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Abstract

The result of Padrol [13] asserts that for every d ≥ 4, there exist 2Ω(n log n) distinct com-
binatorial types of bd/2c-neighborly simplicial (d − 1)-spheres with n vertices. We present a

construction showing that for every d ≥ 5, there are at least 2Ω(nb(d−1)/2c) such types.
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1 Introduction

A simplicial complex on n vertices is s-neighborly if it has the same (s− 1)-skeleton as the (n− 1)-
simplex on the same vertex set. Of special interest are bd/2c-neighborly (d − 1)-spheres. They
arise, for instance, in the context of Stanley’s upper bound theorem [16]. In this paper we address
the question of how many bd/2c-neighborly (d− 1)-spheres with n vertices there are.

This question is ultimately related to the questions of how many combinatorial types of (convex)
simplicial d-polytopes with n labeled vertices there are and how many combinatorial types of
simplicial (d − 1)-spheres with n labeled vertices there are. Denote these numbers by c(d, n) and
s(d, n), respectively. The asymptotic answer to the first question was given by Goodman and
Pollack [5] followed by the work of Alon [1]. They showed that there are very few polytopes:
c(d, n) = 2Θ(n logn) for d ≥ 4. In contrast to these results, Kalai [7] proved that there is a very

large number of simplicial spheres: for d ≥ 5, s(d, n) ≥ 2Ω(nb(d−1)/2c). Furthermore, Pfeifle and

Ziegler [14] showed that s(4, n) ≥ 2Ω(n5/4). The current record on the number of odd-dimensional
simplicial spheres is due to Nevo, Santos, and Wilson [11] who established the following bound:

s(2k, n) ≥ 2Ω(nk) for all k ≥ 2. In short, the best to-date lower bound for any d ≥ 4 is s(d, n) ≥
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2Ω(nbd/2c). On the other hand, Stanley’s upper bound theorem implies that s(d, n) ≤ 2O(nbd/2c logn)

(see [7, Section 4.2]). This is the current best upper bound.
Despite the fact that most of spheres constructed in [7, 11, 14] are not neighborly, Kalai [7,

Section 6.3] speculated that the number sn(d, n) of bd/2c-neighborly simplicial (d−1)-spheres with
n labeled vertices is very large and posited the following conjecture.

Conjecture 1.1. For all d ≥ 4,

lim
n→∞

(log sn(d, n)/ log s(d, n)) = 1.

Indeed, the currently best known lower bound on the number of bd/2c-neighborly d-polytopes
with n labeled vertices (due to Padrol [13]) is also the best known lower bound on the total
number of combinatorial types of d-polytopes with n labeled vertices. Padrol’s paper built on
and generalized Shemer’s sewing construction [15], which was used to produce the previous record
number of neighborly polytopes. In addition to neighborly polytopes, Padrol was also able to
construct a record number of non-realizable neighborly oriented matroids. Yet, Padrol’s bounds
only imply that sn(d, n) ≥ 2Ω(n logn).

While we are still very far from being able to shed light on Kalai’s conjecture, we improve
Padrol’s bound and prove the following result.

Theorem 1.2. For all d ≥ 5, sn(d, n) ≥ 2Ω(nb(d−1)/2c).

Our construction utilizes Kalai’s squeezed balls [7]. In fact, the key to our proof is an observation
that for certain choices of parameters, the difference of two squeezed (2k − 1)-balls on n vertices
forms a (k−1)-neighborly and (k−1)-stacked (2k−1)-ball on the same vertex set, see Theorem 3.1.
These “difference” balls are contained in the boundary complex of the cyclic 2k-polytope on n
vertices, denoted as ∂C2k(n). They are extremely useful for our constructions in both even- and
odd-dimensional cases. Indeed, on one hand, the boundary of such a ball B is a (k− 1)-neighborly
(2k − 2)-sphere on n vertices. On the other hand, removing B from ∂C2k(n) and patching the
resulting hole with the cone over the boundary of B produces a k-neighborly (2k − 1)-sphere on
n+ 1 vertices.

A few historical remarks are in order. The first construction of polytopal d-balls with n vertices
that are both r-neighborly and r-stacked (for all parameters r, d, n with 2 ≤ 2r ≤ d and n ≥ d+ 1)
is due to McMullen and Walkup [10]. The idea of finding inside a triangulated manifold M a
full-dimensional ball B that is both 1-neighborly (i.e., B contains all vertices of M) and 1-stacked,
and using such balls to construct 2-neighborly triangulations of manifolds was pioneered by Walkup
[19]; for a much more recent use of the same idea see [18, Section 5].

The structure of the rest of the paper is as follows. In Section 2 we review basic definitions
related to neighborliness, stackedness, and Kalai’s squeezed balls. In Section 3 we describe our
main construction, the relative squeezed balls. Finally, in Section 4 we prove Theorem 1.2.

2 Preliminaries

2.1 Simplicial complexes

We start by providing a quick overview of the main objects of this paper — simplicial complexes.
A simplicial complex ∆ with vertex set V (∆) is a collection of subsets of V (∆) that is closed under
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inclusion and contains all singletons: {v} ∈ ∆ for all v ∈ V (∆). The elements of ∆ are called faces.
The dimension of a face τ ∈ ∆ is dim τ := |τ | − 1. The dimension of ∆, dim ∆, is the maximum
dimension of its faces. A face of a simplicial complex ∆ is a facet if it is maximal w.r.t. inclusion.
We say that ∆ is pure if all facets of ∆ have the same dimension. We distinguish between the
empty complex ∆ = {∅} whose only face is the empty set and the void complex ∆ = ∅ that has no
faces (not even the empty set).

Let ∆ be a simplicial complex. The k-skeleton of ∆, Skelk(∆), is the subcomplex of ∆ consisting
of all faces of dimension ≤ k. If τ is a face of ∆, then the antistar of τ and the link of τ in ∆ are
the following subcomplexes of ∆:

ast(τ,∆) = {σ ∈ ∆ : σ 6⊇ τ}, lk(τ,∆) := {σ ∈ ∆ : σ ∩ τ = ∅ and σ ∪ τ ∈ ∆}.

If ∆ is a pure simplicial complex and Γ is a full-dimensional pure subcomplex of ∆, then ∆\Γ is
the subcomplex of ∆ generated by those facets of ∆ that are not in Γ. Finally, if ∆ and Γ are
simplicial complexes on disjoint vertex sets, then the join of ∆ and Γ is the simplicial complex
∆ ∗ Γ = {σ ∪ τ : σ ∈ ∆ and τ ∈ Γ}. In particular, the join of ∆ with the empty complex is ∆
while the join of ∆ with the void complex is the void complex.

Let V be a set of size d+1. Denote by V the d-dimensional simplex on V . Its boundary complex
is ∂V := {τ : τ ( V }. Most of complexes considered in this paper are PL balls or PL spheres.
(Here PL stands for piecewise linear.) A PL d-ball is a simplicial complex PL homeomorphic to
V . Similarly, a PL (d − 1)-sphere is a simplicial complex PL homeomorphic to ∂V . If ∆ is a PL
d-sphere and Γ ⊂ ∆ is a PL d-ball, then so is ∆\Γ, see [6]. Furthermore, the link of any face in
a PL sphere is a PL sphere. On the other hand, the link of a face τ in a PL d-ball B is either a
PL ball or a PL sphere; in the former case we say that τ is a boundary face of B, and in the latter
case that τ is an interior face of B. The boundary complex of B, ∂B, is the subcomplex of B that
consists of all boundary faces of B; in particular, ∂B is a PL (d− 1)-sphere.

For a (d − 1)-dimensional complex ∆ and −1 ≤ i ≤ d − 1, we let fi = fi(∆) be the number
of i-dimensional faces of ∆. The vector f(∆) = (f−1, f0, . . . , fd−1) is called the f -vector of ∆.
We also define the h-vector of ∆, h(∆) = (h0, . . . , hd), by the following relation:

∑d
j=0 hjλ

d−j =∑d
i=0 fi−1(λ− 1)d−i. In particular, f−1 = h0 = 1 and fd−1 =

∑d
j=0 hj .

2.2 Cyclic polytopes, neighborliness, and stackedness

Let i ≥ 1. We say that a simplicial complex ∆ is i-neighborly w.r.t. V (or simply i-neighborly) if
Skeli−1(∆) = Skeli−1(V ).

Let m : Rd → R, t 7→ (t, t2, . . . , td), be the moment curve in Rd, and let t1 < t2 < · · · < tn
be distinct real numbers, where n > d. The cyclic d-polytope Cd(n) is defined as the convex hull
conv(m(t1), . . . ,m(tn)). It is known that Cd(n) is a simplicial d-polytope with n vertices, that it
is bd/2c-neighborly and that its combinatorial type is independent of the choice of t1, . . . , tn. In
the rest of the paper we treat the boundary complex of Cd(n), ∂Cd(n), as an abstract simplicial
complex. In particular, we identify a vertex m(ti) with i ∈ [n] := {1, 2, . . . , n} and the vertex set of
∂Cd(n) with [n]. The facets of Cd(n) have a particularly nice description known as Gale’s evenness
condition [4]:

Lemma 2.1. Let n > d ≥ 2, and let Cd(n) be the cyclic d-polytope. A d-subset F ⊂ [n] forms a
facet of ∂Cd(n) if and only if for every i < j not in F , the number of elements ` ∈ F between i and
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j is even. In particular, for d = 2k, F = {i1, i1 + 1, i2, i2 + 1, . . . , ik, ik + 1} is a facet of ∂C2k(n)
if 1 ≤ i1, ik ≤ n− 1, and ij ≤ ij+1 − 2 for all 1 ≤ j ≤ k − 1.

A property that seems to be inseparable from neighborliness is that of stackedness. A PL d-ball
B is called i-stacked (for some 0 ≤ i ≤ d), if all interior faces of B are of dimension ≥ d − i, that
is, Skeld−i−1(B) = Skeld−i−1(∂B). In particular, 0-stacked balls are simplices; 1-stacked balls are
also known in the literature as stacked balls. We will rely on the following basic properties, see for
instance [12, Lemma 2.2]. Part 2 of the statement below is stronger than the one provided in [12,
Lemma 2.2(2)], but the proof is identical, so we omit it.

Lemma 2.2. Let B1 and B2 be PL balls of dimension d1 and d2, respectively. If B1 is i1-stacked
and B2 is i2-stacked, then

1. The complex B1 ∗B2 is an (i1 + i2)-stacked PL (d1 + d2 + 1)-ball.

2. Furthermore, if d1 = d2 = d and B1 ∩B2 ⊆ ∂B1 ∩ ∂B2 is a PL (d− 1)-ball that is i3-stacked,
then B1 ∪B2 is an i-stacked PL d-ball, where i = max{i1, i2, i3 + 1}.

We close this subsection with the following theorem that summarizes a few properties of the
h-vectors of PL balls.

Theorem 2.3. Let ∆ be a PL (d− 1)-ball with n vertices. Then

1. The h-numbers of ∆ satisfy 0 ≤ hi ≤
(
n−d+i−1

i

)
for all 1 ≤ i ≤ d.

2. ∆ is i0-neighborly if and only if hi(∆) =
(
n−d+i−1

i

)
for all i ≤ i0.

3. ∆ is (r − 1)-stacked if and only if hi(∆) = 0 for all i ≥ r.

The first two statements are due to Stanley [16], see also [17, Chapter II.3]; they hold not only
for balls but for all Cohen–Macaulay complexes. For the last statement, see [9, Proposition 2.4].

2.3 Kalai’s squeezed balls and spheres

To review the definition of squeezed balls and spheres, we will use some terminology from partially
ordered sets. Specifically, recall that an antichain A in a poset (Q,≤) is a subset of Q no two of
which elements are comparable to each other. If A ⊆ Q is an antichain, we denote by Q(A) the
order ideal (also known as the initial set) generated by A: Q(A) = {x ∈ Q : x ≤ a for some a ∈ A}.
When Q is finite, there is a natural bijection φ from the set of antichains of Q to the set of order
ideals of Q defined by φ(A) = Q(A); the inverse map φ−1 takes an order ideal I to the set of
maximal elements of I.

In what follows, every d-subset of [n] is written in an increasing order and is identified with an
element of Nd. In particular, we compare two d-subsets using the standard partial order ≤p on Nd:
for F = {i1, i2, . . . , id} and G = {j1, j2, . . . , jd}, we say that G ≤p F if j` ≤ i` for all 1 ≤ ` ≤ d.
Denote by 1d the all-ones vector of length d. We also say that G ≺p F if G ≤p F − 1d.

Let [m,n] denote the set {m,m+1, . . . , n}. (It is the empty set ifm > n.) Our main construction

relies on the poset F [m,n]
2k defined as follows. When k = 0, this poset consists only of the empty set.

When k ≥ 1, as a set F [m,n]
2k consists of the following facets of the cyclic polytope C2k(n):

{{i1, i1 + 1, i2, i2 + 1, . . . , ik, ik + 1} : m ≤ i1, ik ≤ n− 1, ij ≤ ij+1 − 2, ∀ 1 ≤ j ≤ k − 1};
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these facets are ordered by the partial order ≤p. Note that if m > n− 2k+ 1, then F [m,n]
2k is a void

poset. Otherwise, [n− 2k + 1, n] = {n− 2k + 1, n− 2k + 2, . . . , n} is the unique maximal element

of F [m,n]
2k , that is, F [m,n]

2k is the order ideal generated by the antichain {[n− 2k + 1, n]}.
When k and n are fixed or understood from context, we abbreviate F [1,n]

2k as F2k or as F . We
say that two antichains S and T in F satisfy T ≤p S if F(T ) ⊆ F(S); equivalently, if for every
G ∈ T there is an element F ∈ S such that G ≤p F . Similarly, we say that T ≺p S if for every
element G ∈ T , there exists an element F ∈ S such that G ≺p F . For instance, if k = 2, n = 8,
S = {{1, 2, 7, 8}, {3, 4, 6, 7}}, T = {{2, 3, 5, 6}}, and T ′ = {{1, 2, 6, 7}}, then T ≺p S, T ′ ≤p S, but
T ′ 6≺p S.

For an antichain S in F , let B(S) be the pure simplicial complex whose facets are the sets
in the order ideal F(S). (In particular, B(S) 6= B(T ) if S 6= T .) For example, if k = 2 and
S = {{1, 2, 5, 6}, {2, 3, 4, 5}}, then the complex B(S) is a 3-ball with facets {1, 2, 3, 4}, {1, 2, 4, 5},
{1, 2, 5, 6} and {2, 3, 4, 5}.

Kalai [7] proved that the complexes B(S) are PL balls and called them squeezed balls. The
boundary complex ∂B(S) of B(S) is a squeezed sphere. Some of the properties of these objects are
summarized in the following theorem. We refer to [20] for the definition of shellability and only
mention a known fact that shellable balls and spheres are always PL.

Theorem 2.4. Fix k and n, and let S,S ′ be non-empty antichains in F = F [1,n]
2k . Then

1. B(S) is a k-stacked shellable (2k − 1)-ball. Furthermore, if S = {[n− 2k + 1, n]}, then B(S)
is k-neighborly w.r.t. [n].

2. If ∂B(S) = ∂B(S ′), then B(S) = B(S ′).

Part 2 is [7, Proposition 3.3], and a large portion of Part 1 is proved in [7, Corollary 3.2 and
Proposition 5.3(i)]. For completeness, we discuss some of the details of the proof of Part 1 below.

Proof: By [7, Corollary 3.2], B(S) is a shellable (2k − 1)-ball. By Gale’s evenness condition, the
elements of F = F2k({[n − 2k + 1, n]}) are precisely the facets of C2k(n + 1) that do not contain
n + 1. Hence B({[n − 2k + 1, n]}) is k-neighborly w.r.t. [n] (because C2k(n + 1) is k-neighborly
w.r.t. [n+ 1]) and

B(S) ⊆ B({[n− 2k + 1, n]}) = ast(n+ 1, ∂C2k(n+ 1)).

Gale’s evenness condition also implies that lk(n + 1, ∂C2k(n + 1)) = ∂C2k−1(n). Consequently,
lk(n + 1, ∂C2k(n + 1)) is a (k − 1)-neighborly (w.r.t. [n]) (2k − 2)-sphere. Since this sphere is the
boundary complex of ast(n + 1, ∂C2k(n + 1)), all faces of ast(n + 1, ∂C2k(n + 1)) of dimension
≤ k − 2 are boundary faces. We conclude that ast(n + 1, ∂C2k(n + 1)) is a k-neighborly w.r.t. [n]
and k-stacked (2k − 1)-ball. Finally, since B(S) is a full-dimensional subcomplex of this ball, an
interior face of B(S) is necessarily an interior face of the antistar. Thus B(S) is also k-stacked. �

To count the number of distinct squeezed (2k − 2)-spheres, we define another poset

P = Pn
k = {(x1, x2, . . . , xk) : 1 ≤ x1 < x2 < · · · < xk ≤ n− k} ⊆ Nk

also ordered by the partial order ≤p. There is a natural bijection R between P and F given by

R : (x1, x2, . . . , xk) 7→ {x1, x1 + 1, x2 + 1, x2 + 2, x3 + 2, x3 + 3, . . . , xk + k − 1, xk + k}.

This map is an isomorphism of posets. Counting the number of distinct antichains in P leads to
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Theorem 2.5. [7, Theorem 4.2] Let k ≥ 2. The number of combinatorial types of squeezed (2k−1)-
balls with n labeled vertices (or equivalently, those of squeezed (2k−2)-spheres with n labeled vertices)

is 2Ω(nk−1).

3 The relative squeezed balls and spheres

In this section, we introduce and study the main objects of the paper — relative squeezed balls.

For an antichain S in F = F [1,n]
2k , let

S − 12k := {x− 12k : x = {x1, x1 + 1, x2, x2 + 1, . . . , xk, xk + 1} ∈ S, x1 > 1},

and define BS := B(S)\B(S − 12k) to be the difference of two squeezed balls. The goal of this
section is to prove the following result that parallels Theorem 2.4:

Theorem 3.1. Let S,S ′ be non-empty antichains in F = F [1,n]
2k . Then

1. The complex BS is a (k− 1)-stacked PL (2k− 1)-ball. Furthermore, if S contains [1, 2]∪ [n−
2k + 3, n] as an element, then BS has n vertices and is (k − 1)-neighborly.

2. If ∂BS = ∂BS′, then BS = BS′.

In view of Theorem 3.1, we introduce the following terminology:

Definition 3.2. Let S be a non-empty antichain in F = F [1,n]
2k . The complex BS is called a

relative squeezed (2k − 1)-ball defined by S. The boundary complex ∂BS is the relative squeezed
(2k − 2)-sphere defined by S.

To motivate this definition and Theorem 3.1, consider the following example: let k = 2, n = 8,
and S = {{1, 2, 7, 8}, {3, 4, 6, 7}}. Then B(S) is not 1-stacked as it has too many facets (ten facets
instead of five). On the other hand, S − 14 = {{2, 3, 5, 6}} and the facets of BS consist of

{1, 2, 7, 8}, {1, 2, 6, 7}, {2, 3, 6, 7}, {3, 4, 6, 7}, and {3, 4, 5, 6}.

The above order of facets of BS shows that BS is indeed a 1-stacked 1-neighborly (w.r.t. [8]) 3-ball.

The proof of Theorem 3.1 requires quite a bit of preparation. To verify that BS is a (k − 1)-
stacked PL ball, we will utilize Lemma 2.2 along with inductive arguments on dimension. To this
end, the elements of the form [i, i′] ∪ [j, j′] in an antichain of F [i,j′] will play a special role (e.g.,
notice the element [1, 2]∪[n−2k+3, n] in the statement of Theorem 3.1) and the following definition
will be indispensable.

Definition 3.3. Let S be an antichain in F = F [1,n]
2k , let 1 ≤ ` ≤ k, let J = [j, j + 2` − 1] be a

subset of [n] of size 2`, and let m ≥ 1.

� Consider the following subcollection of F [1,n]
2(k−`):

{H ⊆ [j + 2`, n] : J ∪H ∈ F(S)}.

Define S(J) ⊆ F [1,n]
2(k−`) to be the set of maximal elements of this collection.
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� Define F(S,m) = F(S) ∩F [m,n]; that is, F(S,m) is the collection of all sets G in F(S) such
that the minimum of G is at least m. Similarly, define F2(k−`)(S(J),m) as F2(k−`)(S(J)) ∩
F [m,n]

2(k−`), where as before F2(k−`)(S(J)) denotes the order ideal of F [1,n]
2(k−`) generated by S(J).

� Let B(S,m) be the pure simplicial complex whose collection of facets is F(S,m). Similarly,
let B(S(J),m) be the pure simplicial complex whose collection of facets is F2(k−`)(S(J),m).
In particular, B(S, 1) = B(S) and B(S(J), 1) = B(S(J)).

Example 3.4. Consider the following antichain in F = F [1,14]
6 :

S := {{1, 2, 3, 4, 13, 14}, {1, 2, 6, 7, 11, 12}, {2, 3, 4, 5, 12, 13}, {2, 3, 5, 6, 10, 11}, {2, 3, 7, 8, 9, 10}}.

By definition,

S([1, 2]) = {{3, 4, 13, 14}, {6, 7, 11, 12}, {4, 5, 12, 13}, {7, 8, 9, 10}},

S([2, 3]) = {{4, 5, 12, 13}, {5, 6, 10, 11}, {7, 8, 9, 10}}, and S([3, 4]) = ∅.
Furthermore, B(S([2, 3]), 6) is a 2-stacked 3-ball generated by the facets

{6, 7, 8, 9}, {6, 7, 9, 10}, {7, 8, 9, 10}.

Note also that S([2, 7]) = {∅} since [2, 7] ∈ F(S), but S([3, 8]) = ∅ since [3, 8] /∈ F(S).

To study complexes of the form B(S)\B(S − 12k), it will be helpful to look at complexes of
the form B(S)\B(T ) for all pairs of antichains T ≺p S. The following lemma, which is an easy
consequence of Definition 3.3, is the first step in this direction. For the rest of the section, we fix

k ≥ 1, n ≥ 2k, and we always assume that S, T are antichains in F = F [1,n]
2k .

Lemma 3.5. For i, ` ≥ 1,

1. S([i+ 1, i+ 2]) ≤p S([i, i+ 1]).

2. (S − 12k)([i, i+ 1]) = S([i+ 1, i+ 2])− 12k−2.

3. If T ≺p S, then T ([i, i+ 2`− 1]) ≺p S([i+ 1, i+ 2`]).

Proof: Parts 1 and 2 follow from Definition 3.3. Part 3 is a consequence of Part 2. Indeed,

T ([i, i+ 1]) ≤p (S − 12k)([i, i+ 1]) = S([i+ 1, i+ 2])− 12k−2 ≺p S([i+ 1, i+ 2]).

Hence, for ` = 2,

T ([i, i+ 3]) = (T ([i, i+ 1]))([i+ 2, i+ 3]) ≺p (S([i+ 1, i+ 2]))([i+ 3, i+ 4]) = S([i+ 1, i+ 4]).

The result now follows by induction on `. �

As the proof of Theorem 3.1 is rather long and technical, it is worth to pause and outline the
plan for the proof. Fix T ≺p S. The first step is to decompose each complex B(S, i)\B(T , i)
into analogous lower-dimensional objects joined with simplices, see Lemma 3.6 and Corollary 3.7.
The minimum of each facet F determines which component of this decomposition F is placed in.
The second step is to study the intersections of components appearing in this decomposition, see
Lemma 3.10. With these results at our disposal, the last step is to use induction on the dimension
to show that each complex B(S, i)\B(T , i) is a ball with the desired properties, see Lemmas 3.11
and 3.14.
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Lemma 3.6. The following decomposition holds:

B(S, i) =
⋃
j≥i

(
B
(
S([j, j + 1]), j + 2

)
∗ [j, j + 1]

)
(3.1)

=
(
B
(
S([i, i+ 1]), i+ 2

)
∗ [i, i+ 1]

)
∪B(S, i+ 1).

Proof: By definition of F2(k−1)(S([j, j + 1]), j + 2), the facets of the complex on the right-hand
side of (3.1) are also the facets of the complex on the left-hand side of (3.1). Conversely, let G be
a facet of B(S, i) and let j be the minimal element of F . Then [j, j + 1] ⊆ G and by definition of
F(S([j, j + 1])), G\{j, j + 1} ∈ F2(k−1)(S([j, j + 1]), j + 2). Thus G is also a facet of the complex
on the right-hand side of (3.1). �

Corollary 3.7. If T ≺p S, then

B(S, i)\B(T , i) =
⋃
j≥i

((
B(S([j, j + 1]), j + 2)\B(T ([j, j + 1]), j + 2)

)
∗ [j, j + 1]

)
.

Our next step is to understand the intersections of components of the decomposition provided
by Corollary 3.7. With this goal in mind, we fix S and T such that T ≺p S and introduce the
following definition:

Definition 3.8. Define Dj as

Dj :=
(
B
(
S([j, j + 1]), j + 2

)
\B
(
T ([j, j + 1]), j + 2

))
∗ [j, j + 1].

In plain English, the complex Dj is generated by all facets of F(S) that are of the form [j, j+1]∪H
with H ⊆ [j + 2, n], and are not facets of F(T ). Define also Γj,` as

Γj,` := B(S([j + 1, j + 2`]), j + 2`+ 1)\B(T ([j, j + 2`− 1]), j + 2`+ 1).

That is, the complex Γj,` is generated by the facets H ⊆ [j+2`+1, n] such that [j+1, j+2`]∪H ∈
F(S) but [j, j + 2`− 1] ∪H /∈ F(T ).

Lemma 3.9. If Dj+1 is not the void complex, then Dj ∩ Dj+1 has the following decomposition
according to initial segments of facets:

Dj ∩Dj+1 =

k⋃
`=1

(
Γj,` ∗ [j + 1, j + 2`− 1]

)
.

Proof: By definition, Dj and Dj+1 are pure (2k − 1)-dimensional simplicial complexes that do
not share common facets. We first show that Dj ∩Dj+1 is pure (2k − 2)-dimensional. Let F be a
maximal (w.r.t. inclusion) face of Dj ∩Dj+1. Let G be a minimal (w.r.t. ≤p) facet of Dj containing
F . Note that G must contain [j, j+1]. In addition, since G ∈ F2k, G is a disjoint union of k pairs of

the form [q, q+ 1]. This implies that G = [j, j+ 2`− 1]∪M , where 1 ≤ ` ≤ k and M ∈ F [j+2`+1,n]
2(k−`) .

It suffices to show that Ḡ := G\{j} ∪ {j + 2`} ∈ Dj+1 and hence F = G\{j} = Ḡ\{j + 2`}.
Suppose, to the contrary, that Ḡ /∈ Dj+1. Since G ≤p Ḡ and G /∈ B(T ), it follows that

Ḡ /∈ B(T ), and so Ḡ /∈ B(S) (or else, Ḡ would be in Dj+1). The fact that G ∈ B(S) then forces G
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to be in S. (Indeed, if G is in B(S) but not in S, then there must exist G′ ∈ S such that G <p G
′.

By definition of Ḡ, such G′ ∈ B(S) satisfies Ḡ ≤p G
′, which is impossible because Ḡ /∈ B(S).)

Let s := max(G\F ). If s ∈ [j, j + 2`− 1], then M ⊆ F , which together with F ∈ Dj+1 implies
that Ḡ = [j + 1, j + 2`] ∪M ∈ Dj+1, contradicting our assumption. If s /∈ [j, j + 2` − 1], we let
H be the maximum (w.r.t. ≤p) facet of F2k such that H <p G and G\{s} ⊆ H. Our assumption
that j + 2` /∈ G and the definition of F2k imply that H exists and that it can be expressed as
H = [j, j + 2`− 1] ∪ (M\{s}) ∪ {t} for some t between j + 2` and s− 1. Hence, min(H) = j and
H <p G <p H+ 12k. The fact that G ∈ S, then implies that H ∈ B(S)\B(S −12k) ⊆ B(S)\B(T ).
Thus, H ∈ Dj . This, however, contradicts our choice of G as a minimal facet of Dj containing F .

The above discussion shows that any maximal face F ∈ Dj ∩Dj+1 is a (2k − 2)-face with the
property that for some 1 ≤ ` ≤ k ,

[j + 1, j + 2`− 1] ⊆ F, j /∈ F, j + 2` /∈ F,

and furthermore F ∪ {j} is a facet of Dj while F ∪ {j + 2`} is a facet of Dj+1. We conclude that
F\[j + 1, j + 2`− 1] is a common facet of complexes

B(S([j, j + 2`− 1]), j + 2`+ 1)\B(T ([j, j + 2`− 1]), j + 2`+ 1) and

B(S([j + 1, j + 2`]), j + 2`+ 1)\B(T ([j + 1, j + 2`]), j + 2`+ 1).

Since by Part 3 of Lemma 3.5, B(T ([j, j + 2`− 1]), j + 2`+ 1) ≺p B(S([j + 1, j + 2`]), j + 2`+ 1),
all common facets of the above two complexes, including F\[j + 1, j + 2`− 1], are facets of

B(S([j + 1, j + 2`]), j + 2`+ 1)\B(T ([j, j + 2`− 1]), j + 2`+ 1) = Γj,`.

We infer that Dj ∩Dj+1 ⊆
⋃k

`=1

(
Γj,` ∗ [j + 1, j + 2`− 1]

)
.

For the other inclusion, assume that H is a facet of Γj,`. We need to show that

[j, j + 2`− 1] ∪H ∈ Dj and [j + 1, j + 2`] ∪H ∈ Dj+1,

or, equivalently, that

[j + 2, j + 2`− 1] ∪H ∈ B(S([j, j + 1]), j + 2)\B(T ([j, j + 1]), j + 2) and

[j + 3, j + 2`] ∪H ∈ B(S([j + 1, j + 2]), j + 3)\B(T ([j + 1, j + 2]), j + 3).

This follows easily from our assumption that H ∈ Γj,` using the definition of S([r, r + 2`− 1]). �

We are now ready to present a much more elegant description of Dj ∩Dj+1.

Lemma 3.10. If Dj+1 is not the void complex, then

Dj ∩Dj+1 =
(
B(S([j + 1, j + 2]), j + 2)\B(T ([j, j + 1]), j + 2)

)
∗ {j + 1}.

Proof: It suffices to prove that

k⋃
`=m

(
Γj,` ∗ [j + 1, j + 2`− 1]

)
=
(
B(S([j + 1, j + 2m]), j + 2m)\B(T ([j, j + 2m− 1]), j + 2m)

)
∗ [j + 1, j + 2m− 1].
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Indeed, the case m = 1 of this equation together with Lemma 3.9 immediately yield the statement.
The proof is by reverse induction on m. The base case m = k follows from the fact that

S([j + 1, j + 2k]) = {∅}, while T ([j, j + 2k − 1]) is either {∅} or ∅. In any case,

B(S([j + 1, j + 2k]), j + 2k + 1) = B(S([j + 1, j + 2k]), j + 2k) and

B(T ([j, j + 2k − 1]), j + 2k + 1) = (T ([j, j + 2k − 1]), j + 2k).

The inductive step is a consequence of the following two observations. (Recall that ∅ = {∅}.)

B(S([j + 1, j + 2m]), j + 2m)\B(T ([j, j + 2m− 1]), j + 2m)

(∗)
=
((
B(S([j + 1, j + 2m+ 2]), j + 2m+ 2)\B(T ([j, j + 2m+ 1]), j + 2m+ 2)

)
∗ [j + 2m, j + 2m+ 1]

)
∪
(
B(S([j + 1, j + 2m]), j + 2m+ 1)\B(T ([j, j + 2m− 1]), j + 2m+ 1)

)
(∗∗)
=

k⋃
`=m

(
Γj,` ∗ [j + 2m, j + 2`− 1]

)
.

Here (∗∗) follows from the inductive hypothesis along with the definition of Γj,`. For (∗), note
that H = [j + 2m, j + 2m + 1] ∪ G is a facet of B(S([j + 1, j + 2m]), j + 2m) if and only if the
minimum element of G is at least j + 2m+ 2, and furthermore there exists a minimal (w.r.t. ≤p)
facet H ′ such that H ≤p H ′ and [j + 1, j + 2m] ∪ H ′ ∈ B(S). This H ′ must be of the form
[j + 2m+ 1, j + 2m+ 2] ∪G′ for some G′ ≥p G. Hence G′ ∈ B(S([j + 1, j + 2m+ 2]), j + 2m+ 3)
and G ∈ B(S([j + 1, j + 2m+ 2]), j + 2m+ 2). Thus by Lemma 3.6,

B(S([j + 1, j + 2m]), j + 2m) =
(
B(S([j + 1, j + 2m+ 2]), j + 2m+ 2) ∗ [j + 2m, j + 2m+ 1]

)
∪B(S([j + 1, j + 2m]), j + 2m+ 1).

This expression, along with the expression for B(T ([j, j + 2m− 1]), j + 2m) given by Lemma 3.6,
establishes (∗) and completes the proof of the lemma. �

With Corollary 3.7 and Lemma 3.10 at our disposal, we are now in a position to prove the
portion of Theorem 3.1 asserting that BS is a (k − 1)-stacked PL (2k − 1)-ball. In fact, we prove
the following stronger statement.

Lemma 3.11. If T ≺p S and B(S, i) is not the void complex, then B(S, i)\B(T , i) is a k-stacked
PL (2k − 1)-ball. Furthermore, it is (k − 1)-stacked if T = S − 12k.

Proof: The proof is by induction on k. For k = 1, there exist integers i < j < j′ such that
B(S, i) is generated by edges {i, i+ 1}, {i+ 1, i+ 2}, . . . , {j′ − 1, j′} while B(T , i) is generated by
edges {i, i+ 1}, {i+ 1, i+ 2}, . . . , {j − 1, j}. Hence B(S, i)\B(T , i) is a path, and so it is indeed a
1-stacked 1-ball. If j = j′ − 1 or, equivalently, if T = S − 12, this path consists of a single edge,
and hence it is 0-stacked.

For the inductive step, note that by Corollary 3.7, B(S, i)\B(T , i) = ∪j≥iDj . By definition of
Dj (see Definition 3.8), Lemma 3.10, the inductive hypothesis, and Part 1 of Lemma 2.2, each Dj

is a (k − 1)-stacked PL (2k − 1)-ball, while each Dj ∩Dj+1 is a (k − 1)-stacked PL (2k − 2)-ball.
Since S([j + 1, j + 2]) ≤p S([j, j + 1]) and T ([j + 1, j + 2]) ≤p T ([j, j + 1]) for all j, it follows from
the definition of Dj that

Dj+1 ∩Di ⊆ Dj+1 ∩Di+1 ⊆ · · · ⊆ Dj+1 ∩Dj .
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Hence Dj+1∩ (Di∪Di+1∪· · ·∪Dj) = Dj ∩Dj+1. By induction on `− i and using Part 2 of Lemma
2.2, we infer that ∪i≤j≤`Dj is a k-stacked PL (2k − 1)-ball. This proves the first claim.

Finally, if T = S −12k, then, by inductive assumptions, every intersection Dj ∩Dj+1 is (k− 2)-
stacked. Hence the same argument as above using Part 2 of Lemma 2.2 yields that B(S, i)\B(T , i)
is (k − 1)-stacked. �

Remark 3.12. The proof of Lemma 3.11 also implies that the ball B(S, i)\B(T , i) is constructible,
see [3, Section 11] for the definition and properties of constructibility.

The part of Theorem 3.1 asserting that if ∂BS = ∂BS′ , then BS = BS′ is now immediate.

Proof of Theorem 3.1(2): Consider a PL (2k − 2)-sphere K := ∂BS = ∂BS′ . By a result due to
McMullen [9, Theorem 3.3] (for polytopal spheres) and due to Bagchi and Datta [2, Theorem 2.12]
(for triangulated spheres), a (k− 1)-stacked PL ball B that satisfies ∂B = K is unique. The result
follows since by Lemma 3.11 both BS and BS′ are (k − 1)-stacked PL balls. �

To complete the proof of Theorem 3.1, it only remains to show that if S contains the set
[1, 2]∪ [n−2k+3, n], then BS is (k−1)-neighborly w.r.t. [n]. To do so, we first count the number of
facets of such BS . For this part of the proof, it is more convenient to work with the poset P = Pn

k

(introduced at the end of Section 2.3) instead of F = F [1,n]
2k . For an antichain A of P, define

A− 1k = {x− 1k : x = (x1, x2, . . . , xk) ∈ A, x1 > 1} and PA = P(A)\P(A− 1k).

Note that the isomorphism R : P → F commutes with subtracting the all-ones vector: R(A−1k) =
R(A)− 12k and R−1(S − 12k) = R−1(S)− 1k.

Lemma 3.13. Let A be an antichain of P that contains G = (1, n−2k+2, . . . , n−k). Then |P{G}| =
|PA| =

(
n−k−1
k−1

)
. Equivalently, if S is an antichain of F that contains R(G) = [1, 2]∪ [n−2k+3, n],

then the number of facets of BS is
(
n−k−1
k−1

)
.

Proof: First note that

P{G} = P({G}) = {(1, x2, x3, . . . , xk) : 1 < x2 < x3 < · · · < xk ≤ n− k}.

Thus |P{G}| =
(
n−k−1
k−1

)
.

It remains to show that for a fixed antichain A that contains G, |P{G}| = |PA|. This will be
done once we show that the following map is a bijection:

L : PA → P{G}
x = (x1, . . . , xk) 7→ x− (x1 − 1) · 1k = (1, x2 − x1 + 1, x3 − x1 + 1, . . . , xk − x1 + 1).

To see that L is one-to-one, observe that for any x, y ∈ P such that y = x+a ·1k for some a ≥ 1,
only x or y can be in PA but not both. Indeed, if y ∈ PA, then y ∈ P(A). Thus x ∈ P(A−1k), and
hence x /∈ PA. To see that L is onto, note that any element of P that is of the form (1, x2, x3, . . . , xk)
is in P{G} ⊆ P(A). Consider the smallest a ≥ 1 such that (1, x2, x3, . . . , xk)+a·1k /∈ P(A) (it exists
since for a sufficiently large, (1, x2, . . . , xk)+a·1k is not even in P). Then (1, x2, . . . , xk)+(a−1)·1k ∈
PA, and its image under L is (1, x2, . . . , xk). �

The neighborliness of BS now follows easily:
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Lemma 3.14. Let S be an antichain in F that contains the set [1, 2] ∪ [n − 2k + 3, n]. Then BS
is (k − 1)-neighborly w.r.t. [n].

Proof: By Lemma 3.13, f2k−1(BS) =
(
n−k−1
k−1

)
. Also, by Lemma 3.11, BS is a (k − 1)-stacked PL

(2k − 1)-ball, and so hi(BS) = 0 for all k ≤ i ≤ 2k (see Theorem 2.3(3)). Thus(
n− k − 1

k − 1

)
= f2k−1(BS) =

2k∑
i=0

hi(BS) =

k−1∑
i=0

hi(BS).

Since
(
n−k−1
k−1

)
=
∑k−1

i=0

(
n−2k+i−1

i

)
and since by Theorem 2.3(1), hi(BS) ≤

(
n−2k+i−1

i

)
for all i, it

follows that hi(BS) =
(
n−2k+i−1

i

)
for all i ≤ k−1, which in turn implies that BS is (k−1)-neighborly

w.r.t [n] (see Theorem 2.3(2)). �

This concludes the proof of Theorem 3.1.

4 The number of neighborly (d− 1)-spheres on n vertices

In this section we prove our main result, Theorem 1.2, asserting that sn(d, n) ≥ 2Ω(nb(d−1)/2)c
. The

following lemma provides an inductive method that given a neighborly sphere generates a new
neighborly sphere with one additional vertex. This result is known and was used extensively to
construct neighborly complexes. We refer to [13, 15] for a similar method (known as the sewing
method) that was used to construct neighborly polytopes and neighborly oriented matroids; see
also [12, Lemma 3.1] for an analogous statement in the centrally symmetric case.

Lemma 4.1. Let ∆ be a bd/2c-neighborly PL (d − 1)-sphere on the vertex set [n]. Let B be a
(bd/2c − 1)-neighborly (w.r.t. [n]) and (bd/2c − 1)-stacked PL (d − 1)-ball contained in ∆. Then
the complex ∆(B) obtained from ∆ by replacing B with ∂B ∗ {n+ 1} is a bd/2c-neighborly PL
(d− 1)-sphere on [n+ 1].

Proof: First note that B and ∂B ∗ {n+ 1} are PL (d− 1)-balls with the same boundary. Hence
∆\B is a PL (d − 1)-ball and ∆(B) = (∆\B) ∪ (∂B ∗ {n+ 1}) is a PL (d − 1)-sphere. Moreover,
since B is (bd/2c − 1)-stacked, it follows that

Skelbd/2c−1(∆\B) = Skelbd/2c−1(∆), and

Skelbd/2c−2(lk(n+ 1,∆(B))) = Skelbd/2c−2(∂B) = Skelbd/2c−2(B).

The fact that ∆ is bd/2c-neighborly and B is (bd/2c − 1)-neighborly w.r.t. [n] then shows that
∆(B) is bd/2c-neighborly w.r.t. [n+ 1]. �

Theorem 4.2. Let k ≥ 2. The number of distinct labeled (k − 1)-neighborly (w.r.t. [n]) and

(k − 1)-stacked PL (2k − 1)-balls that are contained in ∂C2k(n) is at least 2Ω(nk−1).

Proof: By Theorem 3.1, BS is a (k−1)-neighborly (w.r.t. [n]) and (k−1)-stacked PL (2k−1)-ball
in ∂C2k(n) for each antichain S in F that contains the set [1, 2] ∪ [n − 2k + 3, n]. All these balls
are distinct labeled balls since their sets of maximal facets (w.r.t. ≤p) are exactly the antichains S.
The number of such balls is the number of antichains containing [1, 2]∪ [n− 2k+ 3, n], which is at
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least as large as the number of antichains in F [3,n−2k+2]
2k . As F [3,n−2k+2]

2k is isomorphic to F [1,n−2k]
2k ,

the number of such antichains is at least 2Ω((n−2k)k−1) = 2Ω(nk−1) by Theorem 2.5. �

We are finally ready to prove our main result, Theorem 1.2, asserting that for d ≥ 5, the
number of combinatorial types of bd/2c-neighborly (d− 1)-spheres on n labeled vertices is at least

2Ω(nb(d−1)/2c).

Proof of Theorem 1.2: Consider the family H of (k−1)-neighborly (w.r.t. [n]) and (k−1)-stacked
PL (2k − 1)-balls contained in ∆ := ∂C2k(n). In the case of d = 2k, apply Lemma 4.1 to ∆ and
a ball B in this family to obtain the complex ∆(B) that is a k-neighborly PL (2k − 1)-sphere
on [n + 1]. These spheres ∆(B) are pairwise distinct because their restrictions to the vertex set
[n] are exactly the complexes ∆\B, and these are pairwise distinct. The result then follows from
Theorem 4.2.

In the case of d = 2k − 1, consider the boundary complex of B for each B ∈ H. Since B is a
(k− 1)-stacked PL (2k− 1)-ball, all faces of B of dimension ≤ k− 2 are in ∂B. The fact that B is
(k−1)-neighborly then guarantees that ∂B is a (k−1)-neighborly PL (2k−2)-sphere. Furthermore,
since the boundary complex of a (k− 1)-stacked PL (2k− 1)-ball uniquely determines that ball [2,
Theorem 2.12], distinct elements of H have distinct boundary complexes. The lower bound again
follows from Theorem 4.2. �

Remark 4.3. For d ≥ 5, the number of combinatorial types of unlabeled bd/2c-neighborly (d− 1)-

spheres on n vertices is also at least 2Ω(nb(d−1)/2c). This is because dividing the lower bound by
n! = 2O(n logn) does not affect its asymptotic growth if d ≥ 5.

We end the paper with an open problem. By the results of [7] and [8], both squeezed balls and
squeezed spheres are shellable. It is natural to ask whether relative squeezed balls and spheres are
also shellable. More generally, we pose the following problem.

Question 4.4. Let k ≥ 1. Let T ≺p S be non-empty antichains in F [1,n]
2k . Is B(S)\B(T ) shellable?

Is ∂(B(S)\B(T )) shellable?

By Corollary 3.7, we write B(S)\B(T ) as ∪`j=1Dj . In the first nontrivial case k = 2, a shelling
order for B(S)\B(T ) can be given as follows:

(F1,1, . . . , F1,m1 , F2,1, . . . , F2,m2 , . . . , F`,1, . . . , F`,m`
),

where (Fi,1, . . . , Fi,mi) is the unique shelling order of Di induced by the reverse partial order on the
path B(S[i, i+ 1], i+ 2)\B(T ([i, i+ 1]), i+ 2).

References

[1] N. Alon. The number of polytopes, configurations and real matroids. Mathematika, 33(1):62–71, 1986.

[2] B. Bagchi and B. Datta. On k-stellated and k-stacked spheres. Discrete Math., 313(20):2318–2329,
2013.

[3] A. Björner. Topological methods. In Handbook of combinatorics, Vol. 1, 2, pages 1819–1872. Elsevier
Sci. B. V., Amsterdam, 1995.

[4] D. Gale. Neighborly and cyclic polytopes. In Proc. Sympos. Pure Math., Vol. VII, pages 225–232.
Amer. Math. Soc., Providence, R.I., 1963.

13



[5] J. Goodman and R. Pollack. Upper bound for configurations and polytopes in Rd. Discrete Comput.
Geom., 1:219–227, 1986.

[6] J. F. P. Hudson. Piecewise linear topology. University of Chicago Lecture Notes. W. A. Benjamin Inc.,
New York-Amsterdam, 1969.

[7] G. Kalai. Many triangulated spheres. Discrete Comput. Geom., 3(1):1–14, 1988.

[8] C. W. Lee. Kalai’s squeezed spheres are shellable. Discrete Comput. Geom., 24:391–396, 2000.

[9] P. McMullen. Triangulations of simplicial polytopes. Beiträge Algebra Geom., 45(1):37–46, 2004.

[10] P. McMullen and D. W. Walkup. A generalized lower-bound conjecture for simplicial polytopes. Math-
ematika, 18:264–273, 1971.

[11] E. Nevo, F. Santos, and S. Wilson. Many triangulated odd-dimensional spheres. Math. Ann., 364(3-
4):737–762, 2016.

[12] I. Novik and H. Zheng. Highly neighborly centrally symmetric spheres. Adv. Math., 370:107238, 16,
2020.

[13] A. Padrol. Many neighborly polytopes and oriented matroids. Discrete Comput. Geom., 50(4):865–902,
2013.

[14] J. Pfeifle and G. M. Ziegler. Many triangulated 3-spheres. Math. Ann., 330(4):829–837, 2004.

[15] I. Shemer. Neighborly polytopes. Israel J. Math., 43(4):291–314, 1982.

[16] R. P. Stanley. The upper bound conjecture and Cohen-Macaulay rings. Studies in Applied Math.,
54:135–142, 1975.

[17] R. P. Stanley. Combinatorics and Commutative Algebra. Progress in Mathematics. Birkhäuser, Boston,
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