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Abstract. We present explicit constructions of centrally symmetric polytopes with

many faces: (1) we construct a d-dimensional centrally symmetric polytope P with

about 3d/4 ≈ (1.316)d vertices such that every pair of non-antipodal vertices of P

spans an edge of P , (2) for an integer k ≥ 2, we construct a d-dimensional centrally

symmetric polytope P of an arbitrarily high dimension d and with an arbitrarily

large number N of vertices such that for some 0 < δk < 1 at least (1 − (δk)
d)
(N
k

)

k-subsets of the set of vertices span faces of P , and (3) for an integer k ≥ 2 and α > 0,
we construct a centrally symmetric polytope Q with an arbitrarily large number of

vertices N and of dimension d = k1+o(1) such that at least
(

1− k−α
) (N

k

)

k-subsets

of the set of vertices span faces of Q.

1. Introduction and main results

A polytope is the convex hull of a set of finitely many points in R
d. A polytope

P ⊂ R
d is centrally symmetric if P = −P . We present explicit constructions of

centrally symmetric polytopes with many faces. Recall that a face of a convex
body is the intersection of the body with a supporting affine hyperplane, see, for
example, Chapter II of [Ba02].

A construction of cyclic polytopes, which goes back to Carathéodory [Ca11] and
was studied by Motzkin [Mo57] and Gale [Ga63], presents a family of polytopes
in R

d with an arbitrarily large number N of vertices, such that the convex hull of
every set of k ≤ d/2 vertices is a face of P . Such a polytope is obtained as the
convex hull of a set of N distinct points on the moment curve

(

t, t2, . . . , td
)

in R
d.

The situation with centrally symmetric polytopes is far less understood. A cen-
trally symmetric polytope P is called k-neighborly if the convex hull of every set
{v1, . . . , vk} of k vertices of P , not containing a pair of antipodal vertices vi = −vj ,
is a face of P . In contrast with polytopes without symmetry, even 2-neighborly
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centrally symmetric polytopes cannot have too many vertices: it was shown in
[LN06] that no d-dimensional 2-neighborly centrally symmetric polytope has more
than 2d vertices. Moreover, as was verified in [BN08], the number f1(P ) of edges
(1-dimensional faces) of an arbitrary centrally symmetric polytope P ⊂ R

d with N
vertices satisfies

f1(P ) ≤
N2

2

(

1− 2−d
)

.

Let fk(P ) denote the number of k-dimensional faces of a polytope P . Even more
generally, [BN08] proved that for a d-dimensional centrally symmetric polytope P
with N vertices,

fk−1(P ) ≤
N

N − 1

(

1− 2−d
)

(

N

k

)

, provided k ≤ d/2.

In particular, as the number N of vertices grows while the dimension d of the
polytope stays fixed, the fraction of k-tuples v1, . . . , vk of vertices of P that do not
form the vertex set of a (k− 1)-dimensional face of P remains bounded from below
by roughly 2−d.

Besides being of intrinsic interest, centrally symmetric polytopes with many faces
appear in problems of sparse signal reconstruction, see [Do04], [RV05], and also Sec-
tion 5. Typically, such polytopes are obtained through a randomized construction,
for example, as the orthogonal projection of a high-dimensional cross-polytope (oc-
tahedron) onto a random subspace, see [LN06] and [DT09].

In this paper, we present explicit deterministic constructions. First, we construct
a d-dimensional 2-neighborly centrally symmetric polytope with roughly 3d/4 ≈
(1.316)d vertices. Then, for any fixed k ≥ 2, we verify (again by presenting an
explicit construction) that there exists 0 < δk < 1 such that for an arbitrarily large
d and for an arbitrarily large even N , there is a d-dimensional centrally symmetric
polytope P with N vertices satisfying

fk−1(P ) ≥
(

1− (δk)
d
)

(

N

k

)

.

Our construction guarantees that one can take

any δ2 > 3−1/4 ≈ 0.77 and any δk >
(

1− 5−k+1
)5/(24k+4)

for k > 2

provided N and d are sufficiently large. Finally, for an integer k ≥ 2 and α > 0 we
construct a centrally symmetric polytope Q of dimension k1+o(1) with an arbitrarily
large number of vertices N such that

fk−1(Q) ≥
(

1− k−α
)

(

N

k

)

.

We note that the random projection construction cannot produce polytopes with
the last two properties since if N is very large compared to d, the projection of
a cross-polytope in R

N onto a random d-dimensional subspace is very close to a
Euclidean ball, and hence has few faces relative to the number of vertices, cf. [DT09].
Our constructions are based on the symmetric moment curve introduced in [BN08]
and further studied in [B+11].
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(1.1) The symmetric moment curve. We define the symmetric moment curve
Uk(t) ∈ R

2k by

(1.1.1) Uk(t) =
(

cos t, sin t, cos 3t, sin 3t, . . . , cos(2k − 1)t, sin(2k − 1)t
)

for t ∈ R. Since
Uk(t) = Uk(t+ 2π) for all t,

from this point on, we consider Uk(t) to be defined on the unit circle

S = R/2πZ.

We note that t and t+ π form a pair of antipodal points for all t ∈ S and that

Uk(t+ π) = −Uk(t) for all t ∈ S.

First, we construct a 2-neighborly centrally symmetric polytope using the curve

U3(t) =
(

cos t, sin t, cos 3t, sin 3t, cos 5t, sin 5t
)

.

(1.2) Theorem. For a non-negative integer m, consider the map

Ψm : S −→ R
6(m+1) defined by Ψm(t) =

(

U3(t), U3(3t), . . . , U3 (3
mt)

)

.

Let Am ⊂ S be the set of 4 · 3m+1 equally spaced points,

Am =

{

2πj

4 · 3m+1
, j = 0, . . . , 4 · 3m+1 − 1

}

,

and let

Pm = conv
(

Ψm(t) : t ∈ Am

)

.

Then Pm is a centrally symmetric polytope of dimension d = 4m + 6 that has
4 · 3m+1 vertices: Ψm(t) for t ∈ Am. Moreover, for t1, t2 ∈ Am such that t1 6= t2
and t1 6= t2 + π mod 2π, the interval

[

Ψm (t1) , Ψm (t2)
]

is an edge of Pm.

Our construction of a centrally symmetric polytope with N vertices and about
(1 − 3−d/4)

(

N
2

)

edges for an arbitrarily large N is a slight modification of the
construction presented in Theorem 1.2 — see Remark 3.2. On the other hand,
to construct a centrally symmetric polytope with many (k − 1)-dimensional faces
for k > 2, we need to use the curve (1.1.1) to the full extent.
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(1.3) Theorem. Fix an integer k ≥ 1. For a non-negative integer m, consider
the map Ψk,m : S −→ R

6k(m+1) defined by

Ψk,m(t) =
(

U3k(t), U3k(5t), . . . , U3k (5
mt)

)

.

For a positive even integer n, let Am,n ⊂ S be the set of n5m equally spaced points,

Am,n =

{

2πj

n5m
: j = 0, . . . , n5m − 1

}

,

and let
P = Pk,m,n = conv

(

Ψk,m(t) : t ∈ Am,n

)

.

Then

(1) The polytope P ⊂ R
6k(m+1) is a centrally symmetric polytope with n5m

distinct vertices:
Ψk,m(t) for t ∈ Am,n

and of dimension d ≤ 6k(m+1)−2m⌊(3k+2)/5⌋; moreover, if n > 2(6k−1),
then the dimension of P is equal to 6k(m+ 1)− 2m⌊(3k + 2)/5⌋.

(2) Let t1, . . . , tk be points chosen independently at random from the uniform
distribution in Am,n (in particular, some of ti may coincide). Then the
probability that

conv
(

Ψk,m (t1) , . . . ,Ψk,m (tk)
)

is not a face of P does not exceed
(

1− 5−k+1
)m

.

We obtain the following corollary.

(1.4) Corollary. Let Pk,m,n be the polytope of Theorem 1.3 with N = n5m vertices
and dimension d ≤ 6k(m+ 1)− 2m⌊(3k + 2)/5⌋. Then

fk−1 (Pk,m,n) ≥

(

N

k

)

−
(

1− 5−k+1
)m Nk

k!
.

The construction of Theorem 1.3 produces a family of centrally symmetric poly-
topes of an increasing dimension d and with an arbitrarily large number of vertices
such that for any fixed k ≥ 1, the probability pd,k that k randomly chosen vertices
of the polytope do not span a face decreases exponentially in d. However, it does
not start doing so very quickly: for instance, to make pd,k < 1/2 we need to choose

d as high as 2Ω(k).
Using a trick which the authors learned from Imre Bárány (cf. Section 7.3 of

[BN08]), we construct new families of polytopes with many faces of a reasonably
high dimension. Namely, we can make pd,k < d−α for any fixed α > 0 by using d

as low as k1+o(1).
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(1.5) Theorem. Fix positive integers k,m, n and r, where n is even. Let P =
Pk,m,n be the polytope of Theorem 1.3, so that P ⊂ R

6k(m+1) is a centrally sym-
metric polytope with n5m vertices. For d = 6kr(m + 1), identify R

d with a direct
sum of r copies of R6k(m+1), each containing a copy of P . Let Q be the convex hull
of the r copies of P ; in particular, Q ⊂ R

d is a centrally symmetric polytope with
rn5m vertices.

If

r < min

{

(k + 1)!,

(

5k−1

5k−1 − 1

)m}

,

then the probability that r vertices of Q, chosen independently at random from the
uniform distribution on the set set of vertices of Q, span a face of Q is at least

(

1−
r

(k + 1)!

)

(

1− r
(

1− 5−k+1
)m

)

.

If we now fix an α > 0 and choose in Theorem 1.5

k =

⌈

β ln r

ln ln r

⌉

and m =
⌈

β5k ln r
⌉

,

then for a suitable β = β(α) > 0 we obtain a centrally symmetric polytope Q of
dimension r1+o(1) and with an arbitrarily large number N of vertices such that r
random vertices of Q span a face of Q with probability at least 1 − r−α. As in
Corollary 1.4, we have fr−1(Q) ≥ (1− r−α)

(

N
r

)

.
In Section 2, we summarize the properties of the symmetric moment curve (1.1.1)

and review several basic combinatorial facts needed for our proofs. We then prove
Theorem 1.2 in Section 3 and Theorems 1.3 and 1.5 in Section 4. In Section 5, we
sketch connections to error-correcting codes.

2. Preliminaries

We utilize the following result of [B+11] concerning the symmetric moment
curve (1.1.1).

(2.1) Theorem. Let Bk ⊂ R
2k,

Bk = conv
(

Uk(t) : t ∈ S

)

,

be the convex hull of the symmetric moment curve. Then for every positive integer
k there exists a number

π

2
< αk < π

such that for an arbitrary open arc Γ ⊂ S of length αk and arbitrary distinct n ≤ k
points t1, . . . , tn ∈ Γ, the set

conv
(

Uk (t1) , . . . , Uk (tn)
)

is a face of Bk.

For k = 2 with α2 = 2π/3 this result is due to Smilansky [Sm85].
We will also need the following technical lemma.
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(2.2) Lemma. Let t1, . . . , t2k ∈ S be distinct points no two of which are antipodal.
Then the set of vectors

{Uk (t1) , . . . , Uk (t2k)}

is linearly independent.

Proof. Seeking a contradiction, we assume that these 2k vectors are linearly de-
pendent. Then they span a proper subspace in R

2k, and hence there is a non-zero
vector C ∈ R

2k that is orthogonal to all these vectors.
Consider the following trigonometric polynomial

f(t) =
〈

C, Uk(t)
〉

,

where 〈·, ·〉 is the standard scalar product in R
2k. Then f(t) 6≡ 0 and t1, . . . , t2k are

distinct roots of f(t). Since f(t + π) = −f(t), we conclude that f(t) has at least
4k roots on the circle S. On the other hand, substituting z = eit, we can write

f(t) =
p(z)

z2k−1
,

where p is a polynomial with deg p ≤ 4k − 2, see [BN08] and [B+11]. Hence p(z)
has at least 4k distinct roots on the circle |z| = 1 and we must have p(z) ≡ 0, which
is a contradiction. �

We will also be using the following two well-known facts.
First, if P is a polytope and F is a face of P , then F is a polytope: it is the

convex hull of the vertices of P that lie in F . Moreover, every face of F is also a
face of P .

Second, if T : Rd −→ R
k is a linear transformation and P ⊂ R

d is a polytope,
then Q = T (P ) is a polytope and for every face F of Q the inverse image of F ,

T−1(F ) =
{

x ∈ P : T (x) ∈ F
}

,

is a face of P . This face is the convex hull of the vertices of P mapped by T into
vertices of F .

Finally, to estimate the dimension of the polytope Pk,n,m in Theorem 1.3 we will
rely on the following combinatorial lemma. For a set U of integers and a constant
c, we define cU := {cu : u ∈ U}.

(2.3) Lemma. Let K be the set of all odd integers in the closed interval [1, 6k−1],
and let

T =
m
⋃

j=0

5jK.

Then
|T | = 3k(m+ 1)−m⌊(3k + 2)/5⌋.
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Proof. Denote by X the set of all elements of K that are not divisible by 5, and by
S the complement of X in K. Then the sets X, 5X, 52X, · · · , 5mX are pairwise
disjoint and their union consists of all elements of T that are not divisible by 5m+1.
On the other hand, every element of T that is divisible by 5m+1 is of the form 5ms
for some s ∈ S and every element of the form 5ms for s ∈ S belongs to T and is
divisible by 5m+1. Thus

T =





m
⋃

j=0

5jX



 ∪ 5mS,

and the sets in the above union are pairwise disjoint. Hence

|T | = (m+ 1)|X |+ |S| = (m+ 1)|K| −m|S|.

The statement now follows from the fact that there are 3k elements in K and that
exactly ⌊(3k + 2)/5⌋ of them are divisible by 5. �

3. Centrally symmetric 2-neighborly polytopes

(3.1) Proof of Theorem 1.2. The transformation

t 7−→ t+ π mod 2π

maps the set Am onto itself. Since Ψm(t + π) = −Ψm(t), the polytope Pm is
centrally symmetric. Consider the projection R

6(m+1) −→ R
6 that forgets all but

the first 6 coordinates. Then the image of Pm is the polytope

(3.1.1) Qm = conv
(

U3(t) : t ∈ Am

)

.

By Theorem 2.1, the polytope Qm has 4 · 3m+1 distinct vertices: U3(t) for t ∈ Am.
Furthermore, the inverse image of each vertex U3(t) of Qm in Pm consists of a single
vertex Ψm(t) of Pm. Therefore, Ψm(t) for t ∈ Am are all the vertices of Pm without
duplicates.

To compute the dimension d of Pm, we observe that for all t ∈ S, the third
coordinate of U3(t) coincides with the first coordinate of U3(3t) while the fourth
coordinate of U3(t) coincides with the second coordinate of U3(3t). Therefore, the
polytope Pm lies in a subspace, denote it by L, of codimension 2m, and hence
dimPm ≤ 4m + 6. If the dimension of Pm is strictly smaller than 4m + 6, then
Pm lies in an affine hyperplane of L. As in the proof of Lemma 2.2, such an affine
hyperplane corresponds to a trigonometric polynomial f(t) of degree 5 ·3m that has
at least 4 · 3m+1 = 12 · 3m roots (all points of Am). This is however impossible, as
no nonzero trigonometric polynomial of degree 5 · 3m has more than

2 · 5 · 3m = 10 · 3m < 12 · 3m
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roots (cf. the proof of Lemma 2.2). We conclude that dimPm = 4m+ 6.
We prove that Pm is 2-neighborly by induction on m. It follows from Lemma 2.2

that P0 is the convex hull of a set consisting of six linearly independent vectors and
their opposite vectors. Combinatorially, P0 is a 6-dimensional cross-polytope and
hence the induction base is established.

Suppose now that m ≥ 1. Let t1, t2 ∈ Am be such that

t1 6= t2, t2 + π mod 2π.

Then there are two cases to consider.

Case I: t1 − t2 ∈ (−π
2 ,

π
2 ) mod 2π,

and

Case II: t1 − t2 ∈ (−π,−π
2
] ∪ [π

2
, π) mod 2π.

In the first case, consider the polytope Qm defined by (3.1.1) and the projection
Pm −→ Qm as above. By Theorem 2.1,

[

U3 (t1) , U3 (t2)
]

is an edge of Qm. Since the inverse image of a vertex U3(t) of Qm in Pm consists
of a single vertex Ψm(t) of Pm, we conclude that

[

Ψm (t1) , Ψm (t2)
]

is an edge of Pm.
In the second case, consider the map φ : Am −→ Am−1,

φ(t) = 3t mod 2π.

Then
φ (Am) = Am−1

and for every t the inverse image of t, φ−1(t), consists of 3 equally spaced points
from Am. In addition, we have

φ (t1) 6= φ (t2) + π mod 2π,

although we may have φ (t1) = φ (t2). In any case, by the induction hypothesis,
the interval (possibly contracting to a point)

(3.1.2)
[

Ψm−1 (3t1) , Ψm−1 (3t2)
]

is a face of Pm−1.
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Let us consider the projection R
6(m+1) −→ R

6m that forgets the first 6 coordi-
nates. The image of Pm under this projection is Pm−1, and since (3.1.2) is a face
of Pm−1, the set

(3.1.3)
conv

(

Ψm (xij) : φ (xij) = φ (ti) for i = 1, 2

and j = 1, 2, 3
)

is a face of Pm (it is the inverse image of (3.1.2) under this projection). However,
the face (3.1.3) is a convex hull of at most six distinct points no two of which are
antipodal. Since by Lemma 2.2, any set of at most six distinct points U3 (xij) no
two of which are antipodal is linearly independent, the face (3.1.3) is a simplex.
Therefore,

[

Ψm (t1) , Ψm (t2)
]

is a face of (3.1.3), and hence of Pm. �

(3.2) Remark. Tweaking the construction of Theorem 1.2, allows us to produce
d-dimensional centrally symmetric polytopes with an arbitrarily large number N
of vertices that have at least

(

1− (δ2)
d
) (

N
2

)

edges, where one can choose any δ2 >

3−1/4 ≈ 0.77 for all sufficiently large N and d.
To do so, fix an integer s ≥ 3, and consider the curve Ψm as in Theorem 1.2.

However, instead of working with the set Am as in the proof Theorem 1.2, start
with the set

W0 =

{

πj

2
: j = 0, 1, 2, 3

}

of 4 equally spaced points on S. Now replace each point t of W0 by a cluster of s
points on S that lie very close to t. Moreover, do it in such a way, that the resulting
subset of S, which we denote by W s

0 , is centrally symmetric. For m ≥ 1, define W s
m

recursively by

W s
m := φ−1(W s

m−1), where φ(x) = 3x mod 2π.

Thus W s
m consists of 4 · 3m clusters of s points each.

We claim that the polytope

P s
m := conv (Ψm(t) : t ∈ W s

m)

is a centrally symmetric polytope of dimension d = 4m+6, with N = N(s) = 4s·3m

vertices, and such that for every two distinct points t1, t2 ∈ W s
m, the interval

[Ψm(t1),Ψm(t2)] is an edge of P s
m, provided t1 and t2 are not from antipodal clus-

ters. The proof of this claim is identical to the proof of Theorem 1.2, except that
for the base case (the case of m = 0) we appeal to Theorem 2.1.
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Thus each vertex of P s
m is incident to all other vertices except itself and (possibly)

the Ψm-images of the s points from the antipodal cluster. Therefore, the polytope
P s
m has at least

N(N − s− 1)

2
=

(

N

2

)(

1−
s

N − 1

)

≈

(

N

2

)(

1−
1

4 · 3m

)

edges. Taking an arbitrarily large s yields the promised result on δ2. �

4. Centrally symmetric polytopes with many faces

(4.1) Proof of Theorem 1.3. We observe that the transformation

t 7−→ t+ π mod 2π

maps the set Am,n onto itself and that

Ψk,m(t+ π) = −Ψk,m(t) for all t ∈ S.

Hence P is centrally symmetric. Consider the projection R
6k(m+1) −→ R

6k that
forgets all but the first 6k coordinates. Then the image of Pk,m,n is the polytope

(4.1.1) Qk,m,n = conv
(

U3k(t) : t ∈ Am,n

)

.

By Theorem 2.1, the polytopeQk,m,n has n5m distinct vertices: U3k(t) for t ∈ Am,n.
Furthermore, the inverse image of each vertex U3k(t) of Qk,m,n in Pk,m,n consists
of a single vertex Ψk,m(t) of Pk,m,n. Therefore, Ψk,m,n(t) for t ∈ Am,n are all the
vertices of Pk,m,n without duplicates.

To estimate the dimension of P = Pk,m,n, we observe that for all t ∈ S, the
fifth coordinate of U3k(t) coincides with the first coordinate of U3k(5t) while the
sixth coordinate of U3k(t) coincides with the second coordinate of U3k(5t), etc.
Taking into account all coincidences of coordinates, we infer from Lemma 2.3 that
the polytope P lies in a subspace of dimension 6k(m + 1) − 2m⌊(3k + 2)/5⌋, and
hence dimP ≤ 6k(m + 1) − 2m⌊(3k + 2)/5⌋. Moreover, if n > 2(6k − 1), then an
argument identical to the one used in the proof of Theorem 1.2 (by counting roots
of trigonometric polynomials) shows that dimP = 6k(m+ 1)− 2m⌊(3k + 2)/5⌋.

We prove Part (2) by induction on m. The statement trivially holds for m = 0.
Let us assume that m ≥ 1 and consider the map φ : Am,n −→ Am−1,n defined by

φ(t) = 5t mod 2π.

Then
φ (Am,n) = Am−1,n

and for every t ∈ Am−1,n, the inverse image of t, φ−1(t), consists of 5 equally spaced
points from Am,n. We note that if t is a random point uniformly distributed in
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Am,n, then φ(t) is uniformly distributed in Am−1,n. The proof of the theorem will
follow from the following two claims.

Claim I. Let t1, . . . , tk ∈ Am,n be arbitrary, not necessarily distinct, points. If

(4.1.2) conv
(

Ψk,m−1 (5ti) , i = 1, . . . , k
)

is a face of Pk,m−1,n then

(4.1.3) conv
(

Ψk,m (ti) , i = 1, . . . , k
)

is a face of Pk,m,n.

Claim II. Let s1, . . . , sk ∈ Am−1,n be arbitrary, not necessarily distinct, points.
Then the conditional probability that

conv
(

Ψk,m(ti) : i = 1, . . . , k
)

is not a face of Pk,m,n given that

φ (ti) = si for i = 1, . . . , k

does not exceed 1− 5−k+1.

To prove Claim I, we consider the projection R
6k(m+1) −→ R

6km that forgets
the first 6k coordinates. The image of Pk,m,n under this projection is Pk,m−1,n and
if (4.1.2) is a face of Pk,m−1,n then

(4.1.4)
conv

(

Ψk,m (xij) : φ (xij) = φ (ti) for i = 1, . . . , k

and j = 1, 2, 3, 4, 5
)

is a face of Pk,m,n as it is the inverse image of (4.1.2) under this projection. The
face (4.1.4) is the convex hull of at most 5k distinct points and no two points xij

in (4.1.4) are antipodal. Since by Lemma 2.2 a set of up to 6k distinct points
U3k (xij) no two of which are antipodal is linearly independent, the face (4.1.4) is
a simplex. Therefore, the set (4.1.3) is a face of (4.1.4), and hence also a face of
Pk,m,n. Claim I now follows.

To prove Claim II, we fix a sequence s1, . . . , sk ∈ Am−1,n of not necessarily
distinct points. Then there are exactly 5k sequences t1, . . . , tk ∈ Am,n of not
necessarily distinct points such that φ (ti) = si for i = 1, . . . , k. Choose an arbitrary
t1 subject to the condition φ (t1) = s1. Let Γ ⊂ S be a closed arc of length 2π/5
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centered at t1. Then for i = 2, . . . , k there is at least one ti ∈ Γ such that φ(ti) = si.
By Theorem 2.1, for such a choice of t2, . . . , tk, the set

(4.1.5) conv
(

U3k (ti) : i = 1, . . . , k
)

is a face of the polytope Qk,m,n defined by (4.1.1). Considering the projection

Pk,m,n −→ Qk,m,n

as above, we conclude that (4.1.3) is a face of Pk,m,n as it is the inverse image
of (4.1.5).

Hence the conditional probability that (4.1.3) is not a face is at most

5k−1 − 1

5k−1
= 1− 5−k+1.

�

(4.2) Proof of Corollary 1.4. Let us choose points t1, . . . , tk independently at
random from the uniform distribution in Am,n. Then the probability that the points
are all distinct is

(N − 1) · · · (N − k + 1)

Nk−1
.

From Theorem 1.3, the conditional probability that

(4.3.1) conv
(

Ψk,m (t1) , . . . ,Ψk,m (tk)
)

is not a face, given that t1, . . . , tk are distinct, does not exceed

(

1− 5−k+1
)m Nk−1

(N − 1) · · · (N − k + 1)
.

Arguing as in the proof of Theorem 1.3 (Section 4.1), we conclude that if t1, . . . , tk
are distinct and (4.3.1) is a face, then that face is a (k − 1)-dimensional simplex.
�

(4.3) Proof of Theorem 1.5. By construction, Q is a centrally symmetric poly-
tope whose vertex set consists of the vertices of the r copies of P . Let us pick r
vertices of Q independently at random from the uniform distribution and let ki
be the number of vertices picked from the i-th copy of P , i = 1, . . . , r. Then the
probability that ki > k does not exceed

(

r

k + 1

)

r−k−1 <
1

(k + 1)!
.

Therefore, the probability that k1, . . . , kr ≤ k is at least 1− r/(k + 1)!. Now, the
picked r vertices span a face of Q if and only if for all i with ki > 0 the chosen
ki vertices from the i-th copy of P span a face of P . The result then follows by
Theorem 1.3. �
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5. Connections to error-correcting codes

Here we briefly touch upon a well-known connection between centrally symmetric
polytopes with many faces and the coding theory, see, for example, [RV05].

Let R
N be N -dimensional Euclidean space with the standard basis e1, . . . , eN

and the ℓ1-norm

‖x‖1 =

N
∑

i=1

|xi| for x = (x1, . . . , xN ) .

Let L ⊂ R
N be a subspace, let vi be the orthogonal projection of ei onto L, and let

P = conv
(

±vi, i = 1, . . . , N
)

be the orthogonal projection of the standard cross-polytope (octahedron) in R
N

onto L.
Let L⊥ ⊂ R

N be the orthogonal complement of L. Suppose that we are given a
point a ∈ R

N , a = (a1, . . . , aN ), which is obtained by changing (corrupting) some
(unknown) k coordinates of an unknown point c ∈ L⊥, c = (c1, . . . , cN), and that
our goal is to find c. One, by now standard, way of attempting to do that is to
try to find c as the solution to the linear programming problem of minimizing the
function

(5.1) x 7−→ ‖x− a‖1 for x ∈ L⊥.

Indeed, let

I+ =
{

i : ci > ai

}

and I− =
{

i : ci < ai

}

.

Then c is the unique minimum point of (5.1) if

conv
(

vi for i ∈ I+ and − vi for i ∈ I−

)

is a face of P . By constructing polytopes P with many (k − 1)-dimensional faces
we produce subspaces L⊥ with the property that the points of L⊥ can be effi-
ciently reconstructed from many of the different ways of corrupting some k of their
coordinates.
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