CENTRALLY SYMMETRIC POLYTOPES WITH MANY FACES

Alexander Barvinok, Seung Jin Lee, and Isabella Novik

November 2011

Abstract

We present explicit constructions of centrally symmetric polytopes with many faces: (1) we construct a d-dimensional centrally symmetric polytope P with about $3^{d / 4} \approx(1.316)^{d}$ vertices such that every pair of non-antipodal vertices of P spans an edge of $P,(2)$ for an integer $k \geq 2$, we construct a d-dimensional centrally symmetric polytope P of an arbitrarily high dimension d and with an arbitrarily large number N of vertices such that for some $0<\delta_{k}<1$ at least $\left(1-\left(\delta_{k}\right)^{d}\right)\binom{N}{k}$ k-subsets of the set of vertices span faces of P, and (3) for an integer $k \geq 2$ and $\alpha>0$, we construct a centrally symmetric polytope Q with an arbitrarily large number of vertices N and of dimension $d=k^{1+o(1)}$ such that at least $\left(1-k^{-\alpha}\right)\binom{N}{k} k$-subsets of the set of vertices span faces of Q.

1. Introduction and main results

A polytope is the convex hull of a set of finitely many points in \mathbb{R}^{d}. A polytope $P \subset \mathbb{R}^{d}$ is centrally symmetric if $P=-P$. We present explicit constructions of centrally symmetric polytopes with many faces. Recall that a face of a convex body is the intersection of the body with a supporting affine hyperplane, see, for example, Chapter II of [Ba02].

A construction of cyclic polytopes, which goes back to Carathéodory [Ca11] and was studied by Motzkin [Mo57] and Gale [Ga63], presents a family of polytopes in \mathbb{R}^{d} with an arbitrarily large number N of vertices, such that the convex hull of every set of $k \leq d / 2$ vertices is a face of P. Such a polytope is obtained as the convex hull of a set of N distinct points on the moment curve $\left(t, t^{2}, \ldots, t^{d}\right)$ in \mathbb{R}^{d}.

The situation with centrally symmetric polytopes is far less understood. A centrally symmetric polytope P is called k-neighborly if the convex hull of every set $\left\{v_{1}, \ldots, v_{k}\right\}$ of k vertices of P, not containing a pair of antipodal vertices $v_{i}=-v_{j}$, is a face of P. In contrast with polytopes without symmetry, even 2-neighborly

[^0]centrally symmetric polytopes cannot have too many vertices: it was shown in [LN06] that no d-dimensional 2-neighborly centrally symmetric polytope has more than 2^{d} vertices. Moreover, as was verified in [BN08], the number $f_{1}(P)$ of edges (1-dimensional faces) of an arbitrary centrally symmetric polytope $P \subset \mathbb{R}^{d}$ with N vertices satisfies
$$
f_{1}(P) \leq \frac{N^{2}}{2}\left(1-2^{-d}\right)
$$

Let $f_{k}(P)$ denote the number of k-dimensional faces of a polytope P. Even more generally, [BN08] proved that for a d-dimensional centrally symmetric polytope P with N vertices,

$$
f_{k-1}(P) \leq \frac{N}{N-1}\left(1-2^{-d}\right)\binom{N}{k}, \quad \text { provided } \quad k \leq d / 2 .
$$

In particular, as the number N of vertices grows while the dimension d of the polytope stays fixed, the fraction of k-tuples v_{1}, \ldots, v_{k} of vertices of P that do not form the vertex set of a $(k-1)$-dimensional face of P remains bounded from below by roughly 2^{-d}.

Besides being of intrinsic interest, centrally symmetric polytopes with many faces appear in problems of sparse signal reconstruction, see [Do04], [RV05], and also Section 5. Typically, such polytopes are obtained through a randomized construction, for example, as the orthogonal projection of a high-dimensional cross-polytope (octahedron) onto a random subspace, see [LN06] and [DT09].

In this paper, we present explicit deterministic constructions. First, we construct a d-dimensional 2 -neighborly centrally symmetric polytope with roughly $3^{d / 4} \approx$ $(1.316)^{d}$ vertices. Then, for any fixed $k \geq 2$, we verify (again by presenting an explicit construction) that there exists $0<\delta_{k}<1$ such that for an arbitrarily large d and for an arbitrarily large even N, there is a d-dimensional centrally symmetric polytope P with N vertices satisfying

$$
f_{k-1}(P) \geq\left(1-\left(\delta_{k}\right)^{d}\right)\binom{N}{k}
$$

Our construction guarantees that one can take

$$
\text { any } \quad \delta_{2}>3^{-1 / 4} \approx 0.77 \text { and any } \delta_{k}>\left(1-5^{-k+1}\right)^{5 /(24 k+4)} \text { for } k>2
$$

provided N and d are sufficiently large. Finally, for an integer $k \geq 2$ and $\alpha>0$ we construct a centrally symmetric polytope Q of dimension $k^{1+o(1)}$ with an arbitrarily large number of vertices N such that

$$
f_{k-1}(Q) \geq\left(1-k^{-\alpha}\right)\binom{N}{k}
$$

We note that the random projection construction cannot produce polytopes with the last two properties since if N is very large compared to d, the projection of a cross-polytope in \mathbb{R}^{N} onto a random d-dimensional subspace is very close to a Euclidean ball, and hence has few faces relative to the number of vertices, cf. [DT09]. Our constructions are based on the symmetric moment curve introduced in [BN08] and further studied in $[B+11]$.
(1.1) The symmetric moment curve. We define the symmetric moment curve $U_{k}(t) \in \mathbb{R}^{2 k}$ by

$$
\begin{equation*}
U_{k}(t)=(\cos t, \sin t, \cos 3 t, \sin 3 t, \ldots, \cos (2 k-1) t, \sin (2 k-1) t) \tag{1.1.1}
\end{equation*}
$$

for $t \in \mathbb{R}$. Since

$$
U_{k}(t)=U_{k}(t+2 \pi) \quad \text { for all } \quad t
$$

from this point on, we consider $U_{k}(t)$ to be defined on the unit circle

$$
\mathbb{S}=\mathbb{R} / 2 \pi \mathbb{Z}
$$

We note that t and $t+\pi$ form a pair of antipodal points for all $t \in \mathbb{S}$ and that

$$
U_{k}(t+\pi)=-U_{k}(t) \quad \text { for all } \quad t \in \mathbb{S} .
$$

First, we construct a 2-neighborly centrally symmetric polytope using the curve

$$
U_{3}(t)=(\cos t, \sin t, \cos 3 t, \sin 3 t, \cos 5 t, \sin 5 t)
$$

(1.2) Theorem. For a non-negative integer m, consider the map

$$
\Psi_{m}: \mathbb{S} \longrightarrow \mathbb{R}^{6(m+1)} \quad \text { defined by } \quad \Psi_{m}(t)=\left(U_{3}(t), U_{3}(3 t), \ldots, U_{3}\left(3^{m} t\right)\right)
$$

Let $A_{m} \subset \mathbb{S}$ be the set of $4 \cdot 3^{m+1}$ equally spaced points,

$$
A_{m}=\left\{\frac{2 \pi j}{4 \cdot 3^{m+1}}, \quad j=0, \ldots, 4 \cdot 3^{m+1}-1\right\}
$$

and let

$$
P_{m}=\operatorname{conv}\left(\Psi_{m}(t): \quad t \in A_{m}\right) .
$$

Then P_{m} is a centrally symmetric polytope of dimension $d=4 m+6$ that has $4 \cdot 3^{m+1}$ vertices: $\Psi_{m}(t)$ for $t \in A_{m}$. Moreover, for $t_{1}, t_{2} \in A_{m}$ such that $t_{1} \neq t_{2}$ and $t_{1} \neq t_{2}+\pi \bmod 2 \pi$, the interval

$$
\left[\Psi_{m}\left(t_{1}\right), \Psi_{m}\left(t_{2}\right)\right]
$$

is an edge of P_{m}.
Our construction of a centrally symmetric polytope with N vertices and about $\left(1-3^{-d / 4}\right)\binom{N}{2}$ edges for an arbitrarily large N is a slight modification of the construction presented in Theorem 1.2 - see Remark 3.2. On the other hand, to construct a centrally symmetric polytope with many $(k-1)$-dimensional faces for $k>2$, we need to use the curve (1.1.1) to the full extent.
(1.3) Theorem. Fix an integer $k \geq 1$. For a non-negative integer m, consider the map $\Psi_{k, m}: \mathbb{S} \longrightarrow \mathbb{R}^{6 k(m+1)}$ defined by

$$
\Psi_{k, m}(t)=\left(U_{3 k}(t), U_{3 k}(5 t), \ldots, U_{3 k}\left(5^{m} t\right)\right)
$$

For a positive even integer n, let $A_{m, n} \subset \mathbb{S}$ be the set of $n 5^{m}$ equally spaced points,

$$
A_{m, n}=\left\{\frac{2 \pi j}{n 5^{m}}: \quad j=0, \ldots, n 5^{m}-1\right\}
$$

and let

$$
P=P_{k, m, n}=\operatorname{conv}\left(\Psi_{k, m}(t): \quad t \in A_{m, n}\right) .
$$

Then
(1) The polytope $P \subset \mathbb{R}^{6 k(m+1)}$ is a centrally symmetric polytope with $n 5^{m}$ distinct vertices:

$$
\Psi_{k, m}(t) \quad \text { for } t \in A_{m, n}
$$

and of dimension $d \leq 6 k(m+1)-2 m\lfloor(3 k+2) / 5\rfloor$; moreover, if $n>2(6 k-1)$, then the dimension of P is equal to $6 k(m+1)-2 m\lfloor(3 k+2) / 5\rfloor$.
(2) Let t_{1}, \ldots, t_{k} be points chosen independently at random from the uniform distribution in $A_{m, n}$ (in particular, some of t_{i} may coincide). Then the probability that

$$
\operatorname{conv}\left(\Psi_{k, m}\left(t_{1}\right), \ldots, \Psi_{k, m}\left(t_{k}\right)\right)
$$

is not a face of P does not exceed

$$
\left(1-5^{-k+1}\right)^{m}
$$

We obtain the following corollary.
(1.4) Corollary. Let $P_{k, m, n}$ be the polytope of Theorem 1.3 with $N=n 5^{m}$ vertices and dimension $d \leq 6 k(m+1)-2 m\lfloor(3 k+2) / 5\rfloor$. Then

$$
f_{k-1}\left(P_{k, m, n}\right) \geq\binom{ N}{k}-\left(1-5^{-k+1}\right)^{m} \frac{N^{k}}{k!}
$$

The construction of Theorem 1.3 produces a family of centrally symmetric polytopes of an increasing dimension d and with an arbitrarily large number of vertices such that for any fixed $k \geq 1$, the probability $p_{d, k}$ that k randomly chosen vertices of the polytope do not span a face decreases exponentially in d. However, it does not start doing so very quickly: for instance, to make $p_{d, k}<1 / 2$ we need to choose d as high as $2^{\Omega(k)}$.

Using a trick which the authors learned from Imre Bárány (cf. Section 7.3 of [BN08]), we construct new families of polytopes with many faces of a reasonably high dimension. Namely, we can make $p_{d, k}<d^{-\alpha}$ for any fixed $\alpha>0$ by using d as low as $k^{1+o(1)}$.
(1.5) Theorem. Fix positive integers k, m, n and r, where n is even. Let $P=$ $P_{k, m, n}$ be the polytope of Theorem 1.3, so that $P \subset \mathbb{R}^{6 k(m+1)}$ is a centrally symmetric polytope with $n 5^{m}$ vertices. For $d=6 k r(m+1)$, identify \mathbb{R}^{d} with a direct sum of r copies of $\mathbb{R}^{6 k(m+1)}$, each containing a copy of P. Let Q be the convex hull of the r copies of P; in particular, $Q \subset \mathbb{R}^{d}$ is a centrally symmetric polytope with $r n 5^{m}$ vertices.

If

$$
r<\min \left\{(k+1)!,\left(\frac{5^{k-1}}{5^{k-1}-1}\right)^{m}\right\}
$$

then the probability that r vertices of Q, chosen independently at random from the uniform distribution on the set set of vertices of Q, span a face of Q is at least

$$
\left(1-\frac{r}{(k+1)!}\right)\left(1-r\left(1-5^{-k+1}\right)^{m}\right) .
$$

If we now fix an $\alpha>0$ and choose in Theorem 1.5

$$
k=\left\lceil\frac{\beta \ln r}{\ln \ln r}\right\rceil \quad \text { and } \quad m=\left\lceil\beta 5^{k} \ln r\right\rceil \text {, }
$$

then for a suitable $\beta=\beta(\alpha)>0$ we obtain a centrally symmetric polytope Q of dimension $r^{1+o(1)}$ and with an arbitrarily large number N of vertices such that r random vertices of Q span a face of Q with probability at least $1-r^{-\alpha}$. As in Corollary 1.4, we have $f_{r-1}(Q) \geq\left(1-r^{-\alpha}\right)\binom{N}{r}$.

In Section 2, we summarize the properties of the symmetric moment curve (1.1.1) and review several basic combinatorial facts needed for our proofs. We then prove Theorem 1.2 in Section 3 and Theorems 1.3 and 1.5 in Section 4. In Section 5, we sketch connections to error-correcting codes.

2. Preliminaries

We utilize the following result of $[B+11]$ concerning the symmetric moment curve (1.1.1).
(2.1) Theorem. Let $\mathcal{B}_{k} \subset \mathbb{R}^{2 k}$,

$$
\mathcal{B}_{k}=\operatorname{conv}\left(U_{k}(t): \quad t \in \mathbb{S}\right)
$$

be the convex hull of the symmetric moment curve. Then for every positive integer k there exists a number

$$
\frac{\pi}{2}<\alpha_{k}<\pi
$$

such that for an arbitrary open arc $\Gamma \subset \mathbb{S}$ of length α_{k} and arbitrary distinct $n \leq k$ points $t_{1}, \ldots, t_{n} \in \Gamma$, the set

$$
\operatorname{conv}\left(U_{k}\left(t_{1}\right), \ldots, U_{k}\left(t_{n}\right)\right)
$$

is a face of \mathcal{B}_{k}.
For $k=2$ with $\alpha_{2}=2 \pi / 3$ this result is due to Smilansky [Sm85].
We will also need the following technical lemma.
(2.2) Lemma. Let $t_{1}, \ldots, t_{2 k} \in \mathbb{S}$ be distinct points no two of which are antipodal. Then the set of vectors

$$
\left\{U_{k}\left(t_{1}\right), \ldots, U_{k}\left(t_{2 k}\right)\right\}
$$

is linearly independent.
Proof. Seeking a contradiction, we assume that these $2 k$ vectors are linearly dependent. Then they span a proper subspace in $\mathbb{R}^{2 k}$, and hence there is a non-zero vector $C \in \mathbb{R}^{2 k}$ that is orthogonal to all these vectors.

Consider the following trigonometric polynomial

$$
f(t)=\left\langle C, U_{k}(t)\right\rangle
$$

where $\langle\cdot, \cdot\rangle$ is the standard scalar product in $\mathbb{R}^{2 k}$. Then $f(t) \not \equiv 0$ and $t_{1}, \ldots, t_{2 k}$ are distinct roots of $f(t)$. Since $f(t+\pi)=-f(t)$, we conclude that $f(t)$ has at least $4 k$ roots on the circle \mathbb{S}. On the other hand, substituting $z=e^{i t}$, we can write

$$
f(t)=\frac{p(z)}{z^{2 k-1}}
$$

where p is a polynomial with $\operatorname{deg} p \leq 4 k-2$, see [BN08] and [B+11]. Hence $p(z)$ has at least $4 k$ distinct roots on the circle $|z|=1$ and we must have $p(z) \equiv 0$, which is a contradiction.

We will also be using the following two well-known facts.
First, if P is a polytope and F is a face of P, then F is a polytope: it is the convex hull of the vertices of P that lie in F. Moreover, every face of F is also a face of P.

Second, if $T: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{k}$ is a linear transformation and $P \subset \mathbb{R}^{d}$ is a polytope, then $Q=T(P)$ is a polytope and for every face F of Q the inverse image of F,

$$
T^{-1}(F)=\{x \in P: \quad T(x) \in F\}
$$

is a face of P. This face is the convex hull of the vertices of P mapped by T into vertices of F.

Finally, to estimate the dimension of the polytope $P_{k, n, m}$ in Theorem 1.3 we will rely on the following combinatorial lemma. For a set U of integers and a constant c, we define $c U:=\{c u: u \in U\}$.
(2.3) Lemma. Let K be the set of all odd integers in the closed interval $[1,6 k-1]$, and let

$$
T=\bigcup_{j=0}^{m} 5^{j} K
$$

Then

$$
|T|=3 k(m+1)-m\lfloor(3 k+2) / 5\rfloor .
$$

Proof. Denote by X the set of all elements of K that are not divisible by 5, and by S the complement of X in K. Then the sets $X, 5 X, 5^{2} X, \cdots, 5^{m} X$ are pairwise disjoint and their union consists of all elements of T that are not divisible by 5^{m+1}. On the other hand, every element of T that is divisible by 5^{m+1} is of the form $5^{m} s$ for some $s \in S$ and every element of the form $5^{m} s$ for $s \in S$ belongs to T and is divisible by 5^{m+1}. Thus

$$
T=\left(\bigcup_{j=0}^{m} 5^{j} X\right) \cup 5^{m} S
$$

and the sets in the above union are pairwise disjoint. Hence

$$
|T|=(m+1)|X|+|S|=(m+1)|K|-m|S|
$$

The statement now follows from the fact that there are $3 k$ elements in K and that exactly $\lfloor(3 k+2) / 5\rfloor$ of them are divisible by 5 .

3. Centrally symmetric 2 -neighborly polytopes

(3.1) Proof of Theorem 1.2. The transformation

$$
t \longmapsto t+\pi \quad \bmod 2 \pi
$$

maps the set A_{m} onto itself. Since $\Psi_{m}(t+\pi)=-\Psi_{m}(t)$, the polytope P_{m} is centrally symmetric. Consider the projection $\mathbb{R}^{6(m+1)} \longrightarrow \mathbb{R}^{6}$ that forgets all but the first 6 coordinates. Then the image of P_{m} is the polytope

$$
\begin{equation*}
Q_{m}=\operatorname{conv}\left(U_{3}(t): \quad t \in A_{m}\right) \tag{3.1.1}
\end{equation*}
$$

By Theorem 2.1, the polytope Q_{m} has $4 \cdot 3^{m+1}$ distinct vertices: $U_{3}(t)$ for $t \in A_{m}$. Furthermore, the inverse image of each vertex $U_{3}(t)$ of Q_{m} in P_{m} consists of a single vertex $\Psi_{m}(t)$ of P_{m}. Therefore, $\Psi_{m}(t)$ for $t \in A_{m}$ are all the vertices of P_{m} without duplicates.

To compute the dimension d of P_{m}, we observe that for all $t \in \mathbb{S}$, the third coordinate of $U_{3}(t)$ coincides with the first coordinate of $U_{3}(3 t)$ while the fourth coordinate of $U_{3}(t)$ coincides with the second coordinate of $U_{3}(3 t)$. Therefore, the polytope P_{m} lies in a subspace, denote it by \mathcal{L}, of codimension $2 m$, and hence $\operatorname{dim} P_{m} \leq 4 m+6$. If the dimension of P_{m} is strictly smaller than $4 m+6$, then P_{m} lies in an affine hyperplane of \mathcal{L}. As in the proof of Lemma 2.2 , such an affine hyperplane corresponds to a trigonometric polynomial $f(t)$ of degree $5 \cdot 3^{m}$ that has at least $4 \cdot 3^{m+1}=12 \cdot 3^{m}$ roots (all points of A_{m}). This is however impossible, as no nonzero trigonometric polynomial of degree $5 \cdot 3^{m}$ has more than

$$
2 \cdot 5 \cdot 3^{m}=10 \cdot 3^{m}<12 \cdot 3^{m}
$$

roots (cf. the proof of Lemma 2.2). We conclude that $\operatorname{dim} P_{m}=4 m+6$.
We prove that P_{m} is 2-neighborly by induction on m. It follows from Lemma 2.2 that P_{0} is the convex hull of a set consisting of six linearly independent vectors and their opposite vectors. Combinatorially, P_{0} is a 6 -dimensional cross-polytope and hence the induction base is established.

Suppose now that $m \geq 1$. Let $t_{1}, t_{2} \in A_{m}$ be such that

$$
t_{1} \neq t_{2}, t_{2}+\pi \quad \bmod 2 \pi .
$$

Then there are two cases to consider.
Case I: $t_{1}-t_{2} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \bmod 2 \pi$,
and
Case II: $t_{1}-t_{2} \in\left(-\pi,-\frac{\pi}{2}\right] \cup\left[\frac{\pi}{2}, \pi\right) \bmod 2 \pi$.
In the first case, consider the polytope Q_{m} defined by (3.1.1) and the projection $P_{m} \longrightarrow Q_{m}$ as above. By Theorem 2.1,

$$
\left[U_{3}\left(t_{1}\right), U_{3}\left(t_{2}\right)\right]
$$

is an edge of Q_{m}. Since the inverse image of a vertex $U_{3}(t)$ of Q_{m} in P_{m} consists of a single vertex $\Psi_{m}(t)$ of P_{m}, we conclude that

$$
\left[\Psi_{m}\left(t_{1}\right), \Psi_{m}\left(t_{2}\right)\right]
$$

is an edge of P_{m}.
In the second case, consider the map $\phi: A_{m} \longrightarrow A_{m-1}$,

$$
\phi(t)=3 t \quad \bmod 2 \pi .
$$

Then

$$
\phi\left(A_{m}\right)=A_{m-1}
$$

and for every t the inverse image of $t, \phi^{-1}(t)$, consists of 3 equally spaced points from A_{m}. In addition, we have

$$
\phi\left(t_{1}\right) \neq \phi\left(t_{2}\right)+\pi \quad \bmod 2 \pi,
$$

although we may have $\phi\left(t_{1}\right)=\phi\left(t_{2}\right)$. In any case, by the induction hypothesis, the interval (possibly contracting to a point)

$$
\begin{equation*}
\left[\Psi_{m-1}\left(3 t_{1}\right), \Psi_{m-1}\left(3 t_{2}\right)\right] \tag{3.1.2}
\end{equation*}
$$

is a face of P_{m-1}.

Let us consider the projection $\mathbb{R}^{6(m+1)} \longrightarrow \mathbb{R}^{6 m}$ that forgets the first 6 coordinates. The image of P_{m} under this projection is P_{m-1}, and since (3.1.2) is a face of P_{m-1}, the set

$$
\begin{align*}
\operatorname{conv}\left(\Psi_{m}\left(x_{i j}\right): \quad \phi\left(x_{i j}\right)=\phi\left(t_{i}\right)\right. & \text { for } \quad i=1,2 \tag{3.1.3}\\
& \text { and } \quad j=1,2,3)
\end{align*}
$$

is a face of P_{m} (it is the inverse image of (3.1.2) under this projection). However, the face (3.1.3) is a convex hull of at most six distinct points no two of which are antipodal. Since by Lemma 2.2, any set of at most six distinct points $U_{3}\left(x_{i j}\right)$ no two of which are antipodal is linearly independent, the face (3.1.3) is a simplex. Therefore,

$$
\left[\Psi_{m}\left(t_{1}\right), \Psi_{m}\left(t_{2}\right)\right]
$$

is a face of (3.1.3), and hence of P_{m}.
(3.2) Remark. Tweaking the construction of Theorem 1.2, allows us to produce d-dimensional centrally symmetric polytopes with an arbitrarily large number N of vertices that have at least $\left(1-\left(\delta_{2}\right)^{d}\right)\binom{N}{2}$ edges, where one can choose any $\delta_{2}>$ $3^{-1 / 4} \approx 0.77$ for all sufficiently large N and d.

To do so, fix an integer $s \geq 3$, and consider the curve Ψ_{m} as in Theorem 1.2. However, instead of working with the set A_{m} as in the proof Theorem 1.2, start with the set

$$
W_{0}=\left\{\frac{\pi j}{2}: \quad j=0,1,2,3\right\}
$$

of 4 equally spaced points on \mathbb{S}. Now replace each point t of W_{0} by a cluster of s points on \mathbb{S} that lie very close to t. Moreover, do it in such a way, that the resulting subset of \mathbb{S}, which we denote by W_{0}^{s}, is centrally symmetric. For $m \geq 1$, define W_{m}^{s} recursively by

$$
W_{m}^{s}:=\phi^{-1}\left(W_{m-1}^{s}\right), \quad \text { where } \quad \phi(x)=3 x \quad \bmod 2 \pi
$$

Thus W_{m}^{s} consists of $4 \cdot 3^{m}$ clusters of s points each.
We claim that the polytope

$$
P_{m}^{s}:=\operatorname{conv}\left(\Psi_{m}(t): \quad t \in W_{m}^{s}\right)
$$

is a centrally symmetric polytope of dimension $d=4 m+6$, with $N=N(s)=4 s \cdot 3^{m}$ vertices, and such that for every two distinct points $t_{1}, t_{2} \in W_{m}^{s}$, the interval $\left[\Psi_{m}\left(t_{1}\right), \Psi_{m}\left(t_{2}\right)\right]$ is an edge of P_{m}^{s}, provided t_{1} and t_{2} are not from antipodal clusters. The proof of this claim is identical to the proof of Theorem 1.2, except that for the base case (the case of $m=0$) we appeal to Theorem 2.1.

Thus each vertex of P_{m}^{s} is incident to all other vertices except itself and (possibly) the Ψ_{m}-images of the s points from the antipodal cluster. Therefore, the polytope P_{m}^{s} has at least

$$
\frac{N(N-s-1)}{2}=\binom{N}{2}\left(1-\frac{s}{N-1}\right) \approx\binom{N}{2}\left(1-\frac{1}{4 \cdot 3^{m}}\right)
$$

edges. Taking an arbitrarily large s yields the promised result on δ_{2}.

4. CENTRALLY SYMMETRIC POLYTOPES WITH MANY FACES

(4.1) Proof of Theorem 1.3. We observe that the transformation

$$
t \longmapsto t+\pi \quad \bmod 2 \pi
$$

maps the set $A_{m, n}$ onto itself and that

$$
\Psi_{k, m}(t+\pi)=-\Psi_{k, m}(t) \quad \text { for all } \quad t \in \mathbb{S}
$$

Hence P is centrally symmetric. Consider the projection $\mathbb{R}^{6 k(m+1)} \longrightarrow \mathbb{R}^{6 k}$ that forgets all but the first $6 k$ coordinates. Then the image of $P_{k, m, n}$ is the polytope

$$
\begin{equation*}
Q_{k, m, n}=\operatorname{conv}\left(U_{3 k}(t): \quad t \in A_{m, n}\right) \tag{4.1.1}
\end{equation*}
$$

By Theorem 2.1, the polytope $Q_{k, m, n}$ has $n 5^{m}$ distinct vertices: $U_{3 k}(t)$ for $t \in A_{m, n}$. Furthermore, the inverse image of each vertex $U_{3 k}(t)$ of $Q_{k, m, n}$ in $P_{k, m, n}$ consists of a single vertex $\Psi_{k, m}(t)$ of $P_{k, m, n}$. Therefore, $\Psi_{k, m, n}(t)$ for $t \in A_{m, n}$ are all the vertices of $P_{k, m, n}$ without duplicates.

To estimate the dimension of $P=P_{k, m, n}$, we observe that for all $t \in \mathbb{S}$, the fifth coordinate of $U_{3 k}(t)$ coincides with the first coordinate of $U_{3 k}(5 t)$ while the sixth coordinate of $U_{3 k}(t)$ coincides with the second coordinate of $U_{3 k}(5 t)$, etc. Taking into account all coincidences of coordinates, we infer from Lemma 2.3 that the polytope P lies in a subspace of dimension $6 k(m+1)-2 m\lfloor(3 k+2) / 5\rfloor$, and hence $\operatorname{dim} P \leq 6 k(m+1)-2 m\lfloor(3 k+2) / 5\rfloor$. Moreover, if $n>2(6 k-1)$, then an argument identical to the one used in the proof of Theorem 1.2 (by counting roots of trigonometric polynomials) shows that $\operatorname{dim} P=6 k(m+1)-2 m\lfloor(3 k+2) / 5\rfloor$.

We prove Part (2) by induction on m. The statement trivially holds for $m=0$. Let us assume that $m \geq 1$ and consider the map $\phi: A_{m, n} \longrightarrow A_{m-1, n}$ defined by

$$
\phi(t)=5 t \quad \bmod 2 \pi .
$$

Then

$$
\phi\left(A_{m, n}\right)=A_{m-1, n}
$$

and for every $t \in A_{m-1, n}$, the inverse image of $t, \phi^{-1}(t)$, consists of 5 equally spaced points from $A_{m, n}$. We note that if t is a random point uniformly distributed in
$A_{m, n}$, then $\phi(t)$ is uniformly distributed in $A_{m-1, n}$. The proof of the theorem will follow from the following two claims.

Claim I. Let $t_{1}, \ldots, t_{k} \in A_{m, n}$ be arbitrary, not necessarily distinct, points. If

$$
\begin{equation*}
\operatorname{conv}\left(\Psi_{k, m-1}\left(5 t_{i}\right), \quad i=1, \ldots, k\right) \tag{4.1.2}
\end{equation*}
$$

is a face of $P_{k, m-1, n}$ then

$$
\begin{equation*}
\operatorname{conv}\left(\Psi_{k, m}\left(t_{i}\right), \quad i=1, \ldots, k\right) \tag{4.1.3}
\end{equation*}
$$

is a face of $P_{k, m, n}$.
Claim II. Let $s_{1}, \ldots, s_{k} \in A_{m-1, n}$ be arbitrary, not necessarily distinct, points. Then the conditional probability that

$$
\operatorname{conv}\left(\Psi_{k, m}\left(t_{i}\right): \quad i=1, \ldots, k\right)
$$

is not a face of $P_{k, m, n}$ given that

$$
\phi\left(t_{i}\right)=s_{i} \quad \text { for } \quad i=1, \ldots, k
$$

does not exceed $1-5^{-k+1}$.
To prove Claim I, we consider the projection $\mathbb{R}^{6 k(m+1)} \longrightarrow \mathbb{R}^{6 k m}$ that forgets the first $6 k$ coordinates. The image of $P_{k, m, n}$ under this projection is $P_{k, m-1, n}$ and if (4.1.2) is a face of $P_{k, m-1, n}$ then

$$
\begin{align*}
\operatorname{conv}\left(\Psi_{k, m}\left(x_{i j}\right): \quad \phi\left(x_{i j}\right)=\phi\left(t_{i}\right)\right. & \text { for } \quad i=1, \ldots, k \tag{4.1.4}\\
& \text { and } \quad j=1,2,3,4,5)
\end{align*}
$$

is a face of $P_{k, m, n}$ as it is the inverse image of (4.1.2) under this projection. The face (4.1.4) is the convex hull of at most $5 k$ distinct points and no two points $x_{i j}$ in (4.1.4) are antipodal. Since by Lemma 2.2 a set of up to $6 k$ distinct points $U_{3 k}\left(x_{i j}\right)$ no two of which are antipodal is linearly independent, the face (4.1.4) is a simplex. Therefore, the set (4.1.3) is a face of (4.1.4), and hence also a face of $P_{k, m, n}$. Claim I now follows.

To prove Claim II, we fix a sequence $s_{1}, \ldots, s_{k} \in A_{m-1, n}$ of not necessarily distinct points. Then there are exactly 5^{k} sequences $t_{1}, \ldots, t_{k} \in A_{m, n}$ of not necessarily distinct points such that $\phi\left(t_{i}\right)=s_{i}$ for $i=1, \ldots, k$. Choose an arbitrary t_{1} subject to the condition $\phi\left(t_{1}\right)=s_{1}$. Let $\Gamma \subset \mathbb{S}$ be a closed arc of length $2 \pi / 5$
centered at t_{1}. Then for $i=2, \ldots, k$ there is at least one $t_{i} \in \Gamma$ such that $\phi\left(t_{i}\right)=s_{i}$. By Theorem 2.1, for such a choice of t_{2}, \ldots, t_{k}, the set

$$
\begin{equation*}
\operatorname{conv}\left(U_{3 k}\left(t_{i}\right): \quad i=1, \ldots, k\right) \tag{4.1.5}
\end{equation*}
$$

is a face of the polytope $Q_{k, m, n}$ defined by (4.1.1). Considering the projection

$$
P_{k, m, n} \longrightarrow Q_{k, m, n}
$$

as above, we conclude that (4.1.3) is a face of $P_{k, m, n}$ as it is the inverse image of (4.1.5).

Hence the conditional probability that (4.1.3) is not a face is at most

$$
\frac{5^{k-1}-1}{5^{k-1}}=1-5^{-k+1}
$$

(4.2) Proof of Corollary 1.4. Let us choose points t_{1}, \ldots, t_{k} independently at random from the uniform distribution in $A_{m, n}$. Then the probability that the points are all distinct is

$$
\frac{(N-1) \cdots(N-k+1)}{N^{k-1}} .
$$

From Theorem 1.3, the conditional probability that

$$
\begin{equation*}
\operatorname{conv}\left(\Psi_{k, m}\left(t_{1}\right), \ldots, \Psi_{k, m}\left(t_{k}\right)\right) \tag{4.3.1}
\end{equation*}
$$

is not a face, given that t_{1}, \ldots, t_{k} are distinct, does not exceed

$$
\left(1-5^{-k+1}\right)^{m} \frac{N^{k-1}}{(N-1) \cdots(N-k+1)}
$$

Arguing as in the proof of Theorem 1.3 (Section 4.1), we conclude that if t_{1}, \ldots, t_{k} are distinct and (4.3.1) is a face, then that face is a $(k-1)$-dimensional simplex.
(4.3) Proof of Theorem 1.5. By construction, Q is a centrally symmetric polytope whose vertex set consists of the vertices of the r copies of P. Let us pick r vertices of Q independently at random from the uniform distribution and let k_{i} be the number of vertices picked from the i-th copy of $P, i=1, \ldots, r$. Then the probability that $k_{i}>k$ does not exceed

$$
\binom{r}{k+1} r^{-k-1}<\frac{1}{(k+1)!}
$$

Therefore, the probability that $k_{1}, \ldots, k_{r} \leq k$ is at least $1-r /(k+1)$!. Now, the picked r vertices span a face of Q if and only if for all i with $k_{i}>0$ the chosen k_{i} vertices from the i-th copy of P span a face of P. The result then follows by Theorem 1.3.

5. CONNECTIONS TO ERROR-CORRECTING CODES

Here we briefly touch upon a well-known connection between centrally symmetric polytopes with many faces and the coding theory, see, for example, [RV05].

Let \mathbb{R}^{N} be N-dimensional Euclidean space with the standard basis e_{1}, \ldots, e_{N} and the ℓ^{1}-norm

$$
\|x\|_{1}=\sum_{i=1}^{N}\left|x_{i}\right| \quad \text { for } \quad x=\left(x_{1}, \ldots, x_{N}\right) .
$$

Let $L \subset \mathbb{R}^{N}$ be a subspace, let v_{i} be the orthogonal projection of e_{i} onto L, and let

$$
P=\operatorname{conv}\left(\pm v_{i}, \quad i=1, \ldots, N\right)
$$

be the orthogonal projection of the standard cross-polytope (octahedron) in \mathbb{R}^{N} onto L.

Let $L^{\perp} \subset \mathbb{R}^{N}$ be the orthogonal complement of L. Suppose that we are given a point $a \in \mathbb{R}^{N}, a=\left(a_{1}, \ldots, a_{N}\right)$, which is obtained by changing (corrupting) some (unknown) k coordinates of an unknown point $c \in L^{\perp}, c=\left(c_{1}, \ldots, c_{N}\right)$, and that our goal is to find c. One, by now standard, way of attempting to do that is to try to find c as the solution to the linear programming problem of minimizing the function

$$
\begin{equation*}
x \longmapsto\|x-a\|_{1} \quad \text { for } \quad x \in L^{\perp} \tag{5.1}
\end{equation*}
$$

Indeed, let

$$
I_{+}=\left\{i: \quad c_{i}>a_{i}\right\} \quad \text { and } \quad I_{-}=\left\{i: \quad c_{i}<a_{i}\right\} .
$$

Then c is the unique minimum point of (5.1) if

$$
\operatorname{conv}\left(v_{i} \quad \text { for } \quad i \in I_{+} \quad \text { and } \quad-v_{i} \quad \text { for } \quad i \in I_{-}\right)
$$

is a face of P. By constructing polytopes P with many $(k-1)$-dimensional faces we produce subspaces L^{\perp} with the property that the points of L^{\perp} can be efficiently reconstructed from many of the different ways of corrupting some k of their coordinates.

References

[Ba02] A. Barvinok, A Course in Convexity, Graduate Studies in Mathematics, 54, American Mathematical Society, Providence, RI, 2002.
[BN08] A. Barvinok and I. Novik, A centrally symmetric version of the cyclic polytope, Discrete Comput. Geom. 39 (2008), 76-99.
[B+11] A. Barvinok, I. Novik and S. J. Lee, Neighborliness of the symmetric moment curve, preprint arXiv:1104. 5168 (2011).
[Ca11] C. Carathéodory, Über den Variabilitatsbereich det Fourierschen Konstanten von Positiven harmonischen Furktionen, Ren. Circ. Mat. Palermo 32 (1911), 193-217.
[Do04] D. L. Donoho, Neighborly polytopes and sparse solutions of underdetermined linear equations, Technical report, Department of Statistics, Stanford University (2004).
[DT09] D. L. Donoho and J. Tanner, Counting faces of randomly projected polytopes when the projection radically lowers dimension, J. Amer. Math. Soc. 22 (2009), 1-53.
[Ga63] D. Gale, Neighborly and cyclic polytopes, Proc. Sympos.Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 225-232.
[LN06] N. Linial and I. Novik, How neighborly can a centrally symmetric polytope be?, Discrete Comput. Geom. 36 (2006), 273-281.
[Mo57] T. S. Motzkin, Comonotone curves and polyhedra, Bull. Amer. Math. Soc. 63 (1957), 35.
[RV05] M. Rudelson and R. Vershynin, Geometric approach to error-correcting codes and reconstruction of signals, Int. Math. Res. Not. 2005 (2005), 4019-4041.
[Sm85] Z. Smilansky, Convex hulls of generalized moment curves, Israel J. Math. 52 (1985), 115-128.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043
E-mail address: barvinok@umich.edu

Department of Mathematics, University of Michigan, Ann Arbor, Mi 48109-1043
E-mail address: 1sjin@umich.edu

Department of Mathematics, University of Washington, Seattle, WA 98195-4350
E-mail address: novik@math.washington.edu

[^0]: Key words and phrases. moment curve, neighborly polytopes, symmetric polytopes.
 The research of the first and second authors was partially supported by NSF Grant DMS0856640; the research of the third author was partially supported by NSF Grants DMS-0801152 and DMS-1069298.

