Problem Set 6
 409 - Discrete Optimization

Spring 2022

Exercise 1 (10 points)

Let $G=(V, E)$ be a bipartite graph with parts $V=V_{1} \cup \dot{\cup} V_{2}$. Consider the linear program:

$$
\begin{aligned}
\min \sum_{u \in V} y_{u} & \\
y_{u}+y_{v} & \geq 1 \quad \forall\{u, v\} \in E \\
y_{u} & \geq 0 \quad \forall u \in V
\end{aligned}
$$

a) If you write the problem in the matrix form $\min \left\{\mathbf{1}^{T} y \mid A y \geq \mathbf{1} ; y \geq \mathbf{0}\right\}$, how is the matrix A defined?
b) Prove that all extreme points of $P=\left\{y \in \mathbb{R}^{V} \mid A y \geq \mathbf{1} ; y \geq \mathbf{0}\right\}$ are integral (A defined as in $\left.a\right)$).
c) Which problem that you know from the lecture, does the above LP solve?

Exercise 2 (10 points)

a) Consider the triangle graph $G=(V, E)$ with 3 nodes and 3 edges

and the matching polytope $P_{M}=\left\{x \in \mathbb{R}^{E} \mid \sum_{e \in \delta(v)} x_{e} \leq 1 \forall v \in V ; x_{e} \geq 0 \forall e \in E\right\}$ associated with it. Write it in form $P_{M}=\left\{x \in \mathbb{R}^{E} \mid A x \leq b\right\}$ and give the 6×3 constraint matrix A. What 3×3 submatrix A_{I} of A has $\operatorname{det}\left(A_{I}\right) \notin\{-1,0,1\}$? What is $\operatorname{det}\left(A_{I}\right)$? Compute A_{I}^{-1}. Which is the extreme point $x=A_{I}^{-1} b_{I}$ that belongs to this submatrix?
b) Which of the following matrices is TU? Argue why or why not!

$$
A_{1}=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0
\end{array}\right), A_{2}=\left(\begin{array}{rrrrrrr}
-1 & 0 & 1 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & -1 & 0
\end{array}\right) .
$$

