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Abstract

The face ring of a simplicial complex modulo m generic linear forms is shown to
have finite local cohomology if and only if the link of every face of dimension m or more
is nonsingular, i.e., has the homology of a wedge of spheres of the expected dimension.
This is derived from an enumerative result for local cohomology of face rings modulo
generic linear forms, as compared with local cohomology of the face ring itself. The
enumerative result is generalized to squarefree modules. A concept of Cohen–Macaulay

in codimension c is defined and characterized for arbitrary finitely generated modules
and coherent sheaves. For the face ring of an r-dimensional complex ∆, it is equivalent
to nonsingularity of ∆ in dimension r − c; for a coherent sheaf on projective space,
this condition is shown to be equivalent to the same condition on any single generic
hyperplane section. The characterization of nonsingularity in dimension m via finite
local cohomology thus generalizes from face rings to arbitrary graded modules.
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1 Introduction

In the 1970’s Reisner (building on unpublished work of Hochster) and Stanley revolutionized
the study of face enumeration of simplicial complexes through their use of the face ring, also
called the Stanley–Reisner ring. Reisner proved that the face ring of a simplicial complex is
Cohen–Macaulay if and only if the link of every face in the simplicial complex, including the
empty face, is nonsingular, by which we mean that all reduced cohomology groups, except
possibly in the maximum dimension, vanish [13]. Stanley used this to completely characterize
the f -vectors of Cohen–Macaulay complexes [17].

A natural question which follows these results is, “What happens if singularities are
allowed?” The weakest relaxation possible is to permit nontrivial cohomology of the whole
complex (the link of the empty face) in lower dimensions. Schenzel proved that for pure
complexes, the face ring is Buchsbaum if and only if this is the only additional cohomology
of links [15]. The primary tool used in the proof of both Reisner’s and Schenzel’s theorems
is local cohomology of the face ring with respect to the irrelevant ideal. In the Cohen–
Macaulay case all but the top local cohomology modules vanish, while in the Buchsbaum
case these modules have finite dimension as vector spaces. Rings with this property, that is,
those whose local cohomology modules below their Krull dimension have finite dimension,
are called generalized Cohen–Macaulay rings or rings with finite local cohomology.

Our first goal is to extend these ideas to arbitrary singularities. The main result along
simplicial lines, Theorem 2.4, says that if the dimension of the singular set is m − 1, then
except for top cohomological degree, all of the local cohomology modules of the face ring
modulo m generic linear forms have finite dimension and vanish outside of Z-graded degrees
i for 0 ≤ i ≤ m. Theorem 2.4 is verified easily after Theorem 5.3. Theorem 5.3 is an
enumerative result for Hilbert series of local cohomology of face rings modulo generic linear
forms proved using a combinatorial description of the finely graded module structure of the
local cohomology H i

m
(k[∆]) due to Gräbe [6], which we review in Section 3. We treat isolated

singularities in Section 4, and the general case in Section 5.
Theorem 2.4 is not limited to a simplicial phenomenon; it is an instance of a rather

general phenomenon in commutative algebra and algebraic geometry, stated and proved
here in the language of sheaves on projective space as Theorem 7.8, and reinterpreted in
terms of commutative algebra in Theorem 7.10. The first observation, made precise in
Theorem 6.9, is that singularity in a fixed dimension is equivalent to a condition that we call
Cohen–Macaulay in a fixed codimension: roughly speaking, the local rings at all points of
some fixed codimension are Cohen–Macaulay. At first sight, this condition sounds like Serre’s
condition Sk, which has been treated in combinatorial settings such as affine semigroup rings
and toric varieties [14], but it is subtly different; see Remark 6.10. The second, harder and
deeper homological observation is that the Cohen–Macaulay condition in a fixed codimension
satisfies a Bertini-type persistence under generic hyperplane section, but also the converse: if
a single generic hyperplane section of a coherent sheaf is Cohen–Macaulay in codimension c,
then so is the original sheaf; this is made precise in Theorem 7.8.

Having seen in Section 7 that Theorem 2.4 extends beyond the simplicial realm, we
do the same for the enumerative result from which it follows: in Theorem 8.6, we extend
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Theorem 5.3 to the squarefree modules introduced by Yanagawa [21]; see the paragraph
preceding Theorem 8.6 for a note about S.Murai’s contribution to that result.

2 Singularity dimension and finite local cohomology

For all undefined terminology we refer our readers to [1, 11, 18]. Throughout, ∆ is a simplicial
complex of dimension d − 1 with vertex set [n] = {1, . . . , n}, and k is a field. If F ∈ ∆ is a
face, then the link of F is

lk F = {G ∈ ∆ : F ∩ G = ∅, F ∪ G ∈ ∆}.

In particular, lk ∅ = ∆.

Definition 2.1. The face F is nonsingular with respect to k if the reduced cohomology
H̃ i(lk F ; k) of the link of F with coefficients in k vanishes for all i < d − 1− |F |. Otherwise
F is a singular face. The singularity dimension of ∆ is the maximum dimension of a singular
face. If ∆ has no singular faces, then ∆ is Cohen–Macaulay (over k) and we (arbitrarily)
declare the singularity dimension of the complex to be −∞.

Remark 2.2. A similar notion was introduced in [7, Definition 2.1], the sole difference being
that the simplicial complexes there are required to be pure; see Remark 6.4. Our results
about singularity dimension and the Cohen–Macaulay condition in fixed codimension are
essentially disjoint from the results in [7]. In particular, we include no treatment of the
topological nature of the condition of having singularity dimension less than m.

For a field k, which we assume is infinite but of arbitrary characteristic, the face ring
of ∆ (also known as the Stanley–Reisner ring) is

k[∆] = k[x1, . . . , xn]/I∆,

where the Stanley–Reisner ideal is

I∆ = (xi1 · · ·xik : {i1, . . . , ik} /∈ ∆).

For any module M over the polynomial ring S = k[x1, . . . , xn], we use H i
m
(M) to denote

the i-th local cohomology module of M with respect to the irrelevant ideal m = (x1, . . . , xn).

Definition 2.3. Let M be an S-module of Krull dimension d. Then M is a module with finite
local cohomology (or a generalized Cohen–Macaulay module) if H i

m(M) has finite dimension
as a k-vector space for all i < d.

Modules with finite local cohomology were introduced in [2], [19], and [20]. Connections
between face rings and modules with finite local cohomology have been studied in [5] and [22].

Here we show that the connection between algebraic properties of k[∆] and the singular-
ities of the complex is given by the following, in which a form is generic if it lies outside of
some previously specified Zariski closed subset of the (projective) space of linear forms; see
Theorem 7.10 for complete precision.
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Theorem 2.4. The singularity dimension of a simplicial complex ∆ is less than m if and
only if for all sets {θ1, . . . , θm} of m generic linear forms the quotient k[∆]/(θ1, . . . , θm) is a
ring with finite local cohomology.

We give two proofs: the one in Section 5 uses simplicial techniques on local cohomology;
the one in Section 7 frames it as a special case of the general theory of modules and sheaves
that are Cohen–Macaulay in a fixed codimension, via Theorem 6.9.

Example 2.5. Among the simplicial complexes of singularity dimension 0 are all pseudo-
manifolds with isolated singularities, which substantially generalize manifolds. They include
quotients of compact manifolds by group actions that are free away from a finite set (e.g.,
Kummer varieties), and complexes obtained from compact manifolds-with-boundary by con-
ing off boundary components (e.g., suspensions). In general, pseudomanifolds with isolated
singularities are to complexes of singularity dimension 0 as simplicial spheres are to Cohen–
Macaulay complexes and simplicial manifolds are to Buchsbaum complexes.

3 Local cohomology of face rings

This section explains Gräbe’s results on the combinatorial structure of the local cohomology
of a face ring as a Z

n-graded module over the polynomial ring S = k[x1, . . . , xn].
Denote by |∆| the geometric realization of ∆. For a face τ ∈ ∆, the subcomplex

cost τ = {σ ∈ ∆ : σ 6⊃ τ}

is the contrastar of τ . The i-th local cohomology of ∆ along τ is the simplicial i-th cohomology

H i
τ (∆) := H i(∆, cost τ)

of the pair (∆, cost τ) with coefficients in k. For τ ⊆ σ ∈ ∆, the inclusion ι : cost τ → cost σ
induces a contravariant map ι∗ : H i

σ(∆) → H i
τ (∆).

For additional notation, an integer vector U = (u1, . . . , un) ∈ Z
n has support

s(U) = {ℓ : uℓ 6= 0} ⊆ [n]

and sum |U | =
∑n

ℓ=1 uℓ. Fix the standard basis {eℓ}
n
ℓ=1 for Z

n, and write N for the set of
nonnegative integers.

We consider the Z
n-grading of k[x1, . . . , xn] obtained by declaring the variable xℓ to

have degree eℓ. This grading refines the usual Z-grading and induces a Z
n-grading on k[∆]

and its local cohomology modules; see [11, Chapter 13], for example. Thus, in particular,
H i

m
(k[∆])j =

⊕

|U |=j H i
m
(k[∆])U , and multiplication by xℓ is a k-linear map from H i

m
(k[∆])U

to H i
m
(k[∆])U+eℓ

for all U ∈ Z
n.

Theorem 3.1 (Gräbe). The following is an isomorphism of Z
n-graded k[∆]-modules:

H i
m
(k[∆]) ∼=

⊕

−U∈N
n

s(U)∈∆

Mi
U , where Mi

U = H i−1
s(U)(∆), (1)
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and the k[∆]-structure on the U-th component of the right-hand side is given by

·xℓ =







0-map if ℓ /∈ s(U)
identity map if ℓ ∈ s(U) and ℓ ∈ s(U + eℓ)
ι∗ : H i−1

s(U)(∆) → H i−1
s(U+eℓ)

(∆) otherwise.

We note that the isomorphism of (1) on the level of vector spaces (rather than k[∆]-
modules) is attributed to Hochster in [18, Section II.4], and that

H i
m(k[∆])0

∼= Mi
(0,...,0) = H i−1

∅
(∆) = H̃ i−1(∆; k)

is the reduced cohomology of ∆ itself, by definition.

Corollary 3.2. Let ∆ be a simplicial complex of dimension d−1. The singularity dimension
of ∆ is less than m if and only if the standard Z-graded Hilbert series F (H i

m
(k[∆]), 1/λ) of

H i
m(k[∆]) has a pole at λ = 1 of order at most m for i < d.

Proof. An easy computation using eq. (1) implies that for i < d,

F (H i
m
(k[∆]), 1/λ) =

∑

F∈∆

dimk H i−1
F (∆) ·

λ|F |

(1 − λ)|F |
=

∑

F∈∆

dimk H̃ i−|F |−1(lk F ; k) ·
λ|F |

(1 − λ)|F |

(cf. [18, Theorem II.4.1]). The result now follows from the definition of singularity dimension.

4 Simplicial isolated singularities

Before proceeding to the proof of Theorem 2.4, we consider a special case.

Definition 4.1. ∆ has isolated singularities if the singularity dimension of ∆ is zero.

For the rest of this section we assume that ∆ has isolated singularities. To begin with,
we compute H i

m(k[∆]) for i < d. Since ∆ has isolated singularities, Theorem 3.1 says that

H i
m
(k[∆])U =











H̃ i−1(∆; k) if U = 0

H i−1
{t} (∆) if s(U) = {t}, U ∈ −N

n

0 otherwise.

Let θ =
∑n

t=1 atxt be a linear form in S with at 6= 0 for all t. We use the exact sequence

0 → k[∆]
·θ
→ k[∆] → k[∆]/(θ) → 0

to compute H i
m
(k[∆]/(θ)) for i < d − 1. (The Krull dimension of k[∆]/(θ) is d − 1.) Since

the map ·θ, that is multiplication by θ, is injective for any face ring, the above sequence is
in fact short exact. The corresponding long exact sequence in local cohomology is

· · · → H i
m
(k[∆])(−1)

(·θ)∗

→ H i
m
(k[∆]) → H i

m
(k[∆]/(θ))

δ
→ H i+1

m
(k[∆])(−1)

(·θ)∗

→ . . . .
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Here, δ is the connecting homomorphism, the notation (−1) indicates a Z-graded shift up
by 1 (thus M(−1)j = Mj−1 for any Z-graded S-module M), and (·θ)∗ is the map induced
by multiplication, hence it is just the module action of multiplication by θ on H i

m
(k[∆]).

Let f i :
⊕n

t=1 H i
{t}(∆) → H i

∅
(∆) be the map on simplicial local cohomology defined by

f i =

n
∑

t=1

at · ι
∗
[

H i
{t}(∆) → H i

∅
(∆)

]

.

By Gräbe’s description of the S-module structure of the local cohomology modules, using
the standard Z-grading (in which deg xt = 1 ∈ Z for all t) and the above long exact sequence,

H i
m
(k[∆]/(θ))j

∼=











0 if j < 0

(coker f i−1) ⊕ (ker f i) if j = 0

H i
∅
(∆) if j = 1

(∀i < d − 1). (2)

In particular, H i
m(k[∆]/(θ)) has finite dimension as a vector space over k for i < d − 1 .

Under certain conditions it is possible to extract even more precise information. We say
that ∆ has homologically isolated singularities if in dimensions i in the range 0 ≤ i ≤ d − 2,
the kernel of the above map f i decomposes as a direct sum:

ker f i =
n

⊕

t=1

ker ι∗
[

H i
{t}(∆) → H i

∅
(∆)

]

.

Equivalently, ∆ has homologically isolated singularities if for 0 ≤ i ≤ d − 2, the images
ι∗

(

H i
{t}(∆)

)

for t = 1, . . . , n are linearly independent subspaces of H i
∅
(∆). Evidently, any

complex with only one isolated singularity has homologically isolated singularities. Other
possibilities include (among many) pinching off homologically independent handles of a han-
dlebody or coning off boundary components of a manifold-with-boundary having appropriate
homological properties.

Suppose ∆ has homologically isolated singularities. In addition to the vector space struc-
ture of (2), the Z-grading implies that the S-module structure of H i

m
(k[∆]/(θ))j is trivial for

j = 1 and for j = 0 restricted to coker f i−1. Furthermore, on ker f i ⊆ H i
m
(k[∆]/(θ))0 the

S-module structure is still induced by ι, and hence also trivial. Therefore, by [19, Proposi-
tion I.3.10], k[∆]/(θ) is Buchsbaum. Thus, the Hilbert function of k[∆]/(θ1, . . . , θd) for any
linear system of parameters (l.s.o.p.) {θ1, . . . , θd} is completely determined by the topology
of ∆ and its f -vector. (Indeed, since k is infinite, any l.s.o.p. for ∆ will contain in its k-
linear span an element which is nonzero on every vertex and this one can be used as θ1.)
This is a well known property of Cohen–Macaulay [13] and, more generally, Buchsbaum
complexes [15]. For an arbitrary complex ∆, distinct linear systems of parameters can pro-
duce different Hilbert functions for the Artinian quotient k[∆]/(θ1, . . . , θd). However, for
sufficiently generic linear systems of parameters, the Hilbert function of k[∆]/(θ1, . . . , θd) is
constant. A natural question is the following.

Question 4.2. Let ∆1 and ∆2 be two simplicial complexes whose geometric realizations are
homeomorphic and whose f -vectors are identical. Are the Hilbert functions of their Artinian
quotients obtained from sufficiently generic linear systems of parameters the same?
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5 Main enumerative theorem for face rings

We now proceed to the proof of the main theorem. As before, let ∆ be a (d−1)-dimensional
simplicial complex on [n]. Let θ1, . . . , θd be d generic linear forms in S with θp =

∑n

t=1 at,pxt.
In particular, we assume that every square submatrix of the n × d-matrix A = (at,p) is non-
singular and the θ’s satisfy the prime avoidance argument in the proof of Theorem 5.3 below.

Each θp acts on k[∆] by multiplication, ·θp : k[∆] → k[∆]. This map, in turn, induces
the map (·θp)

∗ = ·θp : Hℓ
m(k[∆]) → Hℓ

m(k[∆]) that increases the Z-grading by 1. The key
objects in the proof are the kernels of these maps and their intersections:

kerℓ
m,i :=

m
⋂

p=1

(

ker(·θp)
∗ : Hℓ

m(k[∆])−(i+1) → Hℓ
m(k[∆])−i

)

and kerℓ
m :=

⊕

i∈Z

kerℓ
m,i .

Thus kerℓ
m is a graded submodule of Hℓ

m
(k[∆]) and kerℓ

m,i is simply (kerℓ
m)−(i+1).

What are the dimensions of these kernels? If m = 0, then kerℓ
0,i = Hℓ

m
(k[∆])−(i+1), and

Theorem 3.1 implies that for i ≥ 0,

dimk kerℓ
0,i =

∑

F∈∆

|{U ∈ N
n : s(U) = F, |U | = i + 1}| · dimk Hℓ−1

F (∆)

=
∑

F∈∆

(

i

|F | − 1

)

· dimk Hℓ−1
F (∆). (3)

For a general m, we prove the following (where we set
(

a

b

)

= 0 if b < 0).

Lemma 5.1. For every 0 ≤ m ≤ d, ℓ ≤ d, and i ≥ m,

dimk kerℓ
m,i ≤

∑

F∈∆

(

i − m

|F | − m − 1

)

· dimk Hℓ−1
F (∆).

We defer the proof to the end of the section. Using Lemma 5.1, we can say even more.

Lemma 5.2. For every 0 ≤ m ≤ d, ℓ ≤ d, and i ≥ m,

dimk kerℓ
m,i =

∑

F∈∆

(

i − m

|F | − m − 1

)

· dimk Hℓ−1
F (∆).

Moreover, the map ⊕i≥m+1 kerℓ
m,i

·θm+1

−→ ⊕i≥m+1 kerℓ
m,i−1, is a surjection.

Proof. We prove the statement on the dimension of kerℓ
m,i by induction on m. For m = 0

(and any ℓ, i ≥ 0), this is eq. (3). For larger m, we notice that the restriction of (·θm+1)
∗ to

kerℓ
m,i is a linear map from kerℓ

m,i to kerℓ
m,i−1, whose kernel is kerℓ

m+1,i. Thus for i ≥ m + 1,

dimk kerℓ
m+1,i ≥ dimk kerℓ

m,i − dim kerℓ
m,i−1

=
∑

F∈∆

[(

i − m

|F | − m − 1

)

−

(

i − 1 − m

|F | − m − 1

)]

· dimk Hℓ−1
F (∆)

=
∑

F∈∆

(

i − (m + 1)

|F | − (m + 1) − 1

)

· dimk Hℓ−1
F (∆).
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The second step in the above computation is by the inductive hypothesis. Comparing the
resulting inequality to that of Lemma 5.1 shows that this inequality is in fact an equality,
and hence that the map (·θm+1)

∗ : kerℓ
m,i → kerℓ

m,i−1 is surjective for i ≥ m + 1.

Lemma 5.2 allows us to get a handle on Hℓ
m
(k[∆]/(θ1, . . . , θm))−i at least for ℓ, i > 0.

Theorem 5.3. For 0 ≤ m ≤ d and 0 < ℓ ≤ d−m, there is a graded isomorphism of modules
⊕

i≥1

Hℓ
m

(

k[∆]/(θ1, . . . , θm)
)

−i
∼=

⊕

i≥1

kerℓ+m
m,i+m−1

compatible with the direct sum, hence Hℓ
m
(k[∆]/(θ1, . . . , θm))−i

∼= kerℓ+m
m,i+m−1. Thus,

dimk Hℓ
m

(

k[∆]/(θ1, . . . , θm)
)

−i =
∑

F∈∆

(

i − 1

|F | − m − 1

)

· dimk Hℓ+m−1
F (∆) for ℓ, i > 0.

Proof. The proof is by induction on m, with the m = 0 case being evident. For larger m, we
want to mimic the proof given in Section 4. One obstacle to this approach is that the map
·θm+1 : k[∆]/(θ1, . . . , θm) → k[∆]/(θ1, . . . , θm) =: M[m] might not be injective anymore.
However, a “prime avoidance” argument together with the genericity assumption on θm+1

implies that ·θm+1 : M[m]/H0
m
(M[m]) → M[m]/H0

m
(M[m]) is injective, and hence one has

the corresponding long exact sequence in local cohomology; see, for instance, [3, Chapter 3]
for details on “prime avoidance” arguments. Since H0

m
(M[m]) has Krull dimension 0, mod-

ding H0
m
(M[m]) out does not affect Hℓ

m
for ℓ > 0, so that the part of this long exact sequence

corresponding to ℓ, i > 0 can be rewritten as
⊕

i≥1

Hℓ
m
(M[m])−(i+1)

(·θm+1)∗

−→
⊕

i≥1

Hℓ
m
(M[m])−i −→

⊕

i≥1

Hℓ
m
(M[m + 1])−i

δ
−→

⊕

i≥1

Hℓ+1
m

(M[m])−(i+1)
(·θm+1)∗

−→
⊕

i≥1

Hℓ+1
m

(M[m])−i.

By the inductive hypothesis combined with Lemma 5.2, the leftmost map in this sequence
is surjective. Hence the module ⊕i≥1H

ℓ
m
(M[m + 1])−i is isomorphic to the kernel of the

rightmost map. Applying the inductive hypothesis to the last two entries of the sequence
then implies the following isomorphism of modules:

⊕

i≥1

Hℓ
m
(M[m + 1])−i

∼=
⊕

i≥1

ker
(

(·θm+1)
∗ : kerℓ+m+1

m,i+m → kerℓ+m+1
m,i+m−1

)

=
⊕

i≥1

kerℓ+m+1
m+1,i+m .

Theorem 2.4 now follows easily from Theorem 5.3.

Proof of Theorem 2.4. Since k[∆] is a finitely-generated algebra, H0
m

(

k[∆]/(θ1, . . . , θm)
)

has
Krull dimension zero, and hence is a finite-dimensional vector space for any simplicial com-
plex ∆. So we only need to care about Hℓ

m
for ℓ > 0. As

(

i−1
|F |−m−1

)

> 0 for all i ≫ 0 and

|F | > m, Theorem 5.3 implies that k[∆]/(θ1, . . . , θm) is a ring with finite local cohomology
if and only if for all faces F ∈ ∆ of size larger than m and all ℓ + m < d, the cohomology
Hℓ+m−1

F (∆) vanishes. Given that Hℓ+m−1
F (∆) is isomorphic to H̃ℓ+m−1−|F |(lk F ; k) (see e.g.

[6, Lemma 1.3]), this happens if and only if each such F is nonsingular.
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It remains to verify Lemma 5.1. For its proof we use the following notation. Fix m, ℓ > 0,
and i ≥ m. For r ∈ {i, i + 1}, let

Vr := {U ∈ N
n : |U | = r, s(U) ∈ ∆},

and for F ∈ ∆, let Vr,F := {u ∈ Vr : s(U) = F}. If F = {f1 < · · · < fj} ∈ ∆ where j > m,
then set Wr,F := {U = (u1, . . . , un) ∈ Vr,F : ufs

= 1 for 1 ≤ s ≤ m}. Observe that Wi+1,F

is a subset of Vi+1,F of cardinality
(

i−m

|F |−m−1

)

.

For G ⊆ F ∈ ∆ let ΦF,G denote the map ι∗ : Hℓ−1
F (∆) → Hℓ−1

G (∆). Thus, ΦF,G is the
identity map if F = G. Using Theorem 3.1, we identify Hℓ

m
(k[∆])−r with

⊕

U∈Vr
Hℓ−1

s(U)(∆),

and for z ∈ Hℓ
m
(k[∆])−r we write z = (zU )U∈Vr

, where zU ∈ Hℓ−1
s(U)(∆) is the (−U)-th

component of z. Since θp =
∑n

t=1 at,pxt, Theorem 3.1 yields that for such z, r = i + 1, and
T ∈ Vi,

(θpz)T =
∑

{t : T+et∈Vi+1}

at,p · Φs(T+et),s(T )(zT+et
). (4)

Proof of Lemma 5.1. Since |Wi+1,F | =
(

i−m

|F |−m−1

)

for all F ∈ ∆, to prove that dimk kerℓ
m,i ≤

∑

F∈∆

(

i−m

|F |−m−1

)

· dimk Hℓ−1
F (∆), it is enough to verify that for z, z′ ∈ kerℓ

m,i,

zU = z′U for all F ∈ ∆ and all U ∈ Wi+1,F =⇒ z = z′,

or equivalently (since kerℓ
m,i is a k-space) that for z ∈ kerℓ

m,i,

zU = 0 for all F ∈ ∆ and all U ∈ Wi+1,F =⇒ z = 0. (5)

To prove this, fix such a z. From eq. (4) and the definition of kerℓ
m,i, it follows that

∑

{t : T+et∈Vi+1}

at,p · Φs(T+et),s(T )(zT+et
) = 0 ∀ 1 ≤ p ≤ m and ∀ T ∈ Vi. (6)

For a given T ∈ Vi, we refer to the m conditions imposed on z by eq. (6) as “the system
defined by T”, and denote this system by ST .

Define a partial order, ≻, on Vi as follows: T ′ ≻ T if either |s(T ′)| > |s(T )|, or s(T ′) =
s(T ) and the last non-zero entry of T ′ − T is positive. To finish the proof, we verify by a
descending (with respect to ≻) induction on T ∈ Vi, that zT+et

= 0 for all t with T + et ∈
Vi+1. For T ∈ Vi, there are two possible cases (we assume that s(T ) = F = {f1 < . . . < fj}).

Case 1. T ∈ Wi,F . Then for each t /∈ F , either F ′ := F ∪ {t} /∈ ∆, in which case
T + et /∈ Vi+1, or T + et ∈ Wi+1,F ′, in which case zT+et

= 0 by eq. (5). Similarly, if t = fr

for some r > m, then T + et ∈ Wi+1,F , and zT+et
= 0 by (5). Finally, for any t ∈ F ,

s(T + et) = s(T ) = F , and so Φs(T+et),s(T ) is the identity map. Thus the system ST reduces
to m linear equations in m variables:

m
∑

r=1

afr ,p · zT+efr
= 0 ∀ 1 ≤ p ≤ m. (7)

Since the matrix (afr ,p)1≤r,p≤m is nonsingular, (zT+et
= 0 for all t) is the only solution of ST .
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Case 2. T /∈ Wi,F , and so Tfs
≥ 2 for some s ≤ m. Then for any t /∈ F , T ′ := T −efs

+et ≻
T , as T ′ has a larger support than T , and T ′ + efs

= T + et. Hence zT+et
= zT ′+efs

= 0
by the inductive hypothesis on T ′. Similarly, if t ∈ F − {f1, . . . , fm}, then t > fs, and so
T ′′ := T − efs

+ et ≻ T . As T ′′ + efs
= T + et, the inductive hypothesis on T ′′ imply that

zT+et
= 0. Thus, as in Case 1, ST reduces to system (7), whose only solution is trivial.

6 Complexes Cohen–Macaulay in a fixed codimension

Our goal for this section, in Theorem 6.9, is to rephrase the notion of singularity dimension of
a simplicial complex ∆ as a local geometric condition on the (spectrum of) the face ring k[∆],
analogous to—and generalizing—the Cohen–Macaulay condition.

Definition 6.1. A simplicial complex ∆ is CM of dimension i along F if lk F is Cohen–
Macaulay of dimension i.

Remark 6.2. If ∆ has dimension d−1, then for ∆ to be CM of dimension d−1−|F | along
F is stronger than for F to be a nonsingular face of ∆. For example, nonsingularity of ∅

means only that ∆ is a homology-wedge-of-spheres, while CM of dimension d − 1 along ∅

implies nonsingularity of all faces of ∆.

Definition 6.3. A simplicial complex ∆ of dimension r is CM in codimension c if ∆ is CM of
dimension c−1 along every face of dimension r−c, or if c > r+1 and ∆ is Cohen–Macaulay.

Remark 6.4. If ∆ is pure, then it would suffice to require that lk F be Cohen–Macaulay for
every face F of dimension r− c; but if ∆ has dimension r and is not pure, then it is possible
for lk F to be Cohen–Macaulay without ∆ being CM of dimension r − |F | along F (such a
face F is singular in ∆ unless lk F is k-acyclic). This occurs, for example, when F is a facet
of dimension < r, in which case lk F = {∅} is Cohen–Macaulay of dimension −1.

Proposition 6.5. Fix a simplicial complex ∆ of dimension r. The singularity dimension
of ∆ is the minimum i such that ∆ is CM in codimension r − i − 1.

Proof. If ∆ has singularity dimension s, then ∆ is CM of the appropriate dimension along
every face of dimension ≥ s + 1 by definition and Reisner’s criterion (if lkF had too small
dimension, then the link of any facet containing F would give this fact away, by Remark 6.4);
thus ∆ is CM in codimension r − s − 1. On the other hand, if ∆ is CM in codimension
r − i − 1 then every face of dimension i + 1 is nonsingular by definition.

Corollary 6.6. Fix a simplicial complex ∆ of dimension r. The singularity dimension of ∆
is less than m if and only if ∆ is CM in codimension r − m.

This corollary and the next lemma form the bridge to general commutative algebra.

Lemma 6.7. A simplicial complex ∆ is CM of dimension i along F if and only if the
localization k[∆]PF

at the prime ideal PF = (xj : j /∈ F ) of F is a Cohen–Macaulay ring of
Krull dimension i + 1.
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Proof. Localizing k[∆] by inverting the variables indexed by F results in k[lk F ][x±1
i : i ∈ F ].

The lemma is straightforward from this and Reisner’s criterion [11, Theorem 5.53].

Definition 6.8. A module M over a noetherian ring is CM of dimension i locally at p if
the localization Mp at the prime ideal p is a Cohen–Macaulay module of Krull dimension i.
If dim M = d, then M is CM in codimension c if M is CM of dimension c locally at every
prime p of dimension d − c in the support of M , or if c > d and M is Cohen–Macaulay.

Theorem 6.9. A simplicial complex ∆ of dimension r is CM in codimension c if and only
if k[∆] is CM in codimension c. In particular, the singularity dimension of ∆ is less than m
if and only if k[∆] is CM in codimension r − m.

Proof. Use Lemma 6.7 for the first sentence and add Corollary 6.6 for the second.

Remark 6.10. Definition 6.8 is related to, but different from, Serre’s condition Sc. Both con-
ditions can be interpreted as stipulating the Cohen–Macaulay condition near the prime ideals
of certain large irreducible subvarieties, but Sc requires a module to be Cohen–Macaulay near
every prime whose local ring has depth at least c, whereas Definition 6.8 requires a module to
be Cohen–Macaulay at every prime whose local ring has dimension at least c. These two con-
ditions manifest differently in local cohomology: a module M over a regular local ring with
maximal ideal m satisfies Serre’s condition Sc when its local cohomology H i

m
(M) vanishes

in cohomological degrees i < c (or when M is Cohen–Macaulay), whereas M is CM in codi-
mension c when the Matlis dual of its local cohomology satisfies dimH i

m(M)∨ < dim M − c
for i < dim M (apply local duality to Corollary 7.3 below). When M is a ring, this means
that the homology of its dualizing complex has dimension < dim M − c except at the end
where it has dimension dim M . In short, Serre’s condition bounds the cohomological degrees
of the nonvanishing local cohomology modules, whereas CM in a fixed codimension bounds
their Krull dimensions. See [12] and [8] for recent work on combinatorial implications of
Serre’s conditions on face rings.

7 Modules Cohen–Macaulay in a fixed codimension

With Theorem 6.9 in mind, Theorem 2.4 is a statement about the behavior, under quo-
tients by generic linear forms, of certain graded rings that are Cohen–Macaulay in a fixed
codimension. The end result of this section, Theorem 7.10, demonstrates the rather general
nature of this statement: it holds for any finitely generated graded module over any finitely
generated standard Z-graded k-algebra, where k is an infinite field.

Since the point of the developments of this section is to ignore certain modules of finite
length, the main result is best proved in the language of sheaves on projective schemes, which
we do in Theorem 7.8. In that formulation, it is especially easy to see how the developments
here relate to general Bertini-type theorems in modern algebraic geometry; see Remark 7.11.

We begin by rephrasing Definition 6.8 in geometric terms. Recall that the dimension of
a point p in a scheme is the supremum of the lengths ℓ of chains p = pℓ > · · · > p1 > p0

where pi > pj means that pj lies in the closure of pi. We use the convention that a sheaf or
module is zero if and only if its Krull dimension is negative.
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Definition 7.1. A coherent sheaf F on a noetherian scheme with structure sheaf O is CM of
dimension i locally at p if the germ Fp is a Cohen–Macaulay Op-module of Krull dimension i.
If dimF = r, then F is CM in codimension c if F is CM of dimension c locally at every
point p of dimension r − c in the support of F , or if c > r and F is Cohen–Macaulay.

Proposition 7.2. A coherent sheaf F of dimension r on a regular scheme X of dimension δ
is CM in codimension c if and only if dim Ext i

X(F ,OX) < r − c for i > δ − r.

Proof. The sheaf Ext i
X(F ,OX) has dimension < r−c if and only if its germ at every point p of

dimension r − c is zero. The germ in question is Ext i
X(F ,OX)p = Exti

OX,p
(Fp,OX,p) because

F is coherent and X is noetherian. At any point p in the support of F , the germ Fp at p has
dimension at most r−dim p and depth equal to δ−dim p−max{i : Exti

OX,p
(Fp,OX,p) 6= 0},

the latter by [1, Exercise 3.1.24]. The dimension and depth equal c for all points p of
dimension r−c if and only if the maximum is δ−r for all such p, and the first sentence of the
proof implies that this is equivalent to the desired dimension condition on Ext i

X(F ,OX).

The following algebraic version is immediate from the affine case of Proposition 7.2.

Corollary 7.3. A finitely generated module M of dimension d over S = k[x1, . . . , xn] is CM
in codimension c if and only if dim Exti

S(M, S) < d − c for i > n − d.

Applying the above corollary to the second sentence of Theorem 6.9 yields the following
important consequence, noting that c = r − m ⇔ d − c = m + 1 when r = d − 1.

Corollary 7.4. A simplicial complex ∆ of dimension r = d − 1 has singularity dimension
less than m if and only if dim Exti

S(k[∆], S) ≤ m for i > n − d.

Remark 7.5. Since local cohomology and Ext into S are Matlis dual by local duality, and
since the Krull dimension of a module M equals the order to which λ = 1 is a pole of the
Z-graded Hilbert series F (M, λ) of M , Corollary 7.4 is equivalent to Corollary 3.2.

Remark 7.6. Corollary 7.4 permits an easy computation of the extent to which the simpicial
join ∆ ∗∆′ of two simplicial complexes is Cohen–Macaulay in fixed codimension, given that
each of ∆ and ∆′ is Cohen–Macaulay in its own fixed codimension. This computation is
carried out in [7], since the question it answers was raised in a draft of that paper. The Ext
calculation efficiently repackages an elementary simplicial argument proving the same result.

Another consequence of Proposition 7.2 is a characterization of finite local cohomology.

Corollary 7.7. A finitely generated standard Z-graded S-module M of dimension d has
finite local cohomology if and only if M is CM in codimension d − 1.

Proof. The module Exti
S(M, S) is the graded Matlis dual of Hn−i

m
(M) by local duality. Thus

M has finite local cohomology if and only if dim Exti
S(M, S) ≤ 0 for i > n − d.

Next is the main result of this section, a Bertini-type theorem for CM in codimension c.
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Theorem 7.8. Fix a coherent sheaf F on P
n and a linear form θ on P

n vanishing on a
hyperplane H. Assume that θ is nonzero at every associated point of

⊕

i Ext
i
Pn(F ,OPn). For

c < dimF , the sheaf F is CM in codimension c if and only if its restriction F|H is. If F is
Cohen–Macaulay (this is the case of c ≥ dimF), its restriction F|H is also Cohen–Macaulay.

Proof. As the final sentence is well-known for Cohen–Macaulay sheaves, we fix c < dimF .
Let E• be a resolution of F by locally free sheaves, and write E • for the dual complex of
sheaves. Thus the cohomology of E • is Ext

•

Pn(F ,OPn). The restriction E •|H to H is the coker-
nel of the sheaf homomorphism E •(−1) → E • induced by θ. Its cohomology is Ext

•

H(F|H ,OH);
this is by the genericity hypothesis on θ, which also guarantees that the cohomology sheaves of
E •|H are obtained by restricting those of E • to H . The dimensions of the cohomology sheaves
decrease by precisely 1 (recall our negative dimension convention) by genericity again and the
Hauptidealsatz; geometrically: H is transverse to every component in the support of each Ext
sheaf. Consequently, dim Ext

•

Pn(F ,OPn) < dimF − c ⇔ dim Ext
•

H(F|H ,OH) < dimFH − c,
where the “⇐” direction requires the hypothesis dimF − c > 0. Now apply Proposition 7.2
to Ext

•

Pn(F ,OPn) and Ext
•

H(F|H,OH) to complete the proof.

Proposition 7.9. Fix a graded S-module M with associated sheaf F on projective space P
n−1.

If c ≤ dimF , then M is CM in codimension c if and only if F is CM in codimension c.

Proof. By functoriality, Ext i
X(F ,OX) is the sheaf associated to Exti

S(M, S), where X = P
n−1,

hence the the result is a straightforward consequence of Proposition 7.2 and Corollary 7.3.

The following algebraic version of Theorem 7.8 is slightly less clean for c ≈ dim M , owing
to the possibility of the maximal ideal m as an associated prime of M and its Ext modules.

Theorem 7.10. Fix a graded S-module M and a linear form θ not in any associated prime
6= m of

⊕

i Exti
S(M, S). If c < dim M −1 then M/θM is CM in codimension c if and only if

M is. If M has finite local cohomology or is Cohen–Macaulay then so is M/θM , accordingly.

Proof. If c < dim M − 1, then the result follows from Theorem 7.8 and Proposition 7.9. If
c ≥ dim M − 1 and M is CM in codimension c, then (by Corollary 7.7) the sheaf on P

n−1

associated to M is Cohen–Macaulay, and so the same is true of the sheaf associated to M/θM
by Theorem 7.8, but M/θM might itself have (nonzero) finite local cohomology.

Finally, it remains to see that Theorem 7.10 does indeed directly generalize Theorem 2.4.

Proof of Theorem 2.4. Let ∆ have dimension r = d − 1, so k[∆] has dimension d. The
quotient k[∆]/(θ1, . . . , θm) modulo a sequence of m generic linear forms has finite local co-
homology if and only if it is CM in codimension (d−m)−1 = r−m, by Corollary 7.7. This
occurs if and only if k[∆] itself is CM in codimension r −m, by Theorem 7.10. The desired
result follows from the characterization of singularity dimension in Theorem 6.9.

Remark 7.11. The first result in the general direction of Theorems 7.8 and 7.10 was proved
by Flenner for subschemes of spectra of local rings [4, Satz 3.3]. It is a special case of
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Spreafico’s very general Bertini-type theorem for local geometric conditions satisfying cer-
tain natural axioms [16, Corollary 4.3]; for the purposes here, the reader can check that
CM in codimension c is a valid choice for Spreafico’s “property P”. However, Flenner and
Spreafico proved their results for subschemes, not coherent sheaves, and the “if” direction of
Theorems 7.8 and 7.10 does not fall under Spreafico’s framework: one cannot conclude that
a variety is (for instance) smooth by knowing that a generic hyperplane section is smooth.
In contrast, the constrained version of the Cohen–Macaulay condition furnished by Defini-
tion 7.1 lifts from hyperplane sections because a hyperplane in projective space intersects
every subvariety of positive dimension and—generically, at least—reduces its dimension by 1,
the operative subvariety being the locus where a sheaf fails to be CM in codimension c. The
failure of hyperplanes to meet subschemes of dimension 0 accounts for the failure of the “if”
direction when the codimension c is large.

8 Squarefree modules modulo systems of parameters

In Section 5, we derived the simplicial Theorem 2.4 from the simplicial calculations of Hilbert
series of local cohomology modules that constitute Theorem 5.3. Having taken the former to
its natural generality in Sections 6 and 7, we now generalize the latter in Theorem 8.6, where
Hℓ+m

F (M) = Hℓ+m−1
F (∆) when M = k[∆] by Theorem 3.1. (See the paragraph preceding

Theorem 8.6 for a note about S.Murai’s contribution to that result.) It is possible to imagine
that generalizations to arbitrary N

n-graded modules could exist, but we limit ourselves here
to the class of squarefree modules, introduced by Yanagawa [21].

Definition 8.1. A Z
n-graded module over S = k[x1, . . . , xn] is squarefree if its generators

and relations all lie in squarefree degrees, meaning those in {0, 1}n ⊂ Z
n.

The point of squarefree modules is that, like face rings k[∆], all of the information can
be recovered easily from the finite-dimensional vector subspace in squarefree degrees.

One of the fundamental conclusions of Section 5 is that the entirety of the interesting
combinatorial information encoded by the local cohomology of k[∆] is distilled into the finite
length modules in Z-graded degrees zero and above that remain after applying Theorem 5.3
enough times. Other types of reductions to vector spaces of finite-dimension are known for
the local cohomology of k[∆], and indeed of any squarefree module M : one way to phrase
it is that the Z

n-graded Matlis dual H i
m
(M)∨ = Extn−i

S (M, ωS) is a squarefree module [21,
Theorem 2.6], where the canonical module ωS is the rank 1 free module generated in Z

n-
graded degree (1, . . . , 1). (An analogous statement holds for the local cohomology of arbitrary
N

n-graded modules: the Čech hull [9, Definition 2.7] recovers the local cohomology from an
a priori bounded set of degrees; see the proof of [10, Lemma 3.10].)

In fact, the squarefreeness of these Ext modules is the key to Theorem 8.6, via the general
enumerative statement about arbitrary squarefree modules in Proposition 8.3. First, we need
a lemma, whose proof relies on a key feature (the squarefree filtration) of squarefree modules.

Lemma 8.2. If M is a squarefree S-module and R = S/ΘS for a sequence Θ = θ1, . . . , θm

of generic linear forms, then TorS
t (M, R)i = 0 whenever t > 0 and i > m.
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Proof. For each squarefree vector F , set xF =
∏

j∈F xj and write kF for the Z
n-graded S-

module xF
k[xj : j ∈ F ] = xF S/(xj : j /∈ F ) generated in degree F . As a standard Z-graded

module, kF is a polynomial ring in |F | many variables generated in degree |F |.
The squarefree module M has a filtration

0 = M(0) ⊂ M(1) ⊂ · · · ⊂ M(k) = M (8)

such that each quotient M(j)/M(j−1) is isomorphic, as a Z
n-graded module, to kF for some

squarefree vector F [21, Proposition 2.5]. If the filtration has length 1, and so M = kF ,
then the module TorS

t (kF, R) vanishes for t > 0 whenever |F | ≥ m. This is because Θ is
a regular sequence on kF in that case. When |F | < m, on the other hand, TorS

t (kF, R) ∼=
TorS′

t

(

k(−|F |), R
)

, where S ′ = S/(θ1, . . . , θ|F |) and k(−|F |) = kF ⊗S S ′. Thus the Tor in

question is a direct sum of
(

m−|F |
t

)

many copies of the residue field k in Z-graded degree

|F | + t. The desired result holds for M = kF since
(

m−|F |
t

)

= 0 as soon as t > m − |F |.
The general case follows by induction on the length of the filtration (8) by tensoring the

exact sequence 0 → M(j−1) → M(j) → M(j)/M(j−1) → 0 with the Koszul complex on Θ.

Proposition 8.3. Fix a squarefree module E and a sequence Θ = θ1, . . . , θm of generic linear
forms. For all i ≥ 0, the vector space dimension of the i-th standard Z-graded piece of E is

dimk Ei =
∑

F∈{0,1}n

(

i − 1

|F | − 1

)

· dimk EF ,

where EF is the piece of E in Z
n-graded degree F . In contrast, for all i > m,

dimk(E/ΘE)i =
∑

F∈{0,1}n

(

i − m − 1

|F | − m − 1

)

· dimk EF .

Proof. The formula for dimk Ei simply expresses the fact that E and its associated graded
module for the squarefree filtration (8) have the same Hilbert function, which is the sum of
the Hilbert functions of the associated graded modules kF ; the binomial coefficient counts
the monomials of degree i − |F | in (at most) |F | many variables.

The binomial coefficient in the formula for dimk(E/ΘE)i counts the monomials of degree
i−|F | in |F |−m variables, which is the dimension of the i-th Z-graded piece of kF/ΘkF . It
therefore suffices to show that the Hilbert functions of E/ΘE and grE/Θ grE agree in de-
grees > m. To see this, tensor the short exact sequence 0 → E(j−1) → E(j) → E(j)/E(j−1) → 0
with S/Θ and note that it remains exact in Z-graded degrees > m by Lemma 8.2.

For the next result, assume that a system Θ = θ1, . . . , θm of generic linear forms has been
fixed, and set R = S/ΘS. The standard Z-graded canonical module of S is ωS = S(−n),
whereas the Z-graded canonical module of R is ωR = R(−(n − m)) = R ⊗S ωS(m).

Proposition 8.4. For any standard Z-graded S-module M , the sheaves on projective space
determined by R⊗S Extℓ

S(M, ωS)(m) and Extℓ
R(R⊗SM, ωR) are isomorphic; that is, the mod-

ules themselves are isomorphic up to a kernel and cokernel supported at the maximal ideal.
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Proof. Reasoning as in the proofs of Theorem 7.8 and Proposition 7.9 demonstrates that
R⊗S Extℓ

S(M, S) and Extℓ
R(R⊗S M, R) determine isomorphic sheaves. Beyond that, all that

remains is fiddling with the Z-graded degree shifts.

Proposition 8.5. Fix a squarefree S-module M and a sequence Θ = θ1, . . . , θm of generic
linear forms. If Hj

F (M) := Hj
m(M)−F is the Z

n-graded piece of the j-th local cohomology
of M in the negative of the squarefree degree F , then for all i ≫ 0,

dimk Hℓ
m(M/ΘM)−i =

∑

F

(

i − 1

|F | − m − 1

)

· dimk Hℓ+m
F (M).

Proof. Using ωS = x1 · · ·xnS = S(−1, . . . ,−1) and an asterisk for vector space duals,
Hℓ+m

m
(M)−α

∼= Extn−m−ℓ
S (M, ωS)∗α for all α ∈ Z

n by Z
n-graded local duality [9, Corol-

lary 6.1]. Thus Hj
F (M) ∼= Extn−j

S (M, ωS)∗F for all cohomological degrees j and all squarefree
vectors F , and so Proposition 8.3 implies that the right-hand side of the desired formula is
the dimension of the Z-graded piece R⊗Extn−m−ℓ

S (M, ωS)i+m. The result follows from Propo-
sition 8.4, given that Hℓ

m
(M/ΘM)−i

∼= Extn−m−ℓ
R (R ⊗ M, ωR)∗i by Z-graded local duality [1,

Theorem 3.6.19].

The special case of Proposition 8.5 in which M = k[∆] is slightly weaker than Theo-
rem 5.3, because of the condition i ≫ 0. However, the derivation of Theorem 2.4 in Section 5
only requires this weakened version of Theorem 5.3. That said, after we conjectured in an
earlier draft that Proposition 8.5 holds for all i > 0, Satoshi Murai showed us how the proof
of Theorem 5.3 generalizes directly to prove it, and he has kindly let us include his proof.

Theorem 8.6. The formula for dimk Hℓ
m
(M/ΘM)−i in Proposition 8.5 holds for all i > 0.

Proof. Resume notation from the proof of Proposition 8.5. In addition, for any S-module N ,
let N [k] = N/(θ1, . . . , θk)N , write Ej(N) = Extn−j

S (N, ωS), and if N is Z-graded, let N≥k =
⊕

j≥k Nj and write N(k) for graded translate of N satisfying N(k)j = Nj+k. By graded local

duality, dimk Hℓ
m(M/ΘM)−i = dimk Eℓ(M [m])i; therefore it suffices to show that

Eℓ(M [k])≥1
∼= Eℓ+k(M)[k]≥1+k(k)

by induction on k, the case k = 0 being trivial. Assume that the above isomorphism holds
for k; we aim to prove it for k + 1. Since Eℓ+k(M) is squarefree, the multiplication map

·θk+1 : Eℓ(M [k])≥1
∼= Eℓ+k(M)[k]≥1+k → Eℓ+k(M)[k]≥2+k(1) ∼= Eℓ(M [k])≥2(1)

is injective for all ℓ by Proposition 8.3. This injectivity in the long exact sequence

· · · −→ Eℓ+1(M [k])≥1
·θk+1

−→ Eℓ+1(M [k])≥2(1) −→ Eℓ(M [k + 1])≥1 −→ Eℓ(M [k])≥1
·θk+1

−→ · · ·

(the Matlis dual of the long exact sequence in the proof of Theorem 5.3) implies that

Eℓ(M [k + 1])≥1
∼= Eℓ+1(M [k])≥2(1)/θk+1E

ℓ+1(M [k])≥1

∼= Eℓ+2(M [k − 1])≥3(2)/(θk, θk+1)E
ℓ+2(M [k − 1])≥2(1)

...
∼= Eℓ+k+1(M)≥k+1(k + 1)/(θ1, . . . , θk+1)E

ℓ+k+1(M)≥k+1(k),

which is the desired formula for k + 1.
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