The stresses on centrally symmetric complexes and the lower bound theorems

Isabella Novik*
Department of Mathematics
University of Washington
Seattle, WA 98195-4350, USA
novik@uw.edu

Hailun Zheng
Department of Mathematical Sciences
University of Copenhagen
Universitesparken 5, 2100 Copenhagen, Denmark
hz@math.ku.dk

January 10, 2021

Abstract

In 1987, Stanley conjectured that if a centrally symmetric Cohen-Macaulay simplicial complex Δ of dimension $d-1$ satisfies $h_{i}(\Delta)=\binom{d}{i}$ for some $i \geq 1$, then $h_{j}(\Delta)=\binom{d}{j}$ for all $j \geq i$. Much more recently, Klee, Nevo, Novik, and Zheng conjectured that if a centrally symmetric simplicial polytope P of dimension d satisfies $g_{i}(\partial P)=\binom{d}{i}-\binom{d}{i-1}$ for some $d / 2 \geq i \geq 1$, then $g_{j}(\partial P)=\binom{d}{j}-\binom{d}{j-1}$ for all $d / 2 \geq j \geq i$. This note uses stress spaces to prove both of these conjectures.

1 Introduction

This paper is devoted to analyzing the cases of equality in Stanley's lower bound theorems on the face numbers of centrally symmetric Cohen-Macaulay complexes and centrally symmetric polytopes. All complexes considered in this paper are simplicial.

In the seventies, Stanley and Hochster (independently from each other) introduced the notion of Stanley-Reisner rings and started developing their theory, see [5, 8, 9, 10]. In the fifty years since, this theory has become a major tool in the study of face numbers of simplicial complexes that resulted in a myriad of theorems and applications. Among them are a complete characterization of face numbers of Cohen-Macaulay (CM, for short) simplicial complexes [10], a complete characterization of flag face numbers of balanced CM complexes [3, 11], and a complete characterization of face numbers of simplicial polytopes [2, 12], to name just a few.

A simplicial complex Δ is called centrally symmetric (or cs) if its vertex set V is endowed with a free involution $\alpha: V \rightarrow V$ that induces a free involution on the set of all non-empty faces of Δ. Motivated by the desire to understand face numbers of cs simplicial polytopes as well as to find a complete characterization of face numbers of cs CM complexes, Stanley [13, Theorems 3.1 and 4.1] proved the following Lower Bound Theorem:
Theorem 1.1. Let Δ be $a(d-1)$-dimensional cs CM simplicial complex. Then $h_{i}(\Delta) \geq\binom{ d}{i}$ for all $1 \leq i \leq d$. Furthermore, if Δ is the boundary complex of a d-dimensional cs simplicial polytope, then $g_{i}(\Delta) \geq\binom{ d}{i}-\binom{d}{i-1}$ for all $1 \leq i \leq d / 2$.

[^0]These inequalities are sharp: indeed, the boundary complex of the d-cross-polytope has $h_{i}=\binom{d}{i}$ for all i and $g_{i}=\binom{d}{i}-\binom{d}{i-1}$ for all $1 \leq i \leq d / 2$. Stanley also proposed the following conjecture [13, Conjecture 3.5], which he verified in the case that j is even or $j-i$ is even:

Conjecture 1.2. Let Δ be a $(d-1)$-dimensional cs CM simplicial complex. Suppose $h_{i}(\Delta)=\binom{d}{i}$ for some $i \geq 1$. Then $h_{j}(\Delta)=\binom{d}{j}$ for all $j \geq i$.

Much more recently, Klee, Nevo, Novik, and Zheng [6, Conjecture 8.5] posited a conjecture that is similar in spirit, which they verified for $i=2$ (the case of $i=1$ is very easy):

Conjecture 1.3. Let Δ be the boundary complex of a d-dimensional cs simplicial polytope. Suppose $g_{i}(\Delta)=\binom{d}{i}-\binom{d}{i-1}$ for some $d / 2 \geq i \geq 1$. Then $g_{j}(\Delta)=\binom{d}{j}-\binom{d}{j-1}$ for all $d / 2 \geq j \geq i$.

In this note we prove both conjectures in full generality. The proofs are given in Section 3. Along the way, we show that any complex Δ satisfying conditions of Conjecture 1.2 contains the boundary complex of a d-cross-polytope as a subcomplex - a fact that might be of independent interest. Our proof utilizes the theory of stress spaces developed by Lee [7]. Specifically, the h numbers of a Cohen-Macaulay complex Δ can be viewed as the dimensions of certain spaces of linear stresses on Δ while the g-numbers of the boundary complex of a simplicial polytope are the dimensions of spaces of affine stresses. A key observation is that if Δ is a $(d-1)$-dimensional cs CM complex, then $h_{i}(\Delta)=\binom{d}{i}$ if and only if all linear i-stresses on Δ are symmetric; similarly, if Δ is the boundary complex of a d-dimensional cs simplicial polytope, then $g_{i}(\Delta)=\binom{d}{i}-\binom{d}{i-1}$ if and only if all affine i-stresses on Δ are symmetric, see the discussion in Section 2. Both conjectures then follow from the main result of the paper asserting that for an arbitrary cs simplicial complex Δ, if Θ is a set of linear forms satisfying certain conditions and if for some $i>1$, all i-stresses on Δ computed w.r.t. Θ are symmetric, then so are all j-stresses on Δ for any $j \geq i$, see Theorem 3.5.

2 Setting the stage

We review several definitions and results on simplicial complexes, Stanley-Reisner rings, stress spaces, and Cohen-Macaulayness, as well as prepare ground for the proofs. For all undefined terminology we refer the reader to $[7,15]$.

A(n abstract) simplicial complex Δ on the ground set V is a collection of subsets of V that is closed under inclusion; v is a vertex of Δ if $\{v\} \in \Delta$, but not all elements of V are required to be vertices. The elements of Δ are called faces. The dimension of a face $\tau \in \Delta$ is $\operatorname{dim} \tau:=|\tau|-1$. The dimension of $\Delta, \operatorname{dim} \Delta$, is the maximum dimension of its faces. A face of a simplicial complex Δ is a facet if it is maximal w.r.t. inclusion. We say that Δ is pure if all facets of Δ have the same dimension. To simplify notation, for a face that is a vertex, we write v instead of $\{v\}$; we also define the following two subcomplexes of Δ called the star of v and the link of v in Δ : $\operatorname{st}_{\Delta}(v)=\operatorname{st}(v):=\{\sigma \in \Delta: \sigma \cup v \in \Delta\}$ and $\mathrm{lk}_{\Delta}(v)=\operatorname{lk}(v):=\left\{\sigma \in \operatorname{st}_{\Delta}(v): v \notin \sigma\right\}$.

Let Δ be a $(d-1)$-dimensional simplicial complex. For $-1 \leq i \leq d-1$, the i-th f-number of Δ, $f_{i}=f_{i}(\Delta)$, denotes the number of i-dimensional faces of Δ. The h-numbers of $\Delta, h_{i}=h_{i}(\Delta)$ for $0 \leq i \leq d$, are defined by the relation $\sum_{i=0}^{d} h_{i} \lambda^{d-i}=\sum_{i=0}^{d} f_{i-1}(\lambda-1)^{d-i}$. Finally, the g-numbers of Δ are $g_{0}(\Delta):=1$ and $g_{i}(\Delta):=h_{i}(\Delta)-h_{i-1}(\Delta)$ for $1 \leq i \leq d / 2$.

Let Δ be a simplicial complex on the ground set V. Let $X=\left\{x_{v}: v \in V\right\}$ be the set of variables and let $\mathbb{R}[X]$ be the polynomial ring over the real numbers \mathbb{R} in variables X. The Stanley-Reisner
ideal of Δ is defined as

$$
I_{\Delta}=\left(x_{v_{1}} x_{v_{2}} \ldots x_{v_{i}}:\left\{v_{1}, v_{2}, \ldots, v_{i}\right\} \notin \Delta\right),
$$

i.e., it is the ideal generated by the squarefree monomials corresponding to non-faces of Δ. The Stanley-Reisner ring of Δ is $\mathbb{R}[\Delta]:=\mathbb{R}[X] / I_{\Delta}$. The ring $\mathbb{R}[\Delta]$ has an \mathbb{N}-grading: $\mathbb{R}[\Delta]=$ $\bigoplus_{i=0}^{\infty} \mathbb{R}[\Delta]_{i}$, where the i th graded component $\mathbb{R}[\Delta]_{i}$ is the space of homogeneous elements of degree i in $\mathbb{R}[\Delta]$. In general, for an \mathbb{N}-graded vector space M, denote by M_{i} the i th graded component of M.

Let Δ be a simplicial complex and let $\Theta=\theta_{1}, \ldots, \theta_{\ell}$ be a sequence of linear forms in $\mathbb{R}[X]$, where ℓ is a nonnegative integer. Denote the quotient $\mathbb{R}[\Delta] / \Theta \mathbb{R}[\Delta]$ by $\mathbb{R}(\Delta, \Theta)$.

For our proofs, we will work in the dual setting of stress spaces developed by Lee [7], see also [1, Section 3]. It should also be mentioned that stress spaces are essentially the same objects as inverse systems in commutative algebra - the notion that goes back to Macaulay; see [4, Theorem 21.6 and Exercise 21.7]. Observe that a variable x_{v} acts on $\mathbb{R}[X]$ by $\frac{\partial}{\partial x_{v}}$; for brevity, we will denote this operator by $\partial_{x_{v}}$. More generally, if $c(X)=\sum_{v \in V} c_{v} x_{v}$ is a linear form in $\mathbb{R}[X]$, then we define

$$
\begin{aligned}
\partial_{c(X)}: \mathbb{R}[X] & \rightarrow \mathbb{R}[X], \\
w & \mapsto \sum_{v \in V} c_{v} \cdot \partial_{x_{v}} w=\sum_{v \in V} c_{v} \frac{\partial w}{\partial x_{v}} .
\end{aligned}
$$

For a monomial $\mu \in \mathbb{R}[X]$, the support of μ is $\operatorname{supp}(\mu)=\left\{v \in V: x_{v} \mid \mu\right\}$. A homogeneous polynomial $w \in \mathbb{R}[X]$ of degree i is called an i-stress on Δ w.r.t. $\Theta=\theta_{1}, \ldots, \theta_{\ell}$ if it satisfies the following conditions:

- Every term μ of w is supported on a face of $\Delta: \operatorname{supp}(\mu) \in \Delta$, and
- $\partial_{\theta_{k}} w=0$ for all $k=1, \ldots, \ell$.

The support of an i-stress $w, \operatorname{supp}(w)$, is the subcomplex of Δ generated by the support of all terms of w. We say that a face $F \in \Delta$ participates in a stress w if $F \in \operatorname{supp}(w)$. We also say that a stress w lives on a subcomplex Γ of Δ if $\operatorname{supp}(w) \subseteq \Gamma$.

Denote the set of all i-stresses on Δ w.r.t. Θ by $\mathcal{S}(\Delta, \Theta)_{i}$. This set is a vector space [1, 7]; it is a subspace of $\mathbb{R}[X]$. In fact, $\mathcal{S}(\Delta, \Theta)_{i}$ is the orthogonal complement of $\left(I_{\Delta}+(\Theta)\right)_{i}$ in $\mathbb{R}[X]_{i}$ w.r.t. a certain inner product on $\mathbb{R}[X]_{i}$, see [7, Section 3]. Thus, as a vector space, $\mathcal{S}(\Delta, \Theta)_{i}$ is canonically isomorphic to $\mathbb{R}(\Delta, \Theta)_{i}$. (For an alternative approach using the Weil duality, see [1, Section 3].) Another very useful and easy fact is that for every linear form $c(X) \in \mathbb{R}[X]$, the operator $\partial_{c(X)}$ maps $\mathcal{S}(\Delta, \Theta)_{i}$ into $\mathcal{S}(\Delta, \Theta)_{i-1}$, that is, if w is a stress, then so is $\partial_{c(X)} w$. This follows from the fact that $\partial_{\theta_{k}}$ and $\partial_{c(X)}$ commute, and that a subset of a face of Δ is a face of Δ.

Stresses are convenient to work with for the following reason: if Γ is a subcomplex of Δ (considered as a complex on the same ground set V as Δ), then there is a natural surjective homomorphism $\rho: \mathbb{R}[\Delta] \rightarrow \mathbb{R}[\Gamma] ;$ it induces a surjective homomorphism $\mathbb{R}(\Delta, \Theta) \rightarrow \mathbb{R}(\Gamma, \Theta)$. On the level of stress spaces, the situation is much easier to describe: $\mathcal{S}(\Gamma, \Theta)_{i}$ is a subspace of $\mathcal{S}(\Delta, \Theta)_{i}$.

A simplicial complex Δ is centrally symmetric or $c s$ if its ground set is endowed with a free involution $\alpha: V \rightarrow V$ that induces a free involution on the set of all non-empty faces of Δ. In more detail, for all non-empty faces $\tau \in \Delta$, the following holds: $\alpha(\tau) \in \Delta, \alpha(\tau) \neq \tau$, and $\alpha(\alpha(\tau))=\tau$. To simplify notation, we write $\alpha(\tau)=-\tau$ and refer to τ and $-\tau$ as antipodal faces of Δ.

A large family of cs simplicial complexes is given by cs simplicial polytopes. A polytope $P \subset \mathbb{R}^{d}$ is the convex hull of a set of finitely many points in \mathbb{R}^{d}. We will always assume that P is d dimensional. A proper face of P is the intersection of P with a supporting hyperplane. A polytope P is called simplicial if all of its proper faces are geometric simplices, i.e., convex hulls of affinely independent points. We identify each face of a simplicial polytope P with the set of its vertices. The boundary complex of P, denoted ∂P, is then the simplicial complex consisting of the empty set along with the vertex sets of proper faces of P. A polytope P is called $c s$ if $P=-P$; in this case, the complex ∂P is a cs simplicial complex w.r.t. the natural involution. An important example is $\partial \mathcal{C}_{d}^{*}-$ the boundary complex of a d-cross-polytope $\mathcal{C}_{d}^{*}:=\operatorname{conv}\left(\pm p_{1}, \pm p_{2}, \ldots, \pm p_{d}\right)$, where p_{1}, \ldots, p_{d} are affinely independent points in $\mathbb{R}^{d} \backslash\{0\}$. As an abstract simplicial complex, $\partial \mathcal{C}_{d}^{*}$ is the d-fold suspension of $\{\emptyset\}$. It is easy to check that $h_{j}\left(\partial \mathcal{C}_{d}^{*}\right)=\binom{d}{j}$ for all $0 \leq j \leq d$, and so $g_{j}\left(\partial \mathcal{C}_{d}^{*}\right)=\binom{d}{j}-\binom{d}{j-1}$ for all $1 \leq j \leq d / 2$.

The free involution α on a cs complex Δ induces the free involution on X via $\alpha\left(x_{v}\right)=x_{-v}$, which in turn induces a $\mathbb{Z} / 2 \mathbb{Z}$-action on $\mathbb{R}[X]$ and $\mathbb{R}[\Delta]$. For any \mathbb{R}-vector space W endowed with such an action α, one has $W=W^{+} \oplus W^{-}$, where $W^{+}:=\{w \in W: w=\alpha(w)\}$ and $W^{-}:=\{w \in W: w=-\alpha(w)\}$. Thus, $\mathbb{R}[\Delta]_{i}=\mathbb{R}[\Delta]_{i}^{+} \oplus \mathbb{R}[\Delta]_{i}^{-}$. As $\mathbb{R}[\Delta]_{i}^{+} \cdot \mathbb{R}[\Delta]_{j}^{-} \subseteq \mathbb{R}[\Delta]_{i+j}^{-}$, and similar inclusions hold for all choices of plus and minus signs, it follows that $\mathbb{R}[\Delta]$ has an $(\mathbb{N} \times \mathbb{Z} / 2 \mathbb{Z})$-grading.

Let Δ be a cs simplicial complex with an involution α, and let $\Theta=\theta_{1}, \ldots, \theta_{\ell}$ consist of linear forms that are homogeneous w.r.t. the $(\mathbb{N} \times \mathbb{Z} / 2 \mathbb{Z})$-grading. Since $\alpha\left(I_{\Delta}+(\Theta)\right)=I_{\Delta}+(\Theta)$ and since for any $w, w^{\prime} \in \mathbb{R}[X]_{i},\left\langle\alpha(w), \alpha\left(w^{\prime}\right)\right\rangle=\left\langle w, w^{\prime}\right\rangle$, where $\langle-,-\rangle$ is the inner product from [7, Section 3] used to define the isomorphism Φ_{i} between $\mathbb{R}(\Delta, \Theta)_{i}$ and $\mathcal{S}(\Delta, \Theta)_{i}$, it follows that α also acts on $\mathcal{S}(\Delta, \Theta)_{i}$ and that this action commutes with Φ_{i}. Hence, $\mathcal{S}(\Delta, \Theta)_{i}=\mathcal{S}(\Delta, \Theta)_{i}^{+} \oplus \mathcal{S}(\Delta, \Theta)_{i}^{-}$, where the subspaces $\mathcal{S}(\Delta, \Theta)_{i}^{+}$and $\mathcal{S}(\Delta, \Theta)_{i}^{-}$of $\mathcal{S}(\Delta, \Theta)_{i}$ are isomorphic (as vector spaces) to $\mathbb{R}(\Delta, \Theta)_{i}^{+}$ and $\mathbb{R}(\Delta, \Theta)_{i}^{-}$, resp. We refer to the elements of $\mathcal{S}(\Delta, \Theta)_{i}^{+}$as symmetric i-stresses.

For certain classes of simplicial complexes and a certain choice of Θ, the dimensions of stress spaces are well understood. This requires a few additional definitions. Let Δ be a $(d-1)$-dimensional simplicial complex. A sequence $\Theta=\theta_{1}, \ldots, \theta_{\ell}$ of linear forms in $\mathbb{R}[X]$ is called a linear system of parameters of Δ (or l.s.o.p., for short) if $\ell=d$ and $\mathbb{R}(\Delta, \Theta)$ is a finite-dimensional \mathbb{R}-vector space. We say that Δ is Cohen-Macaulay (or CM, for short) if for some (equivalently, every) l.s.o.p. $\Theta=\theta_{1}, \theta_{2}, \ldots, \theta_{d}$ of Δ,

$$
\operatorname{dim}_{\mathbb{R}} \mathbb{R}(\Delta, \Theta)_{i}=h_{i}(\Delta), \quad \forall 0 \leq i \leq d
$$

In particular, if Δ is CM and Θ is an l.s.o.p. of Δ, then $\mathcal{S}(\Delta, \Theta)_{i}$ has dimension $h_{i}(\Delta)$. Following [7], when Θ is an l.s.o.p. of Δ, we will refer to elements of $\mathcal{S}(\Delta, \Theta)_{i}$ as linear i-stresses.

It is worth mentioning that there are other equivalent definitions of CM complexes. The most standard one is that Δ is CM if some (equivalently, every) l.s.o.p. of Δ is a regular sequence for the $\mathbb{R}[X]$-module $\mathbb{R}[\Delta]$. It is also worth mentioning that CM complexes have a topological characterization due to Reisner [8]. This characterization implies, for instance, that CM complexes are pure, that stars and links of CM complexes are also CM, and that the boundary complexes of simplicial polytopes are CM. ${ }^{1}$

[^1]Stanley [13] showed that if Δ is a cs simplicial complex, then there exists an l.s.o.p. $\Theta=$ $\theta_{1}, \ldots, \theta_{d}$ of Δ with the property that each θ_{k} lies in $\mathbb{R}[X]_{1}^{-}$. We refer to such Θ as Stanley's special l.s.o.p. of Δ; this object plays a crucial role in the proof of Conjecture 1.2. In the case that $\Delta=\partial P$ is the boundary complex of a cs d-polytope $P \subset \mathbb{R}^{d}$, there is a canonical choice of Stanley's special l.s.o.p. $\theta_{1}, \ldots, \theta_{d}$ of Δ defined as follows: for $k=1, \ldots, d$,

$$
\begin{equation*}
\theta_{k}=\sum_{v \in V} a_{v, k} x_{v}, \text { where } a_{v, k} \text { is the } k \text {-th coordinate of vertex } v \in P \subset \mathbb{R}^{d} \text {. } \tag{2.1}
\end{equation*}
$$

To prove Conjecture 1.3 we will consider stresses on ∂P w.r.t. $\widetilde{\Theta}=\theta_{1}, \ldots, \theta_{d}, \theta_{d+1}$, where $\theta_{1}, \ldots, \theta_{d}$ are defined by (2.1) and $\theta_{d+1}:=\sum_{v \in V} x_{v}$ is an element of $\mathbb{R}[X]_{1}^{+}$. We will refer to $\widetilde{\Theta}$ as the set of canonical linear forms associated with P. Following [7], the i-stresses on ∂P w.r.t. $\widetilde{\Theta}$ are called affine i-stresses.

The two main results of [13] (see proofs of Theorems 3.1 and 4.1 there) are the following Lower Bound Theorems for cs CM complexes and cs simplicial polytopes.
Theorem 2.1. Let Δ be $a(d-1)$-dimensional cs CM simplicial complex, and let Θ be Stanley's special l.s.o.p. of Δ. Then

$$
\operatorname{dim}_{\mathbb{R}} \mathbb{R}(\Delta, \Theta)_{i}^{-}=\frac{1}{2}\left(h_{i}(\Delta)-\binom{d}{i}\right) \quad \text { for all } 1 \leq i \leq d
$$

In particular, $h_{i}(\Delta) \geq\binom{ d}{i}$ for all $1 \leq i \leq d$.
Furthermore, if $\Delta=\partial P$ for some cs simplicial polytope P and $\widetilde{\Theta}$ is the set of canonical linear forms associated with P, then

$$
\operatorname{dim}_{\mathbb{R}} \mathbb{R}(\Delta, \widetilde{\Theta})_{i}^{-}=\frac{1}{2}\left(g_{i}(\Delta)-\binom{d}{i}+\binom{d}{i-1}\right) \quad \text { for all } 1 \leq i \leq d / 2
$$

In particular, $g_{i}(\Delta) \geq\binom{ d}{i}-\binom{d}{i-1}$ for all $1 \leq i \leq d / 2$.
Using the language of stresses, Theorem 2.1 leads to the following:
Corollary 2.2. Let Δ be a (d-1)-dimensional cs CM simplicial complex, let Θ be Stanley's special l.s.o.p. of Δ, and let $1 \leq i \leq d$ be an integer. Then $h_{i}(\Delta)=\binom{d}{i}$ if and only if all linear i-stresses on Δ are symmetric, i.e., $\mathcal{S}(\Delta, \Theta)_{i}=\mathcal{S}(\Delta, \Theta)_{i}^{+}$. Furthermore, if $\Delta=\partial P$ for some cs simplicial polytope $P, \widetilde{\Theta}$ is the set of canonical linear forms associated with P, and $1 \leq i \leq d / 2$, then $g_{i}(\Delta)=\binom{d}{i}-\binom{d}{i-1}$ if and only if all affine i-stresses on Δ are symmetric, i.e., $\mathcal{S}(\Delta, \widetilde{\Theta})_{i}=\mathcal{S}(\Delta, \widetilde{\Theta})_{i}^{+}$.
Proof: Recall that $\mathbb{R}(\Delta, \Theta)_{i}^{-} \cong \mathcal{S}(\Delta, \Theta)_{i}^{-}$and $\mathbb{R}(\partial P, \widetilde{\Theta})_{i}^{-} \cong \mathcal{S}(\partial P, \widetilde{\Theta})_{i}^{-}$. Theorem 2.1 then implies that $\mathcal{S}(\Delta, \Theta)_{i}^{-}=(0)$ if and only if $h_{i}(\Delta)=\binom{d}{i}$, and that $\mathcal{S}(\partial P, \widetilde{\Theta})_{i}^{-}=(0)$ if and only if $g_{i}(\Delta)=\binom{d}{i}-\binom{d}{i-1}$.

3 Proof of the conjectures

With the tools of Section 2 at our disposal, we are ready to prove Conjectures 1.2 and 1.3. In fact, we prove a more general result, Theorem 3.5, from which the conjectures readily follow. To simplify notation, we assume that $V=\{ \pm 1, \pm 2, \ldots, \pm n\}$ and let $[j]$ denote the set $\{1,2, \ldots, j\}$. We also refer to the elements of $\mathbb{R}[X]_{i}^{+}$as symmetric i-polynomials.

We start with two simple lemmas.

Lemma 3.1. Let Δ be a cs simplicial complex and let $\Theta=\theta_{1}, \ldots, \theta_{\ell}$ be linear forms in $\mathbb{R}[X]$ that are homogeneous w.r.t. the $(\mathbb{N} \times \mathbb{Z} / 2 \mathbb{Z})$-grading. Let v be a vertex of Δ. If w is a symmetric stress on Δ that lives on $\operatorname{st}(v)$, then, in fact, w lives on $1 \mathrm{k}(v) \cap \mathrm{lk}(-v)$.

Proof: By the definition of cs complexes, $-v \notin \operatorname{st}(v)$. Thus the assumption that w is symmetric and lives on $\operatorname{st}(v)$ implies that w lives on $\mathrm{lk}(v)$. Now, since w is symmetric, a face F of Δ participates in w if and only if $-F$ does. This together with the symmetry of Δ yields that w lives on $\operatorname{lk}(v) \cap$ $1 \mathrm{k}(-v)$.

Lemma 3.2. Let Δ be a cs simplicial complex, let $\Theta=\theta_{1}, \ldots, \theta_{\ell}$ be linear forms in $\mathbb{R}[X]$ that are homogeneous w.r.t. the $(\mathbb{N} \times \mathbb{Z} / 2 \mathbb{Z})$-grading, and let $w \in \mathcal{S}(\Delta, \Theta)_{i}$. If for every vertex $v, \partial_{x_{v}} w$ is a symmetric stress, then w is a squarefree polynomial.

Proof: If v is in the support of w, then $\partial_{x_{v}} w$ is a symmetric stress that lives on $\operatorname{st}(v)$. Hence by Lemma 3.1, $\partial_{x_{v}} w$ lives on $\mathrm{lk}(v)$. In particular, no term of w is divisible by x_{v}^{2}.

The following two lemmas provide key ingredients for the proof of Theorem 3.5. For $k \in[n]$, we let y_{k} denote $x_{k}+x_{-k}$.

Lemma 3.3. Let $w \in \mathbb{R}[X]_{i}$ be a squarefree symmetric polynomial such that $\partial_{x_{v}} w$ is symmetric for all vertices v. Then w is a squarefree polynomial in y_{1}, \ldots, y_{n}, that is, w can be written as

$$
w=\sum_{\substack{\tau \subseteq[n] \\|\tau|=i}} c_{\tau} \prod_{k \in \tau}\left(x_{k}+x_{-k}\right) \quad \text { for some } c_{\tau} \in \mathbb{R}
$$

Proof: It is easy to prove by induction on n that a squarefree polynomial $Q \in \mathbb{R}[X]$ is a polynomial in y_{1}, \ldots, y_{n} if and only if $\partial_{x_{k}} Q=\partial_{x_{-k}} Q$ for all $k \in[n]$. Thus to prove the lemma, it is enough to check that our given w satisfies $\partial_{x_{k}} w=\partial_{x_{-k}} w$ for all $k \in[n]$. Indeed, by symmetry of w and $\partial_{x_{k}} w$, and by the definition of α,

$$
\partial_{x_{k}} w=\alpha\left(\partial_{x_{k}} w\right)=\partial_{x_{-k}}(\alpha w)=\partial_{x_{-k}} w .
$$

The result follows.
Lemma 3.4. Let $i \geq 1$ and let $w \in \mathbb{R}[X]_{i+1}$ be a squarefree polynomial such that for all vertices v, $\partial_{x_{v}} w$ is a polynomial in y_{1}, \ldots, y_{n}. Then w is a squarefree polynomial in y_{1}, \ldots, y_{n}. In particular, w is symmetric and can be expressed as

$$
w=\sum_{\substack{\sigma \sigma[n] \\|\sigma|=i+1}} c_{\sigma} \prod_{k \in \sigma}\left(x_{k}+x_{-k}\right) \quad \text { for some } c_{\sigma} \in \mathbb{R} .
$$

Proof: By Lemma 3.3, the statement will follow if we show that w is symmetric. To check this, write w as $w=\sum c_{k_{1}, k_{2}, \ldots, k_{i+1}} x_{k_{1}} x_{k_{2}} \cdots x_{k_{i+1}}$ for some $c_{k_{1}, k_{2}, \ldots, k_{i+1}} \in \mathbb{R}$. The assumption that partial derivatives of w are polynomials in y_{1}, \ldots, y_{n} implies that $\partial_{x_{k_{2}}} \cdots \partial_{x_{k_{i+1}}} w$ is symmetric. Hence $c_{k_{1}, k_{2}, \ldots, k_{i+1}}=c_{-k_{1}, k_{2}, \ldots, k_{i+1}}$ (as they are coefficients of $x_{k_{1}}$ and $x_{-k_{1}}$ in $\partial_{x_{k_{2}}} \cdots \partial_{x_{k_{i+1}}} w$). Repeated applications of this argument imply that $c_{k_{1}, k_{2}, \ldots, k_{i+1}}=c_{-k_{1},-k_{2}, \ldots,-k_{i+1}}$. Thus, w is symmetric.

We are now in a position to state and prove our main result.

Theorem 3.5. Let Δ be a cs complex, and let $\Theta=\theta_{1}, \ldots, \theta_{\ell}$ be linear forms such that $\theta_{1}, \ldots, \theta_{\ell-1}$ are elements of $\mathbb{R}[X]_{1}^{-}$, and θ_{ℓ} is either also in $\mathbb{R}[X]_{1}^{-}$or $\theta_{\ell}=\sum_{v \in V} x_{v}$. If for some integer $i>1$, all i-stresses on Δ w.r.t. Θ are symmetric, i.e., $\mathcal{S}(\Delta, \Theta)_{i}=\mathcal{S}(\Delta, \Theta)_{i}^{+}$, then for all $j \geq i$, $\mathcal{S}(\Delta, \Theta)_{j}=\mathcal{S}(\Delta, \Theta)_{j}^{+}$. Furthermore, if $\mathcal{S}(\Delta, \Theta)_{j} \neq(0)$ for some $j>i$, then Δ contains the boundary complex of the j-cross-polytope as a subcomplex.

Proof: It suffices to prove the statement for $j=i+1$. Let $w \in \mathcal{S}(\Delta, \Theta)_{i+1}$. For every vertex v, $\partial_{x_{v}} w \in \mathcal{S}(\Delta, \Theta)_{i}$, and so $\partial_{x_{v}} w$ is symmetric. Hence, by Lemma 3.2, w is squarefree.

Consider an edge $\left\{u_{1}, u_{2}\right\} \in \operatorname{supp}(w)$. Then $\partial_{x_{u_{1}}} w$ is a symmetric i-stress that lives on st $\left(u_{1}\right)$, and so by Lemma 3.1, it lives on $\operatorname{lk}\left(u_{1}\right) \cap \mathrm{lk}\left(-u_{1}\right)$. Consequently, the stress $\partial_{x_{u_{2}}} \partial_{x_{u_{1}}} w$ lives on $\operatorname{lk}\left(u_{1}\right) \cap \operatorname{lk}\left(-u_{1}\right)$. Since $\partial_{x_{u_{2}}} \partial_{x_{u_{1}}} w=\partial_{x_{u_{1}}} \partial_{x_{u_{2}}} w$, the same argument implies that it also lives on $\operatorname{lk}\left(u_{2}\right) \cap \operatorname{lk}\left(-u_{2}\right)$. Let

$$
w^{\prime}:=\left(x_{u_{1}}+x_{-u_{1}}-x_{u_{2}}-x_{-u_{2}}\right) \cdot \partial_{x_{u_{2}}} \partial_{x_{u_{1}}} w .
$$

Our discussion shows that $\operatorname{supp}\left(w^{\prime}\right) \subseteq \Delta$. Furthermore, by our assumptions on Θ and the fact that $w \in \mathcal{S}(\Delta, \Theta)_{i+1}$, it follows that $\partial_{\theta_{k}} w=0$ and $\partial_{\theta_{k}}\left(x_{u_{1}}+x_{-u_{1}}-x_{u_{2}}-x_{-u_{2}}\right)=0$ for all $1 \leq k \leq \ell$. Therefore, for all $1 \leq k \leq \ell$,
$\partial_{\theta_{k}} w^{\prime}=\partial_{\theta_{k}}\left(x_{u_{1}}+x_{-u_{1}}-x_{u_{2}}-x_{-u_{2}}\right) \cdot \partial_{x_{u_{2}}} \partial_{x_{u_{1}}} w+\left(x_{u_{1}}+x_{-u_{1}}-x_{u_{2}}-x_{-u_{2}}\right) \cdot \partial_{x_{u_{2}}} \partial_{x_{u_{1}}} \partial_{\theta_{k}} w=0$.
Hence $w^{\prime} \in \mathcal{S}(\Delta, \Theta)_{i}$, and so it is symmetric. We conclude that $\partial_{x_{u_{2}}} \partial_{x_{u_{1}}} w \in \mathcal{S}(\Delta, \Theta)_{i-1}^{+}$for any $u_{2} \in \operatorname{supp}\left(\partial_{x_{u_{1}}} w\right)$. Since the stress $\partial_{x_{u_{1}}} w$ itself is symmetric (indeed, it is an i-stress), Lemma 3.3 guarantees that $\partial_{x_{u_{1}}} w$ is of the form $\partial_{x_{u_{1}}} w=\sum_{\tau \subseteq[n],|\tau|=i} c_{\tau} \prod_{k \in \tau}\left(x_{k}+x_{-k}\right)$, for all $u_{1} \in \operatorname{supp}(w)$. It then follows from Lemma 3.4 that w is a symmetric stress of the form $w=\sum_{\sigma \subseteq[n],|\sigma|=i+1} c_{\sigma} \prod_{k \in \sigma}\left(x_{k}+x_{-k}\right)$. In particular, we see from the definition of stresses that if $w \neq 0$, then the support of w is the union of the boundary complexes of $(i+1)$-cross-polytopes. This completes the proof.

The proof of Conjectures 1.2 and 1.3 now readily follows. In the proof, we use linear and affine stresses, i.e., stresses w.r.t. Stanley's special l.s.o.p. Θ and w.r.t. the set of canonical linear forms $\widetilde{\Theta}$, respectively.

Theorem 3.6.

1. Let d and $1 \leq i<d$ be integers. Let Δ be a cs CM complex of dimension $d-1$ with $h_{i}(\Delta)=\binom{d}{i}$. Then $h_{j}(\Delta)=\binom{d}{j}$ for all $i \leq j \leq d$.
2. Let d and $1 \leq i<d / 2$ be integers. If $\Delta=\partial P$ for some cs simplicial d-polytope P and $g_{i}(\Delta)=\binom{d}{i}-\binom{d}{i-1}$, then $g_{j}(\Delta)=\binom{d}{j}-\binom{d}{j-1}$ for all $i \leq j \leq d / 2$.

Proof: We begin with the case of $i>1$. For the first part, let Θ be Stanley's special l.s.o.p. of Δ. Since $h_{i}(\Delta)=\binom{d}{i}$, it follows from Corollary 2.2 that all linear i-stresses on Δ are symmetric. By Theorem 3.5, all linear j-stresses (for any $j \geq i$) are also symmetric. Hence Corollary 2.2 yields the result. The proof of the second part is analogous: this time use $\widetilde{\Theta}$ - the set of canonical linear forms associated with P - and then apply Corollary 2.2 and Theorem 3.5 to affine stresses.

Next we deal with the case of $i=1$ in both parts. The assumption that $h_{1}(\Delta)=d$, or that $g_{1}(\Delta)=d-1$, is equivalent to $f_{0}(\Delta)=2 d$. Now, it follows easily from the definition of cs complexes that any cs complex on $2 d$ vertices is contained in the boundary complex of the d-cross-polytope, and so $\Delta \subseteq \partial \mathcal{C}_{d}^{*}$. Since Δ and $\partial \mathcal{C}_{d}^{*}$ are CM complexes of the same dimension, [14, Theorem 2.1]
implies that $h_{j}(\Delta) \leq h_{j}\left(\partial \mathcal{C}_{d}^{*}\right)=\binom{d}{j}$ for all j. On the other hand, according to Theorem 1.1, $h_{j}(\Delta) \geq\binom{ d}{j}$ for all j. Thus we must have $h_{j}(\Delta)=\binom{d}{j}$ for all j, and hence also $g_{j}(\Delta)=\binom{d}{j}-\binom{d}{j-1}$ for all j. (Moreover, that the two complexes $\Delta \subseteq \partial \mathcal{C}_{d}^{*}$ have the same h-numbers yields that they have the same f-numbers, and so, in fact, $\Delta \cong \partial \mathcal{C}_{d}^{*}$.)

It is worth remarking that under the conditions of Theorem 3.6 , we can say a bit more about Δ :

Corollary 3.7.

1. Let Δ be a (d-1)-dimensional cs CM simplicial complex with $h_{i}(\Delta)=\binom{d}{i}$ for some $1 \leq i<d$. Then Δ contains a subcomplex Γ isomorphic to $\partial \mathcal{C}_{d}^{*}$. Furthermore, $\mathcal{S}(\Delta, \Theta)_{j}=\mathcal{S}(\Gamma, \Theta)_{j}$ for all $j \geq i$, where Θ is Stanley's special l.s.o.p. of Δ.
2. Let $\Delta=\partial P$ where P is a cs simplicial d-polytope. If $g_{i}(\Delta)=\binom{d}{i}-\binom{d}{i-1}$ for some $1 \leq i \leq$ $(d-2) / 2$, then Δ contains $\partial \mathcal{C}_{\lfloor d / 2\rfloor}^{*}$ as a subcomplex.
Proof: If $i=1$, then the proof of Theorem 3.6 implies that in both parts $\Delta \cong \partial \mathcal{C}_{d}^{*}$. Thus assume that $i>1$. For the second statement, since by Theorem 3.6, $g_{\lfloor d / 2\rfloor}(\Delta)=\binom{d}{\lfloor d / 2\rfloor}-\binom{d}{\lfloor d / 2\rfloor-1}>0$, it follows that $\mathcal{S}(\Delta, \widetilde{\Theta})_{\lfloor d / 2\rfloor} \neq(0)$, where $\widetilde{\Theta}$ is the set of canonical linear forms associated with P. Since by our assumptions, $\mathcal{S}(\Delta, \widetilde{\Theta})_{i}=\mathcal{S}(\Delta, \widetilde{\Theta})_{i}^{+}$and $\lfloor d / 2\rfloor>i$, Theorem 3.5 guarantees that Δ contains $\partial \mathcal{C}_{\lfloor d / 2\rfloor}^{*}$ as a subcomplex.

The proof of the first statement is similar: since by Theorem $3.6, h_{d}(\Delta)=1$, there is a nonzero linear d-stress w on Δ. Since $d>i$ and $\mathcal{S}(\Delta, \Theta)_{i}=\mathcal{S}(\Delta, \Theta)_{i}^{+}$, Theorem 3.5 implies that Δ must contain $\Gamma \cong \partial \mathcal{C}_{d}^{*}$ as a subcomplex. Then $\mathcal{S}(\Delta, \Theta)_{j} \supseteq \mathcal{S}(\Gamma, \Theta)_{j}$ for all j, and comparing the dimensions we see that, in fact, $\mathcal{S}(\Delta, \Theta)_{j}=\mathcal{S}(\Gamma, \Theta)_{j}$ for all $j \geq i$.

Acknowledgments

We are grateful to Satoshi Murai, Eran Nevo, Richard Stanley, and the two anonymous referees for comments on the previous versions of this note.

References

[1] K. Adiprasito. Combinatorial Lefschetz theorems beyond positivity. arXiv:1812.10454.
[2] L. J. Billera and C. W. Lee. A proof of the sufficiency of McMullen's conditions for f-vectors of simplicial convex polytopes. J. Combin. Theory, Ser. A, 31:237-255, 1981.
[3] A. Björner, P. Frankl, and R. Stanley. The number of faces of balanced Cohen-Macaulay complexes and a generalized Macaulay theorem. Combinatorica, 7(1):23-34, 1987.
[4] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
[5] M. Hochster. Cohen-Macaulay rings, combinatorics, and simplicial complexes. In Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975), pages 171-223. Lecture Notes in Pure and Appl. Math., Vol. 26. Dekker, New York, 1977.
[6] S. Klee, E. Nevo, I. Novik, and H. Zheng. A lower bound theorem for centrally symmetric simplicial polytopes. Discrete Comput. Geom., 61:541-561, 2019.
[7] C. W. Lee. P.L.-spheres, convex polytopes, and stress. Discrete Comput. Geom., 15(4):389-421, 1996.
[8] G. A. Reisner. Cohen-Macaulay quotients of polynomial rings. Adv. Math., 21(1):30-49, 1976.
[9] R. P. Stanley. The upper bound conjecture and Cohen-Macaulay rings. Studies in Applied Math., 54:135-142, 1975.
[10] R. P. Stanley. Cohen-Macaulay complexes. In M. Aigner, editor, Higher Combinatorics, pages 51-62. Reidel, Dordrecht and Boston, 1977.
[11] R. P. Stanley. Balanced Cohen-Macaulay complexes. Trans. Amer. Math. Soc., 249:139-157, 1979.
[12] R. P. Stanley. The number of faces of a simplicial convex polytope. Adv. Math., 35:236-238, 1980.
[13] R. P. Stanley. On the number of faces of centrally-symmetric simplicial polytopes. Graphs Combin., 3:55-66, 1987.
[14] R. P. Stanley. A monotonicity property of h-vectors and h^{*}-vectors. European J. Combin., 14(3):251258, 1993.
[15] R. P. Stanley. Combinatorics and Commutative Algebra. Progress in Mathematics. Birkhäuser, Boston, Inc., Boston, MA, 1996. Second edition.

[^0]: *Research of IN is partially supported by NSF grants DMS-1664865 and DMS-1953815, and by Robert R. \& Elaine F. Phelps Professorship in Mathematics.

[^1]: ${ }^{1}$ For any field \mathbf{k}, one may analogously define the rings $\mathbf{k}[\Delta]$ and $\mathbf{k}(\Delta, \Theta)$ as well as the notion of Δ being CM over \mathbf{k}. However, it follows from Reisner's criterion along with the universal coefficient theorem that if Δ is CM over some field \mathbf{k}, then Δ is CM over \mathbb{R}, i.e., Δ satisfies the definition given above. In other words, no generality is lost by working over \mathbb{R}.

