Problem Set 4

 409 - Discrete Optimization

 409 - Discrete Optimization}

Spring 2022

Exercise 1 (6 points)

Consider the following network with a directed graph $G=(V, E)$, capacities $u(e)$ (the labels of the edges), a source s and a $\operatorname{sink} t$ (assume that $M>1$).

a) Argue that the Ford-Fulkerson algorithm with a poor choice of augmenting paths might take M or more iterations.
b) Run the Edmonds-Karp algorithm on this network and give the flow in each iteration.

Exercise 2 (7 points)

Let (G, u, s, t) be a network with $G=(V, E) \sqrt{1}$ and let $f: E \rightarrow \mathbb{R}_{\geq 0}$ be a feasible s - t flow in that network. Moreover let f^{*} be a maximum s - t flow.
a) Let $S \subseteq V$ with $s \in S, t \notin S$. Prove that

$$
\operatorname{value}\left(f^{*}\right) \leq \operatorname{value}(f)+\sum_{e \in \delta_{E_{f}}^{+}(S)} u_{f}(e)
$$

where $\delta_{E_{f}}^{+}(S):=\left\{(i, j) \in E_{f} \mid i \in S, j \notin S\right\}$.
b) Let $\gamma>0$ be the maximum value so that there is an s - t path P in G_{f} with $u_{f}(e) \geq \gamma$ for all $e \in P$.

Prove that value $\left(f^{*}\right) \leq \operatorname{value}(f)+\gamma m$ where $m:=|E|$.

Exercise 3 (7 points)

Let (G, u, s, t) be a network with $n=|V|$ nodes and $m=|E|$ edges and $u(e) \in \mathbb{Z}_{\geq 0}$ for all $e \in E$. Suppose that f^{*} is a maximum s - t flow. Consider the following algorithm (which is a smarter version of Ford-Fulkerson):

[^0](1) Set $f(e):=0$ for all $e \in E$
(2) WHILE $\exists s$ - t path in G_{f} DO
(3) Compute the s-t path P in G that maximizes $\gamma:=\min \left\{u_{f}(e) \mid e \in P\right\}$
(4) Augment f along P by γ

Note that in each iteration the algorithm chooses the path P that maximizes the bottleneck capacity. Let $f_{0}, f_{1}, \ldots, f_{T}$ be the sequence of flows computed by the algorithm where $0=\operatorname{value}\left(f_{0}\right)<$ value $\left(f_{1}\right)<\ldots<\operatorname{value}\left(f_{T}\right)=\operatorname{value}\left(f^{*}\right)$.
Hint: For (a) and (b) make use of the previous exercise.
a) Prove that value $\left(f_{1}\right) \geq \frac{1}{m}$ value $\left(f^{*}\right)$.
b) Prove that value $\left(f_{t}\right) \geq \operatorname{value}\left(f_{t-1}\right)+\frac{1}{m}\left(\operatorname{value}\left(f^{*}\right)-\operatorname{value}\left(f_{t-1}\right)\right)$ for any $t \geq 1$.
c) Prove that value $\left(f_{t}\right) \geq \operatorname{value}\left(f^{*}\right) \cdot\left(1-\left(1-\frac{1}{m}\right)^{t}\right)$ for any $t \geq 1$.
d) Prove that the algorithm terminates after $T \leq\left\lceil m \cdot \ln \left(2 \cdot \operatorname{value}\left(f^{*}\right)\right)\right\rceil$ iterations.

[^0]: ${ }^{1}$ As in the lecture notes we make the assumption that G does not contain both edges (i, j) and (j, i) to keep notation clean. Same assumption for exercise 3.

