Problem Set 2

409 - Discrete Optimization

Spring 2022

Exercise 1 (3 points)

Compute a minimum spanning tree in the graph $G=(V, E)$ depicted below. It suffices to give the final tree.

Exercise 2 (4 points)

Consider the following claim:
Let $G=(V, E)$ be an undirected graph with edge cost $c_{e} \in \mathbb{R}$ for all $e \in E$. If there are two minimum spanning trees $T_{1}, T_{2} \subseteq E, T_{1} \neq T_{2}$, then G contains two edges with the same cost.

Is the claim true or false? If true, give a proof. If false, give a counterexample.

Exercise 3 (9 points)

Let $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$ be vectors. We assume that $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)=\mathbb{R}^{n}$. We call an index set $I \subseteq$ $\{1, \ldots, m\}$ a basis, if the vectors $\left\{v_{i}\right\}_{i \in I}$ are a basis of \mathbb{R}^{n}. We assume that we are given cost $c(1), \ldots, c(m) \geq 0$ for all the vectors and abbreviate $c(I):=\sum_{i \in I} c(i)$ as the cost of a basis. We say that a basis $I^{*} \subseteq\{1, \ldots, m\}$ is optimal if $c\left(I^{*}\right) \leq c(I)$ for any basis I.
i) Let $I, J \subseteq[m]$ be two different basis. Prove that for all $i \in I \backslash J$, there is an index $j \in J \backslash I$ so that $(I \backslash\{i\}) \cup\{j\}$ is a basis and also $(J \backslash\{j\}) \cup\{i\}$ is a basis.
Remark: If you are unsure how to prove this, you may want to lookup Steinitz exchange lemma from your Linear Algebra course. One variant that works is: Let $w_{1}, \ldots, w_{k} \in \mathbb{R}^{n}$ be linearly independent and let $w=\sum_{\ell=1}^{k} \lambda_{\ell} w_{\ell}$ for $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$. Then for any index ℓ with $\lambda_{\ell} \neq 0$, also the vectors $w, w_{1}, \ldots, w_{\ell-1}, w_{\ell+1}, \ldots, w_{k}$ are linearly independent.
ii) Show that if a basis I is not optimal, then there is an improving swap, which means that there is a pair of indices $i \in I$ and $j \notin I$ so that $J:=(I \backslash\{i\}) \cup\{j\}$ is a basis with $c(J)<c(I)$.
Remark: The proof of this claim is actually along the lines of Theorem 5 on page 17 in the lecture notes. I recommend to read that proof before.
iii) We want to compute an optimum basis and we want to use the following algorithm:
(1) Set $I:=\emptyset$
(2) Sort the vectors so that $c(1) \leq c(2) \leq \ldots \leq c(m)$
(3) $\mathrm{FOR} i=1 \mathrm{TO} m \mathrm{DO}$
(4) If the vectors $\left\{v_{j}\right\}_{j \in I \cup\{i\}}$ are linearly independent, then update $I:=I \cup\{i\}$

Prove that the computed basis I is optimal.
Remark: Again, you might want to have a look into the correctness proof for Kruskal's algorithm in order to solve this.

Exercise 4 (4 points)

Run Dijkstra's algorithm in the following instance with source node s.

For each iteration give the set R, the node v that you use to update the labels as well as all the labels $\ell(u)$ for $u \in\{s, a, b, c, d, e\}$.

