proof. Let {Ui}ni=1 be a convex union representation of ∆, and let σ1, . . . , σk be the facets
of ∆ containing all free faces. Choose points pi ∈ Uσi , and let C = conv({p1, . . . , pk}). By
Corollary 3.2, ∆ collapses to N ({Ui ∩ C}), but by choice of the pi the nerve N ({Ui ∩ C})
contains all free faces of ∆. Thus ∆ = N ({Ui∩C}). Since C is the convex hull of k points, it
is contained in an affine subspace of dimension no larger than k−1. Taking relative interiors
in this affine subspace yields a convex union representation of ∆ in dimension no larger than
k − 1, proving the result. �

Two immediate consequences of Theorem 7.1 are

Corollary 7.2. If ∆ is a convex union representable complex with k facets that contain all
free faces of ∆, then ∆ is (k − 1)-representable. In particular it is (k − 1)-Leray.
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Corollary 7.3. Let ∆ be a d-dimensional collapsible complex. Suppose that ∆ has only d
or fewer free faces. Let ∆′ be a stellar subdivision of ∆ at one of its d-dimensional faces.
Then ∆′ is collapsible but not convex union representable.

Proof. Note that a stellar subdivision at a facet does not affect collapsibility nor the collection
of free faces. Let σ ∈ ∆ be the d-face at which the subdivision occurs. Then ∆′ will have the
boundary of σ as an induced subcomplex. This boundary has nonvanishing (d−1)-homology,
and so ∆′ is not (d− 1)-Leray. On the other hand, ∆′ has only d or fewer free faces. Thus
by Corollary 7.2, ∆′ is not convex union representable. �

The following corollary of Theorem 7.1 characterizes convex union representable complexes
that have at most two free faces; in particular, it provides a different proof of Corollary 3.5.

Corollary 7.4. Let ∆ be a convex union representable complex. Then ∆ has at most two
free faces if and only if ∆ is a path.

Proof. One direction is clear: paths are 1-convex union representable complexes that have at
most two free faces. For the other direction, assume that ∆ is a convex union representable
complex with at most two free faces. Then by Corollary 7.2, ∆ is 1-representable. Thus to
prove the result, it suffices to show that if ∆ is a collapsible, 1-representable complex with
at most two free faces, then ∆ is a path.

The class of 1-representable complexes, also known as clique complexes of interval graphs,
is well understood. In particular, [11, Theorem 7.1] asserts that Γ is 1-representable if and
only if Γ satisfies the following property (*): the facets of Γ can be numbered F1, . . . , Fm
in such a way that for all pairs (i, k) with 1 ≤ i < k ≤ m and for any vertex v ∈ Γ, if
v ∈ Fi ∩ Fk, then v belongs to all Fj with i < j < k.

We use induction on m to show that any collapsible Γ that satisfies (*) and has at most
two free faces must be a path. In the base case of m = 1, Γ is a simplex F1, in which case
the result is immediate: indeed, 0- and 1-dimensional simplices form a path, while a simplex
of dimension d ≥ 2 has more than two free faces.

For the case of m > 1, let v be a vertex that belongs to Fm, but not to Fm−1. (It exists
since Fm is a facet, and hence it is not a subset of Fm−1.) Similarly, let w ∈ F1 \ F2. Since
Γ satisfies (*), Fm is the only facet that contains v. Consequently, v 6= w, and any proper
subset of Fm that contains v is a free face of Γ. By a symmetric argument, w is a free face
of Γ. Thus, for Γ to have at most two free faces, Fm must be 1-dimensional. We write
Fm = {v, u} and consider Γ′ = Γ \ v =

⋃m−1
i=1 Fi. Then Γ′ is collapsible and satisfies property

(*). Can it happen that Γ′ has more than two free faces? If yes, then at least two of these
free faces are not {u}; hence they are also free faces of Γ, which together with the face
{v} already accounts for three free faces of Γ, contradicting our assumption. Thus Γ′ has
at most two free faces, and hence Γ′ is a path by inductive hypothesis. We conclude that
Γ = Γ′ ∪ {u, v} is a 1-dimensional collapsible complex, so a tree. The result follows since
every tree that is not a path has at least three leaves, and each leaf is a free face. �

8. Constructions

In this section we discuss some sufficient conditions for convex union representability. We
start with the cones and joins.

Remark 8.1. Every simplicial complex ∆ with vertex set [n] is the nerve of a collection
{Ui}ni=1 of convex open sets (whose union is not necessarily convex). Indeed, every simplicial
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complex has a representation {Ai}ni=1 consisting of compact convex sets (in fact polytopes,
see [19, Section 3.1]). Compactness implies that disjoint regions Aσ and Aτ have positive
distance between them, so we can replace each Ai by its Minkowski sum with a small open
ball without affecting the nerve.

Proposition 8.2. Every cone is convex union representable.

Proof. Consider a cone v ∗∆. Choose a d-representation of ∆ by convex open sets. Adding
Uv = Rd to this d-representation yields a d-convex union representation of v ∗∆. �

Remark 8.3. Proposition 8.2 and the fact that all convex union representable complexes are
collapsible and hence Q-acyclic leads to the following set of (strict) implications:

cone =⇒ convex union representable =⇒ Q-acyclic.

Since the set of f -vectors of the class of simplicial complexes that are cones coincides with
set of f -vectors of the class of Q-acyclic simplicial complexes [15], it follows that it also
coincides with the set of f -vectors of the class of convex-union representable complexes.

Proposition 8.4. Let ∆ be a d1-convex union representable complex, and let Γ be a d2-
representable simplicial complex. Then ∆ ∗ Γ is (d1 + d2)-convex union representable.

Proof. Let A and B be the (disjoint) vertex sets of ∆ and Γ respectively. Let {Ui}i∈A be a
d1-convex union representation of ∆, and let U =

⋃
Ui. Let {Vj}j∈B be a d2-representation

of Γ consisting of convex open sets. Define V = conv (
⋃
Vj). Then for k ∈ A ∪B define

Wk =

{
Uk × V k ∈ A,
U × Vk k ∈ B.

The union of all Wk is the convex open set U × V since U is the union of all Ui. Moreover
the nonempty regions of intersection among the Wk are of the form Uσ × Vτ for σ ∈ ∆ and
τ ∈ Γ, and so N ({Wk}k∈A∪B) = ∆ ∗ Γ. Thus ∆ ∗ Γ is (d1 + d2)-convex union representable
as desired. �

In some instances, Proposition 8.4 along with Corollary 5.2 allows us to compute the
minimum dimension of a convex union representation of a given complex. Below is one such
example.

Corollary 8.5. Let ∆ = p be a point, and let Σk∆ denote the k-fold suspension of ∆. Then
for all k ≥ 0, the complex Σk∆ is k-convex union representable but not (k− 1)-convex union
representable.

Proof. We work by induction on k. If k = 0 then Σk∆ = ∆ and the result holds. Suppose
k ≥ 1 and let Γ be the complex consisting of two points. Observe that Γ is 1-representable.
Further observe that Σk∆ = (Σk−1∆)∗Γ, and so Proposition 8.4 implies that Σk∆ is k-convex
union representable. Since Σk−1∆ is not (k − 2) convex union representable, Corollary 5.2
implies that Σk∆ is not (k − 1)-convex union representable. The result follows. �

The following proposition shows that building cones over certain subcomplexes of convex
union representable complexes preserves convex union representability.

Proposition 8.6. Let ∆ ⊆ 2[n] be a d-convex union representable simplicial complex. Choose
a face σ ∈ ∆ and a set ω with σ ⊆ ω ⊆ [n]. Then the complex

∆′ := ∆ ∪
(
(n+ 1) ∗ St∆(σ)|ω

)
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is (d+ 1)-convex union representable.

Proof. Let {Ui}ni=1 be a convex union representation of ∆ in Rd consisting of bounded sets,
and let U =

⋃n
i=1 Ui. Choose an open convex set V ⊆ Uσ such that V ⊆ Uσ, and V ∩Uτ 6= ∅

for all τ ⊃ σ. Identify Rd with the hyperplane defined by xd+1 = 0 in Rd+1, and let Ṽ
be the shifted copy of V contained in the hyperplane defined by xd+1 = 1. Define W =

int conv(U ∪ Ṽ ), and for i ∈ [n] define

Wi = (Ui × (0, 1)) ∩W.
Observe that {Wi}ni=1 is a (d + 1)-convex union representation of ∆ and that the union of
all Wi is equal to W .

For ε > 0, consider the hyperplane Hε defined by xd+1 = 1 − ε, oriented so that Ṽ lies
on the positive side. We claim that for small enough ε, H+

ε ∩W ⊆ Wσ. Suppose not, so
that there exists some Wτ 6⊆ Wσ with Wτ \ Wσ containing points arbitrarily close to the
hyperplane defined by xd+1 = 1. Since the only such points in W are those approaching
V × (0, 1), we see that Wτ must contain points arbitrarily close to V × (0, 1) but not in Wσ.
But then the projection of these points onto Rd yields a series of points in U approaching
V , but not contained in Uσ. This contradicts the condition that V ⊆ Uσ. We conclude that
for some ε > 0, H+

ε ∩W ⊆ Wσ.
Now, for i /∈ ω, replace Wi with Wi ∩H−ε . By choice of ε this does not affect the nerve or

union of {Wi}ni=1. Then define Wn+1 = W ∩H+
ε . We claim that {Wi}n+1

i=1 is a (d+ 1)-convex
union representation of ∆ ∪

(
(n + 1) ∗ St∆(σ)|ω

)
. To see this, observe that the regions of

maximal intersection in W∩H+
ε are the inclusion-maximal faces γ of ∆ satisfying σ ⊆ γ ⊆ ω.

These are exactly the facets of St∆(σ)|ω. Thus the new faces introduced by Wn+1 are of the
form {n+ 1} ∪ γ for γ ∈ St∆(σ)|ω, and the result follows. �

An immediate consequence of Proposition 8.6 is that trees are convex union representable:

Corollary 8.7. A 1-dimensional complex ∆ is convex union representable if and only if it
is collapsible (in particular, if and only if it is a tree).

Proof. If ∆ ⊆ 2[n] is a tree, we can build a convex union representation inductively using
Proposition 8.6. In the base case that ∆ is a single vertex, a realization is given by U1 =
{0} = R0. For ∆ containing at least one edge, label the vertices so that n+ 1 is a leaf, and
let i be the vertex that n + 1 is adjacent to. Then ∆|[n] is convex union representable by
inductive hypothesis. Choosing σ = ω = {i} and applying Proposition 8.6 we obtain that
the complex

∆|[n] ∪ {i, n+ 1}
is convex union representable. But this is just ∆, so the result follows. �

Remark 8.8. In fact, it is not hard to show by induction that all trees are 2-convex union
representable. This expands a result of [2], which showed that trees (and in fact all planar
graphs) are 2-representable.

Remark 8.9. Essentially the same argument as in Corollary 8.7 shows that if ∆ is strong
collapsible and flag, then ∆ is convex union representable. Strong collapsible complexes
were introduced in [3, Section 2]. The condition of being a flag complex is only needed to
guarantee that all vertex links are induced subcomplexes. In particular, since barycentric
subdivisions are always flag and since the barycentric subdivision of any strong collapsible
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complex is strong collapsible [3, Theorem 4.15], it follows that barycentric subdivisions of
strong collapsible complexes are convex union representable. For example, the barycentric
subdivision of an arbitrary cone complex is convex union representable.

A simplicial complex ∆ is a simplicial ball (or a simplicial sphere) if the geometric realiza-
tion of ∆ is homeomorphic to a ball (a sphere, respectively). Another immediate application
of Proposition 8.6 is that all stacked balls are convex union representable. (Stacked balls
are defined recursively: a d-dimensional simplex is a stacked ball with d + 1 vertices; a
d-dimensional stacked ball ∆ on n + 1 ≥ d + 2 vertices is obtained from a d-dimensional
stacked ball Γ on n vertices by choosing a free ridge σ of Γ and building a cone on it:
∆ = Γ∪ ((n+ 1) ∗ σ).) We close this section by showing that all simplicial balls in a certain
larger class are convex union representable. Recall that if P is a simplicial polytope of di-
mension d and v is a vertex of P , then ∂P and ∂P \ v are simplicial complexes of dimension
d− 1: the former is a simplicial sphere while the latter is a simplicial ball.

Proposition 8.10. Let P be a d-dimensional simplicial polytope, and let v be a vertex of P .
Then ∂P \ v is a (d− 1)-convex union representable simplicial complex.

Proof. Translate P if necessary so that the origin is in the interior of P . Let P ∗ be the polar
polytope of P , and let F = v̂ be the facet of P ∗ corresponding to the vertex v. Consider the
Schlegel diagram S(F ) of P ∗ based at F . This is a polytopal complex; in particular the facets
of S(F ) are polytopes. Furthermore, S(F ) satisfies the following properties (see Chapters 2,
5, and 8 of [23] for basics on polar polytopes, Schlegel diagrams, and polytopal complexes):
(i) the set of facets of S(F ) is in bijection with the set of facets of P ∗ other than F , which
in turn is in bijection with the vertex set V of ∂P \ v, that is, we can index the facets of
S(F ) by vertices of ∂P \ v: {Gw}w∈V ; (ii) for w1, . . . , wk ∈ V , the facets Gw1 , . . . , Gwk

have
a nonempty intersection if and only if {w1, . . . , wk} is a face of ∂P \ v; (iii) the union of all
facets Gw of S(F ) is F . These properties imply that {Gw} is a collection of closed convex
subsets of Aff(F ) ∼= Rd−1 whose nerve is ∂P \ v, and whose union is convex. This along with
Proposition 4.2 yields the result. �

Corollary 8.11. Let ∆ be an arbitrary 2-dimensional simplicial ball. Then ∆ is 2-convex
union representable.

Proof. Let v be a vertex not in ∆, and let ∂∆ denote the boundary of ∆, that is, ∂∆ is
the 1-dimensional subcomplex of ∆ whose facets are precisely the free edges of ∆. Let
Λ := ∆∪ (v ∗ ∂∆). Then Λ is a 2-dimensional simplicial sphere, and so by Steinitz’ theorem
(see [23, Chapter 4]), Λ can be realized as the boundary complex of a simplicial polytope.
Since ∆ = Λ \ v, the previous proposition implies the result. �

The situation with higher-dimensional balls is much more complicated. For instance, there
exist 3-dimensional simplicial balls that are not even collapsible. (See [4] for an explicit non-
collapsible example with only 15 vertices.) It would be interesting to understand which
collapsible triangulations of balls are convex union representable.

9. Nerve Obstructions to Convexity in Neural Codes

The goal of this section is to apply our results to the study of convex neural codes. Convex
neural codes are a topic of recent research, see for example [6, 7, 8, 12, 9, 16]. Informally,
the theory of neural codes aims to answer the question “what are the possible intersection
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patterns of collections of convex open sets?” We begin with some background to make this
question more precise.

A neural code or combinatorial code is a subset C of 2[n]. Given a collection {Ui}ni=1 of
convex open sets in Rd the code of {Ui}ni=1 is the neural code

code({Ui}ni=1) :=

{
σ ⊆ [n]

∣∣∣ Uσ \⋃
j /∈σ

Uj 6= ∅
}

where U∅ = conv(
⋃n
i=1 Ui) as earlier in the paper. The collection {Ui}ni=1 is called a convex

realization of code({Ui}ni=1). If a code C has a convex realization, we call C a convex code,
and otherwise we say that C is non-convex. Indices in [n] may be referred to as neurons, and
Ui is the receptive field of a neuron i.

Remark 9.1. The convention that U∅ = conv(
⋃n
i=1 Ui) differs somewhat from existing neural

code literature, in which one usually specifies an “ambient space” X containing all Ui, and
defines U∅ = X. Our convention can be thought of as treating conv(

⋃n
i=1 Ui) as an implicit

ambient space. This convention is motivated by the fact that, with it, ∅ /∈ code({Ui}ni=1) if
and only if

⋃n
i=1 Ui is convex. More generally (and independent of this convention) we have

for nonempty σ that σ /∈ code({Ui}ni=1) if and only if {Uj | j /∈ σ} covers Uσ.

For any neural code C, the smallest simplicial complex containing C is denoted ∆(C). The
topology of this simplicial complex has been used to characterize certain “local obstructions”
to convexity. In particular, [8, 12] showed that if C is a convex code then for all σ ∈ ∆(C)\C
the link Lk∆(C)(σ) must be contractible. In [6] the authors strengthened “contractible” to
“collapsible.” A failure of Lk∆(C)(σ) to be contractible is called a local obstruction of the first
kind at σ, while a failure to be collapsible is a local obstruction of the second kind. Based
on similar arguments, we define “nerve obstructions” and further strengthen “collapsible”
to “convex union representable.”

Definition 9.2. Let C ⊆ 2[n] and σ ∈ ∆(C) \ C. We say that C has a nerve obstruction at
σ if Lk∆(C)(σ) is not convex union representable. If C has no nerve obstructions, then C is
called locally perfect.

Remark 9.3. Nerve obstructions generalize local obstructions in the following sense. If C has
a local obstruction of the first or second kind at σ, then C has a nerve obstruction at σ.

Proposition 9.4. Let C ⊆ 2[n] be a neural code. If C is convex then C is locally perfect.
In particular, if C has a realization in Rd then for all σ ∈ ∆(C) \ C the link Lk∆(C)(σ) is
d-convex union representable.

Proof. Let {Ui}ni=1 be a realization of C in Rd as a neural code, and let σ ∈ ∆(C)\C. Consider
the collection {Uj ∩Uσ | j /∈ σ}. Since σ /∈ C this collection covers Uσ. That is, the union of
sets in this collection is the convex open set Uσ. Moreover the nerve N ({Uj ∩Uσ | j /∈ σ}) is
exactly Lk∆(C)(σ), so this collection gives a d-convex union representation of the link, proving
the result. �

Proposition 9.4 applied to σ = ∅ yields the following:

Corollary 9.5. Let Γ be a simplicial complex that is not convex union representable. Then
Γ \ {∅} is not a convex neural code.

Proof. Note that ∆(Γ \ {∅}) = Γ and LkΓ(∅) = Γ. Thus, if Γ is not convex union repre-
sentable, then the code Γ \ {∅} has a nerve obstruction at ∅, and so it is not convex. �
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Corollary 9.5 gives us new families of examples of neural codes that are not convex. In
particular, if Γ is one of the collapsible but non-convex union representable complexes Σd or
Ed of Corollary 3.5, then Γ \ {∅} is a non-convex neural code.

Similarly to the case of usual local obstructions [8], a useful property of nerve obstructions
is that they can only occur at intersections of maximal codewords. This makes searching for
local obstructions more efficient.

Proposition 9.6. Let C ⊆ 2[n] be a neural code with a nerve obstruction at σ ⊆ [n]. Then
σ is an intersection of maximal codewords of C.

Proof. We argue the contrapositive. Suppose that σ is not an intersection of maximal code-
words. Then Lk∆(C)(σ) is a cone, which is convex union representable by Proposition 8.2.
Thus C does not have a nerve obstruction at σ. �

We close this section with several remarks.

Remark 9.7. It is important to note that the converse to Proposition 9.4 is false, that is,
there exist non-convex locally perfect codes. A first example is given in [16, Theorem 3.1].
The non-convex code on 5 neurons described in this theorem has no local obstructions, and
in fact it has no nerve obstructions. (The latter follows from a simple fact all contractible
complexes with at most 4 vertices are convex union representable.) We build on this example
in [13], providing an infinite family of locally perfect codes that are not convex.

Remark 9.8. Instead of considering codes arising from a collection of open convex sets in Rd,
one may consider codes arising from a collection of closed convex sets. While according to
[7] the classes of codes realizable by closed convex sets and those realizable by open convex
sets are distinct, and in fact neither class contains the other, the results in this paper (e.g.,
Proposition 9.4 and Corollary 9.5) apply equally well for both types of codes: open-convex
and closed-convex. This is because convex union representability does not change if we
replace the openness requirement with closedness, see Proposition 4.2.

10. Concluding remarks and open problems

We have seen that convex union representability does not follow from familiar combinato-
rial properties such as collapsibility, shellability, or non-evasiveness. Observe also that being
pure and convex union representable does not imply being shellable or even constructible.
Indeed, let Γ be a pure complex that is not constructible, and let ∆ = v ∗ Γ. Then Γ
is also not constructible, however, Γ is a cone, and so it is convex union representable by
Proposition 8.2.

It is also worth mentioning that the class of convex union representable complexes is
not closed under arbitrary collapses. To see this, let ∆′ be a collapsible but not convex
union representable complex, and let ∆ = v ∗∆′. Then ∆ is convex union representable by
Proposition 8.2. Furthermore, ∆ collapses to ∆′, but ∆′ is not convex union representable.
(The fact that ∆ collapses to ∆′ follows from the following standard result: Let Γ be a
simplicial complex and let Γ′ ⊆ Γ be a nonempty collapsible subcomplex. If v is a vertex
not in Γ, then (v ∗ Γ′) ∪ Γ collapses onto Γ.)

In fact, recognizing d-convex union representable complexes is as hard as recognizing d-
representable complexes. We thank Martin Tancer for bringing to our attention the following
result:

Proposition 10.1. It is NP-hard to recognize 2-convex union representable complexes.
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Proof. First note that a complex ∆ is d-representable if and only if the cone v∗∆ is d-convex
union representable. Indeed, the proof of Proposition 8.2 implies that if ∆ is d-representable,
then v∗∆ is d-convex union representable. Conversely, if v∗∆ is d-convex union representable,
then it is d-representable, and so ∆ is d-representable: deleting from a d-representation of
v∗∆ the set that represents v produces a d-representation of ∆. The proposition then follows
from a result of [18] asserting that recognizing 2-representable complexes is NP hard. �

While the above discussion indicates that the problem of characterizing the class of convex
union representable complexes is out of reach at the moment, the following problems and
questions partly motivated by our results might be more approachable.

Question 10.2. Is every convex union representable complex non-evasive?

Question 10.3. Is the Alexander dual of a convex union representable complex always convex
union representable?

Question 10.4. Is every shellable (or constructible) simplicial ball a convex union repre-
sentable complex?

Question 10.5. Can one characterize the class of topological spaces that possess convex
union representable triangulations? Is it true that every collapsible complex becomes convex
union representable after a sufficiently fine subdivision?

Several remarks related to Question 10.5 are in order. First, note that there exist con-
tractible spaces, e.g., the dunce hat, that admit no collapsible triangulation; in particular,
such a space has no triangulation that is convex union representable. Note also that the
first barycentric subdivision of a collapsible complex is not always a convex union repre-
sentable complex. Indeed, if ∆ is a collapsible complex with only one free face (e.g., Σd from
Corollary 3.5) then it follows from Corollary 3.4 that the barycentric subdivision of ∆ is not
convex union representable. It might still be the case that for a sufficiently large n, the n-th
barycentric subdivision of a collapsible complex is convex union representable.

Question 10.6. For a fixed d ≥ 2, do there exist d-dimensional convex union representable
complexes which require arbitrarily high dimension to represent?

Question 10.7. Does there exist a simplicial complex ∆ which is d-representable and (d+1)-
convex union representable, but not d-convex union representable?

Since every k-dimensional simplicial complex is (2k + 1)-representable [19, Section 3.1], an
affirmative answer to Question 10.6 would imply an affirmative answer to Question 10.7.
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