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Abstract

A conjecture of Kalai from 1994 posits that for an arbitrary 2 ≤ k ≤ bd/2c, the combinatorial
type of a simplicial d-polytope P is uniquely determined by the (k − 1)-skeleton of P (given as
an abstract simplicial complex) together with the space of affine k-stresses on P . We establish
the first non-trivial case of this conjecture, namely, the case of k = 2. We also prove that for a
general k, Kalai’s conjecture holds for the class of k-neighborly polytopes.

1 Introduction

What partial information about a convex d-polytope P is enough to uniquely determine the com-
binatorial type of P? For general polytopes, a result of Grünbaum [6, Chapter 12] shows that to
reconstruct the face lattice of P we need to know the (d− 2)-skeleton of P . At the same time, for
certain classes of polytopes, knowing the graph alone already suffices to determine the combinato-
rial type. Examples include the class of all simple polytopes (see [4] and [7]) as well as the class of
all zonotopes [3].

In the class of simplicial polytopes, neither the graph nor even the (bd/2c − 1)-skeleton pro-
vides enough information. Indeed, while any two bd/2c-neighborly d-polytopes on n vertices have
isomorphic (bd/2c − 1)-skeleta, there are 2Θ(n logn) distinct combinatorial types of such polytopes
[13, 15]. However, a result of Perles (unpublished) and Dancis [5] asserts that the bd/2c-skeleton of
a simplicial d-polytope P does determine the entire face lattice of P . Another piece of information
that allows one to reconstruct the face lattice of P is the space of affine dependencies of vertices of
P . This observation is at the heart of the theory of Gale diagrams developed by Perles [20, Chapter
6].

To relate these two very different types of partial information to each other, it is worth pointing
out that the affine dependencies of vertices of P are precisely the affine 1-stresses on P , while the
space of affine (bd/2c + 1)-stresses of a simplicial d-polytope P is trivial. (This latter fact is a
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consequence of the celebrated g-theorem of Stanley [16] and McMullen [12] or more precisely of
the Strong Lefschetz property of P stated in the language of stresses [9, 10].) In other words, the
two reconstruction results mentioned in the previous paragraph are respectively the k = bd/2c+ 1
and the k = 1 cases of the following conjecture of Kalai [8, Conjecture 7] that can be regarded as
a natural conjectural extension of the basic property of Gale diagrams.

Conjecture 1.1. Let P be a simplicial d-polytope and let 1 ≤ k ≤ bd/2c + 1. Then the (k − 1)-
skeleton of P (given as an abstract simplicial complex) and the space of (squarefree parts of) affine
k-stresses of P uniquely determine the combinatorial type of P .

All other cases of Conjecture 1.1 are open at present. The goal of this note is to verify the
case of k = 2 of this conjecture as well as to prove it for the class of k-neighborly polytopes for an
arbitrary k. In fact, in the complete analogy with the k = 1 case, we prove that in these two cases,
to reconstruct the combinatorial type of P , it is enough to know the (k − 1)-skeleton of P and the
set of sign vectors of affine k-stresses on P . In the case of k = 2, the main ingredients of our proof
are basic facts about affine 2-stresses, such as the cone and gluing lemmas (see [1, 11]); Whiteley’s
result asserting that for d ≥ 3, all simplicial d-polytopes are infinitesimally rigid in Rd [19]; a simple
extension of Dehn’s lemma that might be of interest on its own; and Balinski’s theorem [2], [20,
Section 3.5]. Along the way, we state several other conjectures about the set of affine k-stresses
that, if true, would imply Conjecture 1.1 in full generality.

The structure of the rest of this note is as follows. In Section 2 we review several basic definitions
related to polytopes and simplicial complexes as well as introduce some notation. In Section 3,
which is also mostly a background section, we discuss a few important results on affine stresses and
infinitesimal rigidity. In Section 4, we propose three conjectures of increasing strength all of which
imply Conjecture 1.1. Then, in Section 5, we prove Conjecture 1.1 in the two cases described above
by verifying one of these stronger conjectures, see Theorems 5.5 and 5.6.

2 Basics on polytopes and simplicial complexes

In this section we collect some basic definitions and results pertaining to simplicial polytopes and
simplicial complexes.

A polytope P ⊆ Rd is the convex hull of a finite set of points in Rd. Each hyperplane H in Rd
determines two closed half-spaces of Rd, which we usually denote by H+ and H−. We say that
H is a supporting hyperplane of P if P is contained in one of these two half-spaces and H ∩ P is
nonempty; the intersection F = H ∩ P is then called a proper face of P . We sometimes also refer
to the empty set and P itself as non-proper faces of P . The dimension of a face F is the dimension
of the affine span of F . In particular, P is a d-polytope if dimP = d. The faces of a d-polytope P
of dimensions 0, 1 and d− 1 are called vertices, edges, and facets, respectively. By passing from Rd
to the affine span of P , we can always assume that P ⊆ Rd is a full-dimensional polytope.

An important example of a polytope is a geometric d-simplex. It is defined as the convex hull
of a set of d + 1 affinely independent points. Another important family of polytopes is that of
k-neighborly polytopes: a polytope P is k-neighborly if every k-subset of the vertex set of P spans
a face of P .

An (abstract) simplicial complex ∆ with vertex set V = V (∆) is a non-empty collection of
subsets of V that is closed under inclusion. The elements of ∆ are called faces of ∆. A face F of
∆ is an i-face or a face of dimension i if |F | = i + 1. The i-skeleton of ∆, Skeli(∆), is the set of
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all faces of ∆ of dimension at most i. We often refer to the 1-skeleton of ∆ as the graph of ∆ and
denote it by G(∆).

The (abstract) d-simplex on the vertex set V of size d + 1 is the complex V := {τ : τ ⊆ V }.
The boundary complex of V , ∂V , consists of all faces of V but V itself.

A set F ⊆ V is a missing face of ∆ if F is not a face of ∆, but every proper subset σ of F is
a face of ∆. The dimension of a missing face F is defined as |F | − 1. The simplices are the only
simplicial complexes that have no missing faces. The importance of missing faces of ∆ is that they
uniquely determine ∆: F ⊆ V is a face of ∆ if and only if no missing face of ∆ is a subset of F .

In this paper we only work with simplicial polytopes, that is, polytopes all of whose facets are
geometric simplices. A simplicial d-polytope P gives rise to an abstract simplicial complex ∂P
called the boundary complex of P : the faces of ∂P consist of the empty set and the vertex sets of
proper faces of P . We use the following convention: if P is a d-polytope with n vertices, we think of
∂P as a simplicial complex on the vertex set V (∂P ) = {1, 2, . . . , n} (or on any n symbols), and we
let p : V (∂P )→ Rd be the map that takes each vertex v to its position vector p(v), so the vertices
of P are given by p(v), v ∈ V (∂P ). If W is a subset of V (∂P ) and p is fixed or understood from
context, we write conv(W ) := conv(p(v) : v ∈ W ) and aff(W ) := aff(p(v) : v ∈ W ). In particular,
if W is a face of ∂P , then conv(W ) is a face of P . To simplify notation, for a face that is a vertex
or an edge, we sometimes write v and uv, instead of {v} and {u, v}, respectively, and we use [a, b]
as a shorthand for conv({a, b}).

Let F be a face of ∂P . The star of F and the link of F in ∂P are the following subcomplexes
of ∂P :

st(F ) = st∂P (F ) := {σ ∈ ∂P : σ ∪ F ∈ ∂P} and lk(F ) = lk∂P (F ) := {σ ∈ st(F ) : σ ∩ F = ∅}.

The link of F in ∂P is the boundary complex of a polytope. When F = {u} is a vertex, one
such polytope is obtained by intersecting P with a hyperplane that strictly separates p(u) from the
other vertices; this polytope is called a vertex figure of P at u or a quotient polytope of P by u. In
general, a quotient of P by face F is obtained by iteratively taking vertex figures of polytopes at
the vertices in F . Continuing with our convention from the previous paragraph, for any choice Q
of a quotient polytope of P by F , the abstract simplicial complex ∂Q coincides with lk∂P (F ); in
particular, the vertex set of ∂Q is a subset of V (∂P ) \ F . The vertices of Q itself are then of the
form q(v) for v ∈ V (∂Q) and an appropriate map q. This convention is handy for Corollary 3.3
and its applications.

If Γ and ∆ are simplicial complexes on disjoint vertex sets, their join is the simplicial complex
Γ ∗∆ = {σ ∪ τ : σ ∈ Γ and τ ∈ ∆}. When Γ = u consists of a single vertex, we write u ∗∆ to
denote the cone over ∆ with apex u. Thus, st∂P (v) = v ∗ lk∂P (v).

Finally, for a simplical d-polytope or a (d − 1)-dimensional simplicial complex ∆, we define
fi(∆) as the number of i-dimensional faces of ∆, where −1 ≤ i ≤ d − 1. We also let g0(∆) = 1,
gi(∆) =

∑i
k=0(−1)i−k

(
d−k+1
i−k

)
fk−1(∆) for 1 ≤ i ≤ dd/2e, and gi(∆) = 0 for all other values of i.

3 Basics on stress spaces and the rigidity theory of frameworks

Here we review several notions and results related to (higher-dimensional) stresses and infinitesimal
rigidity. For more details we refer the reader to [9, 10] and [17, 18].
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3.1 Affine stresses on simplicial complexes

Let ∆ be a simplicial complex on the vertex set V = V (∆). A map p : V (∆) → Rd is called a
d-embedding of ∆. If ∆ is a graph, then a d-embedding of ∆ is usually called a d-framework or a
framework in Rd. In what follows, we fix an embedding p. We always assume that aff(p(v) : v ∈
V ) = Rd and that for every face F of ∆, the points {p(v) : v ∈ F} are affinely independent.

Let X = {xv : v ∈ V } be a set of variables and let R[X] be the polynomial ring over the real
numbers in variables X. Each variable xv acts on R[X] by ∂

∂xv
; for brevity, we will denote this

operator by ∂xv . More generally, if `(X) =
∑

v∈V `vxv is a linear form in R[X], then we define

∂`(X) : R[X]→ R[X],

q 7→
∑
v∈V

`v · ∂xvq =
∑
v∈V

`v
∂q

∂xv
.

Given a d-embedding p of ∆, consider the (d+1)×|V | matrix whose columns are labeled by the
vertices of ∆: the column corresponding to v consists of the vector p(v) augmented by a one in the
last position. The i-th row of this matrix, θi = [θiv]v∈V , gives rise to a linear form θi =

∑
v∈V θivxv.

In particular, θd+1 =
∑

v∈V xv. We denote by Θ(p) or simply by Θ the sequence (θ1, . . . , θd, θd+1)
of these forms.

For a monomial µ ∈ R[X], the support of µ is supp(µ) = {v ∈ V : xv|µ}. A homogeneous
polynomial λ = λ(X) =

∑
µ λµµ ∈ R[X] of degree k is called an affine k-stress (or simply a k-stress)

on (∆, p) if it satisfies the following conditions:

� Every (non-zero) term λµµ of λ is supported on a face of ∆: supp(µ) ∈ ∆, and

� ∂θiλ = 0 for all i = 1, . . . , d+ 1.

The set of affine k-stresses on ∆ forms a vector space, denoted Sk(∆, p) or Sk(∆) if p is fixed or
understood from context.

Abusing notation, we write λF instead of λµ when µ is a squarefree monomial with supp(µ) = F .
Note that a polynomial λ =

∑
v∈V λvxv is an affine 1-stress if and only if (λv)v∈V is an affine

dependence of points (p(v) : v ∈ V ). More generally, for k ≥ 2, an affine k-stress λ is uniquely
determined by its squarefree part (λG)G∈∆ [10, Theorems 9 and 11]. Furthermore, the squarefree
part has a particularly nice geometric interpretation [10, Theorem 10]. We summarize these results
as follows: For a pair of faces F ⊂ G ∈ ∆, where |F | = k − 1 and |G| = k, we let vF,G be the
unique vertex of G that is not in F . Denote by πF,G the altitude vector joining the projection of
p(vF,G) onto the affine hull of p(F ) to the point p(vF,G). (For instance, when k = 2, πa,ab is simply
p(b)− p(a).) Also denote by 0 the zero-vector in Rd.

Theorem 3.1. Let k ≥ 2, let ∆ be a simplicial complex, and let p be a d-embedding of ∆.

1. If λ ∈ R[X] is an affine k-stress on (∆, p), then for every (k− 2)-face F of ∆, λ satisfies the
following balancing condition at F : ∑

G: F⊂G∈∆, |G|=k

λG πF,G = 0. (3.1)

2. Every collection (λG)G∈∆, |G|=k of real numbers that satisfies these conditions determines the
squarefree part of an affine k-stress on (∆, p); furthermore, such a stress is unique.
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For k ≥ 2, the above theorem allows us to identify Sk(∆, p) with the kernel of a certain matrix
Rk(∆, p) called the k-rigidity matrix of (∆, p). The matrix Rk(∆, p) is a dfk−2(∆)×fk−1(∆) matrix;
its columns are labeled by the (k− 1)-faces of ∆; its rows occur in blocks of size d with each block
labeled by a (k−2)-face of ∆. The entry in the (F,G)-position is the altitude vector πF,G if F ⊂ G
and it is the zero vector otherwise.

We now discuss how the stress spaces of a complex ∆ and the cone over ∆ are related to each
other. Assume that the vertex set of ∆ is [n] := {1, 2, . . . , n}, and let Γ = 0 ∗∆ be the cone over ∆
with apex 0. Let p be a d-embedding of Γ and let p′ be a (d− 1)-embedding of ∆. It is known that
for appropriate choices of p and p′, the stress spaces Sk(∆, p′) and Sk(Γ, p) are isomorphic, see [10,
Theorem 7]. We will need the following more precise version of this result that is similar in spirit
to [10, Theorem 7] and [11, Claim 1 of Thm. 6.19]. We sketch the proof for completeness.

Lemma 3.2. Let ∆ be a simplicial complex with V (∆) = [n] and let Γ = 0 ∗ ∆. Consider a

d-embedding p of Γ such that p(0) = 0 and for all i ∈ [n], p(i) =

[
vi
ai

]
where vi ∈ Rd−1 and

ai ∈ R\{0}. Define the (d − 1)-embedding p′ of ∆ by p′(i) = 1
ai

vi ∈ Rd−1 for all i ∈ [n]. If λ =

λ(x0, x1, . . . , xn) is a homogenous polynomial of degree k, express it as λ =
∑k

j=0 x
j
0 ·λj(x1, . . . , xn).

1. Let λ ∈ Sk(Γ, p). Then λ̄ := λ0(a1x1, . . . , anxn) is in Sk(∆, p′).

2. The linear map

Sk(Γ, p)→ Sk(∆, p′)
λ(x0, x1, . . . , xn) 7→ λ0(a1x1, . . . , anxn)

is an isomorphism. In particular, every affine k-stress ω′ on (∆, p′) lifts to an affine k-stress
ω on (Γ, p) with the property that ω′F = (

∏
i∈F ai)ωF for every (k − 1)-face F ∈ ∆.

Proof: Consider the linear forms Θ = Θ(p) and Θ′ = Θ′(p′) used in the definition of Sk(Γ, p) and
Sk(∆, p′). Note that the way p′ is related to p implies that

θi0 = 0 for all i ≤ d; θ′ij =
1

aj
θij for all 1 ≤ i ≤ d and j ∈ [n].

In particular, θ′d =
∑

i∈[n] xi. A straightforward computation then shows that for λ ∈ Sk(Γ, p),

∂θ′i(λ̄) =
(
∂θi(λ0)

)
(0, a1x1, . . . , anxn) and

0 =
(
∂θi(x

j
0 · λj)

)
(0, a1x1, . . . , anxn) for any j ≥ 1.

Consequently,

∂θ′i(λ̄) =
(
∂θi(λ0 +

∑
1≤j≤k

xj0 · λj)
)
(0, a1x1, . . . , anxn) =

(
∂θiλ

)
(0, a1x1, . . . , anxn) = 0 ∀ i ≤ d,

and hence λ̄ ∈ Sk(∆, p′).
For part 2, use that if λ ∈ Sk(Γ, p), then

0 = ∂θd+1
λ = ∂θd+1

(
λ0 +

∑
1≤j≤k

xj0λj
)

=
∑

0≤j≤k−1

xj0
(
∂θ′dλj + (j + 1)λj+1

)
.
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For this to happen, we must have λj+1 = − 1
j+1∂θ′dλj for all 0 ≤ j ≤ k − 1. Thus all λj are

determined by λ0, which implies the injectivity of the map λ(x0, x1, . . . , xn) 7→ λ0(a1x1, . . . , anxn).
To prove its surjectivity, for ω′ ∈ Sk(∆, p′), take ω0(x1, . . . , xn) := ω′(x1/a1, . . . , xn/an) and then
define ωj+1(x1, . . . , xn) inductively by ωj+1 := − 1

j+1∂θ′dωj for 0 ≤ j ≤ k − 1. Reversing the above

computations shows that ω :=
∑k

j=0 x
j
0ωj is in Sk(Γ, p). �

In what follows, if P ⊂ Rd is a simplicial d-polytope, we always use the natural d-embedding
(∂P, p) of P and write it as (P, p), where p(v) is the position vector of v. We also write Sk(P ) and
G(P ) instead of Sk(∂P, p) and G(∂P ), respectively. Applying Lemma 3.2(2) to subcomplexes of
boundary complexes of polytopes yields the following result that is at the core of the approach we
will be taking in Section 4.

Corollary 3.3. Let P be a simplicial d-polytope with its natural embedding p, let τ ∈ ∂P be a face,
and let Q ⊂ Rd−|τ | be a quotient polytope of P by τ given with its natural embedding q. Let ∆ be a
simplicial complex on V (∂Q) = V (lk∂P (τ)) with Skelk−1(τ ∗∆) ⊆ ∂P . Then for every k-stress λ̄
on (∆, q) there exists a k-stress λ on (τ ∗∆, p) with the property that for each (k − 1)-face F ∈ ∆,
the real numbers λ̄F and λF have the same sign, i.e., they are both positive or both negative or both
zeros.

Proof: It suffices to prove the statement in the case that τ is a vertex. Since the space of affine
stresses is unaffected by Euclidean motions and scalings, we can always assume that p(τ) is the
origin, and that the hyperplane H that Q lies in, i.e., the hyperplane we use to separate p(τ) from
the rest of the vertices is H = {(t1, . . . , td) ∈ Rd : td = 1}, and hence that for each vertex v 6= τ ,
the last coordinate of p(τ) is strictly greater than 1. The isomorphism provided by Lemma 3.2(2)
then lifts a k-stress λ̄ on (∆, q) to a k-stress λ on (τ ∗∆, p) that has the desired property. �

3.2 Infinitesimal rigidity of frameworks

Let (G, p) be a d-framework. Recall our assumption that aff(p(v) : v ∈ V (G)) is Rd (i.e., this
framework does not lie in a hyperplane of Rd). The left kernel space of the 2-rigidity matrix
R2(G, p) is called the infinitesimal motion space of G ⊂ Rd. Since all Euclidean motions of Rd
induce infinitesimal motions of G, it follows that the dimension of this space is at least

(
d+1

2

)
. We

say that (G, p) is infinitesimally rigid in Rd if the dimension of its infinitesimal motion space is
exactly

(
d+1

2

)
. Basic linear algebra then yields:

Theorem 3.4. Let (G, p) be a d-framework with f0 vertices and f1 edges. The following statements
are equivalent:

1. G is infinitesimally rigid in Rd.

2. The rank of R2(G, p) is df0 −
(
d+1

2

)
.

3. The dimension of S2(G, p) is f1 − df0 +
(
d+1

2

)
.

One immediate and well-known corollary of Theorem 3.4 we will use is

Corollary 3.5. Let d ≥ 3. Let (G, p) be a d-framework and let e be a missing edge of G. If (G, p)
is infinitesimally rigid in Rd, then there exists an affine 2-stress λ on (G ∪ {e}, p) with λe 6= 0.
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The following fundamental theorem is due to Whiteley [19].

Theorem 3.6. Let d ≥ 3 and let P ⊂ Rd be a simplicial d-polytope. The graph of P with its
natural embedding is infinitesimally rigid in Rd. In particular, g2(P ) = dimS2(P ).

The case d = 3 of this theorem is due to Dehn and is known as Dehn’s lemma; we shall review
its proof in Section 5. Whiteley’s proof for d ≥ 4 is by induction on d. One crucial ingredient is the
following result about stars of faces that follows from the Cone Lemma (applied to vertex figures)
and Theorem 3.4.

Lemma 3.7. Let d ≥ 4 and let P be a simplicial d-polytope with its natural embedding p in Rd.
Then for every face τ of ∂P with 0 ≤ dim τ ≤ d−4, the framework (G(st∂P (τ)), p) is infinitesimally
rigid in Rd.

The other ingredient of Whiteley’s proof is the Gluing Lemma, which allows us to form larger
infinitesimally rigid frameworks from the stars of faces in a polytope.

Lemma 3.8. (The Gluing Lemma [1, Thm. 2] and [11, Cor. 6.12]) Let G and G′ be graphs, and
let (G ∪ G′, p) be a d-framework. If (G, p) and (G′, p) are infinitesimally rigid in Rd and have d
affinely independent vertices in common (i.e., the framework (G ∩G′, p) affinely spans a subspace
of dimension at least d− 1), then (G ∪G′, p) is infinitesimally rigid in Rd.

We end this section mentioning the celebrated g-theorem [12, 16] that provides a far reaching
generalization of Dehn’s lemma. Stated in the language of stresses it asserts the following.

Theorem 3.9. Let P ⊂ Rd be a simplicial d-polytope. Then gk(P ) = dimSk(P ) for all k.

4 Several variations of Kalai’s conjecture

In this section we propose and discuss several conjectures of increasing strength each of which
implies Conjecture 1.1. Our approach is motivated by the following toy example. Consider two
sets σ = {1, 2, . . . , i, i + 1} and τ = {i + 2, . . . , d + 2} where 2 ≤ i ≤ d/2, and let ∆ be ∂σ ∗ ∂τ .
Then ∆ is a simplicial sphere realizable as the boundary complex of a simplicial d-polytope. Let
P ⊂ Rd be any such polytope. Since σ and τ are missing faces of ∂P = ∆ and since their union
is the entire vertex set, the convex hulls of p(σ) and p(τ) must intersect in their relative interiors.
(Here, as always, p(v) is the position vector of vertex v in P .) Thus there exist positive coefficients
c` ∈ R such that

i+1∑
`=1

c` p(`)−
d+2∑
`=i+2

c` p(`) = 0,
i+1∑
`=1

c` =
d+2∑
`=i+2

c` = 1.

Hence λ :=
∑i+1

`=1 c`x`−
∑d+2

`=i+2 c`x` is an element of S1(P ). (Here, following the notation of Section
3.1, x` denotes the variable corresponding to vertex `.)

Since every i-subset of σ ∪ τ forms a face of ∂P , it follows that λk is in Sk(P ) for all 1 ≤ k ≤ i.
On the other hand, P is i-neighborly and has d + 2 vertices. In particular, for each 1 ≤ k ≤ i,
gk(P ) =

((d+2)−d+(k−2)
k

)
= 1. (This is well-known, see [20, Section 8.4], and also easily follows

by direct computation.) Hence dimSk(P ) = 1. This implies that λk spans Sk(P ). An important
thing to observe now is that by our definition of λ, the values ((λk)G)G∈∆,|G|=k have the following

property: if F is a (k−1)-subset of the missing face σ, then for every ` ∈ σ \F , (λk)F∪` is positive,
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while for every ` ∈ τ , (λk)F∪` is negative. A surprising aspect of this observation is that it holds
for any polytope P whose boundary complex is ∆!

This observation suggests that the collection of sign vectors of k-stresses on P may contain
enough information to identify the missing faces of P . We are thus led to the following definition.

Definition 4.1. Let P be a simplicial d-polytope with its natural embedding p. For an affine
k-stress λ on (P, p) and a (k − 1)-face G of P , let

sign(λG) =


+ if λG > 0

− if λG < 0

0 if λG = 0.

Define Vk(P ) = {(sign(λG))G∈∂P, |G|=k : λ ∈ Sk(P )}. Thus Vk(P ) is the collection of sign vectors
of the squarefree parts of k-stresses on P .

With this definition in hand, we propose the following strengthening of Conjecture 1.1.

Conjecture 4.2. Let k ≥ 2 and d ≥ 2k. Let P ⊂ Rd be a simplicial d-polytope. The (k−1)-skeleton
of ∂P and the set Vk(P ) determine the entire complex ∂P .

We are about to strengthen this conjecture even more. This requires the following simple lemma.

Lemma 4.3. Let k ≥ 2 and d ≥ 2k. Let P ⊂ Rd be a simplicial d-polytope, and let M ⊂ V (∂P )
be a set of size ≥ k. Assume there is a (k − 2)-face F ⊂ M of ∂P and an affine k-stress λ on P
such that for every (k − 1)-face G = F ∪ vF,G of ∂P with vF,G /∈ M , λG ≤ 0 and at least one of
these numbers λG is negative. Then M is not a face of ∂P .

Proof: Assume that M is a face. Let H = {x : x · b = α} be a hyperplane that defines M , that
is, we assume that P ⊆ {x : x · b ≥ α} and that H ∩ P = conv(M). (Here x · b denotes the dot
product.) By the balancing condition on λ at F , see (3.1),

0 =
∑

G: F⊂G, |G|=k

λGπF,G =
∑

G: vF,G∈M
λGπF,G +

∑
G: vF,G /∈M

λGπF,G.

Computing the dot product with b and keeping in mind that H defines M , we obtain

0 =
∑

G: vF,G∈M
λG(πF,G · b) +

∑
G: vF,G /∈M

λG(πF,G · b) =
∑

G: vF,G /∈M

λG(πF,G · b) < 0,

which is a contradiction. (In the last step we used that for faces G with vF,G /∈ M , πF,G · b > 0
while λG ≤ 0 and at least one of the numbers λG is negative.) �

If the converse of Lemma 4.3 holds, then the sign vectors in Vk(P ) completely determine the
set of all missing faces M with k ≤ dimM ≤ d− 1. This motivates the following conjecture.

Conjecture 4.4. Let k ≥ 2 and d ≥ 2k. Let P be a simplicial d-polytope and let M be a missing
face of ∂P with k ≤ dimM ≤ d− k. Then there exists a (k− 2)-face F ⊂M and an affine k-stress
λ on P with the property that

(∗) for every (k − 1)-face G = F ∪ vF,G of ∂P , λG > 0 if vF,G ∈M while λG ≤ 0 if vF,G /∈M .
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Lemma 4.5. Conjecture 4.4 implies Conjecture 4.2.

Proof: Assume that a simplicial d-polytope P satisfies the statement of Conjecture 4.4. Use the
complex Skelk−1(∂P ) and the set Vk(P ) to find all subsets M ⊂ V (∂P ), k + 1 ≤ |M | ≤ d − k + 1
such that (1) Skelk−1(M) ⊆ Skelk−1(∂P ), and (2) there is a (k − 1)-subset F of M and a k-stress
λ such that the triple (M,F, λ) satisfies condition (∗) of Conjecture 4.4. Let M be the collection
of all such M . Note that if M ∈ M and (M,F, λ) is a triple satisfying condition (∗), then the
balancing condition on λ at F guarantees that λG is negative for at least one face G = F ∪ vF,G.
(To see this, perform the same computation as in the proof of Lemma 4.3, but using a hyperplane
H ′ that defines F .) Hence by Lemma 4.3, no element M ofM is a face of ∂P . Our assumption that
Conjecture 4.4 holds then implies that the minimal (w.r.t inclusion) elements ofM are precisely the
missing faces of ∂P of dimensions between k and d− k. This allows us to reconstruct Skeld−k(∂P ).
The result of Perles and Dancis, [5], then allows us to reconstruct the entire complex ∂P . �

We now propose another conjecture that implies Conjecture 4.4 and hence also Conjecture 4.2.

Conjecture 4.6. Let k ≥ 2 and let P ⊂ Rd be a simplicial polytope of dimension d ≥ 2k− 1. If G
is a missing (k − 1)-face of ∂P and F is a (k − 1)-subset of G, then there exists an affine k-stress
λ on (∂P ∪ {G}, p) such that λG > 0 and λF∪u ≤ 0 for every (k − 1)-face F ∪ u of ∂P .

Note that the balancing condition on λ at F implies that λF∪u < 0 for at least one face F ∪u ∈ ∂P .

Lemma 4.7. Conjecture 4.6 implies Conjecture 4.4.

Proof: Let P be a simplicial d-polytope, let M = {x0, x1, . . . , x`} ⊂ V (∂P ) be a missing face of
∂P , where k ≤ ` ≤ d − k, and let F = {x1, . . . , xk−1}. We want to find an affine k-stress λ on P
so that (M,F, λ) satisfies condition (∗) of Conjecture 4.4. To start, note that F , G := F ∪ x0, and
M\G = {xk, . . . , x`} are faces of ∂P , but G is a missing face of lk∂P (M\G). Let Q be a quotient
polytope of P by M\G (with its natural embedding q). Then Q has dimension d−1−(`−k) ≥ 2k−1
and G is a missing (k − 1)-face of ∂Q = lk∂P (M\G).

Our assumption that Conjecture 4.6 holds implies the existence of a k-stress λ̄ on (∂Q∪{G}, q)
such that λ̄G > 0 while λ̄F∪u ≤ 0 for every (k− 1)-face F ∪ u ∈ ∂Q. Applying Corollary 3.3 to this
stress λ̄, provides us with a k-stress λ on st∂P (M\G)∪ {G} ⊂ ∂P with the property that for every
(k − 1)-face τ ∈ lk∂P (M\G) ∪ {G}, λ̄τ and λτ have the same sign. In particular, λ is a k-stress on
P that satisfies λG > 0 and λF∪u ≤ 0 for all faces F ∪ u ∈ ∂P with u ∈ V (∂P )\M . (Note that
λF∪u = 0 if u /∈ st∂P (M\G).)

Let M ′ := F ∪ {u ∈ M\F : λF∪u > 0}. To complete the proof, it remains to show that
M ′ = M . To do so, note that M ′ contains G = F ∪ x0 and that the triple (M ′, F, λ) satisfies all
the assumptions of Lemma 4.3 (including the assumption that λF∪v is strictly negative for at least
one face F ∪ v, v /∈ M ′; this follows from the balancing condition at F and the fact that λG > 0).
Hence by Lemma 4.3, M ′ is not a face. As M ′ is contained in the missing face M of ∂P , it follows
that M = M ′. �

5 Two cases of Kalai’s conjecture

The goal of this section is twofold. We first prove that the strongest of the three conjectures
discussed in the previous section, namely Conjecture 4.6, holds for the case of k = 2 and all
simplicial polytopes of dimension ≥ 3. We then show that Conjecture 4.4 holds for all k-neighborly
polytopes for an arbitrary k. This establishes the validity of Conjecture 1.1 in these two cases.
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5.1 The case of k = 2

To verify the k = 2 case of Conjecture 4.6 for simplicial polytopes of dimension d ≥ 3, we separately
treat the cases of d = 3 and d > 3. The d = 3 case is established by the following result that can
be considered as an extension of Dehn’s lemma. The proof is almost identical to one of the proofs
of Dehn’s lemma (see [11, Theorem 6.17] and also [14, Ch. 26.3 & 32.3]).

Lemma 5.1. Let P be a simplicial 3-polytope and let ab be a missing edge of ∂P . Then there is a
unique affine 2-stress λ on G(P ) ∪ ab such that λab = 1; this stress satisfies λe ≤ 0 for every edge
e ∈ G(P ) that is incident to a or b.

Proof: Since simplicial 3-polytopes are infinitesimally rigid and do not support nontrivial affine
2-stresses, it follows from Corollary 3.5 that there exists a 2-stress λ supported on G(P ) ∪ ab with
λab 6= 0 and it is unique up to scalar multiplication. So we can assume that λab = 1. We label each
edge e of G(P ) with +,−, 0 according to sign(λe).

We follow the notation of [14, p. 251] and give a sketch of the proof below. Given a vertex
v ∈ V (P ), consider the labels of the edges of P containing v written in the cyclic order induced
by lk∂P (v) and ignoring the zero labels. Denote by mv the number of sign changes at v. Let
N =

∑
v∈V mv. By [14, Lemma 32.3], for v 6= a, b, mv ≥ 4 unless all labels around v are zeros.

On the other hand, N can also be computed as N =
∑

F nF where the sum is over 2-faces (i.e.,
triangles) and nF is the number of sign changes around F ; in particular, nF ≤ 2 for every 2-face F .

The lemma will follow if we prove that ma = mb = 0 (as the balancing condition at a would
then imply that λe ≤ 0 for all e ∈ G(P ) with a ∈ e, and similarly for b). There are two cases to
consider. If no vertex has all edges incident to it labeled 0, then

4(f0 − 2) ≤
∑
v∈V

mv ≤ N ≤ 2f2 = 2(2f0 − 4),

which forces ma = mb = 0. Otherwise, some vertices have all edges incident to them labeled 0.
Consider the graph G′ obtained from G(P ) by first removing all such vertices, and then adding edges
to triangulate all resulting non-triangular 2-faces and labeling the new edges 0. The computation
as above applies to G′ and implies that ma = mb = 0 in G′. Hence ma = mb = 0 also in G(P ). �

Our next goal is to prove Conjecture 4.6 in the case of k = 2 and d > 3. This will require a bit
of preparation. The proof idea in this case is based on Balinski’s theorem [2], see also [20, Section
3.5], asserting that every d-polytope P is d-connected. We need a couple of extensions of Balinski’s
theorem. We only sketch the proofs as they are easy consequences of the proof of the theorem.

Lemma 5.2. Let P be a d-polytope (not necessarily simplicial) and let W be a set of vertices of P
whose removal disconnects G(P ). Then aff(W ) is at least (d− 1)-dimensional.

Proof: Assume dim aff(W ) ≤ d − 2. Choose any v0 ∈ V (P )\W and a hyperplane H in Rd that
contains aff(W ∪ v0). Let φ : Rd → R be a non-zero linear function that is zero on H. If the
maximum value φmax of φ on P is positive, it is attained on the vertices of a face Fmax of P . In this
case, the graph Gmax := G(Fmax) is a connected graph contained in G(P )\W . Similar assertions
hold for Gmin := G(Fmin) (assuming φmin is negative).

Now, for each vertex v ∈ V (P )\W with φ(v) ≥ 0 (including v0), the simplex algorithm gives a
φ-increasing path connecting v to some vertex of Gmax. Such a path lies in G(P )\W . Similarly, each
v ∈ V (P )\W with φ(v) ≤ 0 (including v0) is connected to some vertex of Gmin by a φ-decreasing
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path that lies in G(P )\W . It follows that G(P )\W is connected, which is a contradiction. (This
proof is easily adjusted to the case where φmax or φmin is zero.) �

Lemma 5.3. Let P be a simplicial d-polytope and let ab be a missing edge of ∂P . Let C be the
collection of vertices c in lk∂P (a) with the property that there is a path Πc from c to b in G(P ) such
that no internal vertex of Πc is in lk∂P (a). Then conv(C) ∩ [a, b] 6= ∅.

Proof: Assume that conv(C)∩ [a, b] = ∅, and let H be a hyperplane that separates conv(C) from
[a, b] and does not contain any vertices of G(P ). W.l.o.g., [a, b] ⊆ int(H+) and conv(C) ⊆ int(H−).
Then H defines a linear function φ that is zero on H and positive on int(H+). As in the proof
of Lemma 5.2, each vertex v in int(H+) can be connected by a φ-increasing path to Gmax, which
implies that the restriction G′ of G(P ) to the vertices in int(H+) is a connected subgraph of G(P ).
In particular, G′ contains a path (a = a0, a1, . . . , a` = b), where ` ≥ 2. Let i0 be the largest index
such that ai0 ∈ lk(a). It exists since a1 ∈ lk(a0) = lk(a). Thus Πai0

:= (ai0 , ai0+1, . . . , a` = b) is
a path as in the statement of the lemma and hence ai0 ∈ C. But conv(C) ⊆ int(H−), which is
impossible because this entire path is contained in int(H+). This gives us a desired contradiction.
�

We are now ready to prove Conjecture 4.6 in the case of k = 2 and d > 3. Specifically, we prove

Lemma 5.4. Let d ≥ 4, let P be a simplicial d-polytope, and let ab be a missing edge of ∂P . Then
there is a 2-stress λ on G(P ) ∪ ab such that λab = 1 and λe ≤ 0 for every edge e ∈ G(P ) that is
incident to a.

Proof: Let C ⊆ V (lk∂P (a)) be as in the statement of Lemma 5.3. By definition of C, C separates
a from b. Hence by Lemmas 5.2 and 5.3, dim aff(C) ≥ d−1 and conv(C)∩[a, b] 6= ∅. Either conv(C)
is (d− 1)-dimensional, or since the vertices p(a), p(b) lie outside of conv(C), conv(C) ∩ [a, b] must
contain a boundary point of conv(C). In either case, by Carathéodory’s theorem there exists a
d-subset C ′ of C such that the points of p(C ′) are affinely independent and conv(C ′) ∩ [a, b] 6= ∅.

For each c ∈ C ′, consider a path Πc from c to b as in Lemma 5.3, and let Π′c be the path
obtained from Πc by deleting the initial vertex c. Define

K :=
⋃
c∈C′

⋃
v∈V (Π′

c)

st∂P (v).

Note that all paths Π′c share a common end-point b. Hence the union of paths Π′c over c ∈ C ′

is a connected subgraph of G(P ). Since d ≥ 4, all vertex stars of P are infinitesimally rigid in
Rd. Hence by the Gluing Lemma, (K, p) is infinitesimally rigid. Furthermore, a /∈ V (K) but
C ′ ⊆ V (K). (This is because, each c ∈ C ′ is in the star of its neighbor on the path Πc.)

Add to the graph of K the d edges {ac : c ∈ C ′} to obtain a new graph G′ ⊆ G(P ). Since the d
vertices from C ′ are affinely independent and p(a) /∈ aff(p(C ′)), it follows that the graph (G′, p) is
also infinitesimally rigid. Note that ab is a missing edge of G′, and so by Corollary 3.5, the graph
(G′ ∪ ab, p) supports a 2-stress λ with λab = 1. Now, in G′ ∪ ab, the vertex a is incident to exactly
d+ 1 edges, namely, ab as well as ac for c ∈ C ′. Since p(C ′) ⊂ Rd is affinely independent and has
size d, there is a unique way to write

λabπa,ab = p(b)− p(a) =
∑
c∈C′

kc(p(c)− p(a)) =
∑
c∈C′

kcπa,ac.
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As [a, b]∩conv(C ′) 6= ∅, all coefficients kc in this expression are nonnegative. Hence in the balancing
condition at a, λac = −kc ≤ 0 for all c ∈ C ′. Thus λ is a desired stress on G′ ∪ ab ⊆ G(P ) ∪ ab. �

We conclude from Lemmas 5.1 and 5.4 the following:

Theorem 5.5. Conjecture 4.6 holds in the case of k = 2.

5.2 k-neighborly polytopes

We are now in a position to prove Conjecture 4.4 for all k-neighborly polytopes; thus verifying
Conjecture 1.1 for this family. In fact, the following theorem, whose proof is almost identical to
that of our toy example in Section 4, establishes a somewhat stronger result.

Theorem 5.6. Let k ≥ 2 and d ≥ 2k. Let P be a k-neighborly simplicial d-polytope. If M is a
missing face of ∂P , then there is an affine k-stress λ =

∑
µ λµµ such that for every k-subset G of

V = V (∂P ),

λG > 0 if G ⊂M and (−1)|(V \M)∩G|λG ≥ 0 if G 6⊂M.

Proof: Since M is a missing face of ∂P , the relative interior of conv(M) intersects with
conv(V \M). In other words, there exist nonnegative coefficients av such that∑

v∈M
avp(v) =

∑
v∈V \M

avp(v),
∑
v∈M

av =
∑

v∈V \M

av = 1, and av > 0 if v ∈M.

This implies that φ :=
∑

v∈M avxv −
∑

v∈V \M avxv is an affine 1-stress on P , i,e., ∂θi(φ) = 0 for all
1 ≤ i ≤ d+ 1, where Θ(p) = (θ1, . . . , θd+1) is the set of linear forms associated with p.

Let λ := φk. Since P is k-neighborly, all monomials of λ are supported on the faces of ∂P .
Furthermore, since ∂θiφ = 0 for 1 ≤ i ≤ d+ 1, we obtain that ∂θi(φ

k) = 0 for 1 ≤ i ≤ d+ 1. Hence
λ is an affine k-stress on P . Finally, for every (k− 1)-face G of ∂P , (−1)|(V \M)∩G|λG ≥ 0, and this
inequality is strict if G ⊂M . Thus, λ = φk is a desired k-stress. �

We close this section with the following remark. Kalai (private communication) speculated that
for k = 2, the following strengthening of Conjecture 1.1 holds. A simplicial d-polytope P is called
prime if ∂P has no missing (d− 1)-faces.

Conjecture 5.7. Let d ≥ 4 and let P be a prime simplicial d-polytope. Then the graph of P and
the space of affine 2-stresses of P uniquely determine P up to affine equivalence.

The methods of this section lead to a simple proof of this conjecture for the class of 2-neighborly
polytopes. Indeed, if P is 2-neighborly and ω is an affine 1-stress on P , then λ := ω2 is an affine
2-stress on P . Furthermore, for any vertex v in the support of ω, ∂xv(λ) = 2∂xv(ω) ·ω ∈ S1(P ) is a
non-zero multiple of ω. We conclude that if P is 2-neighborly, then {∂xvλ : v ∈ V (∂P ), λ ∈ S2(P )}
coincides with S1(P ), i.e., we can reconstruct S1(P ) from S2(P ). The result follows since S1(P ) is
the space of affine dependencies of vertices of P , which determines P up to affine equivalence.

We hope that the tools developed and conjectures raised in this paper will lead to further
progress in our understanding of affine stresses on polytopes and perhaps even to a complete
resolution of Conjectures 1.1 and 5.7.
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