Problem Set 6

409 - Discrete Optimization

Spring 2022

Exercise 1 (10 points)

Let G = (V, E) be a bipartite graph with parts $V = V_1 \dot{\cup} V_2$. Consider the linear program:

$$\min \sum_{u \in V} y_u y_u + y_v \ge 1 \quad \forall \{u, v\} \in E y_u \ge 0 \quad \forall u \in V$$

- a) If you write the problem in the matrix form $\min\{\mathbf{1}^T y \mid Ay \ge \mathbf{1}; y \ge \mathbf{0}\}$, how is the matrix A defined?
- b) Prove that all extreme points of $P = \{y \in \mathbb{R}^V | Ay \ge 1; y \ge 0\}$ are integral (*A* defined as in *a*)).
- c) Which problem that you know from the lecture, does the above LP solve?

Exercise 2 (10 points)

a) Consider the triangle graph G = (V, E) with 3 nodes and 3 edges

and the matching polytope $P_M = \{x \in \mathbb{R}^E \mid \sum_{e \in \delta(v)} x_e \le 1 \forall v \in V; x_e \ge 0 \forall e \in E\}$ associated with it. Write it in form $P_M = \{x \in \mathbb{R}^E \mid Ax \le b\}$ and give the 6 × 3 constraint matrix *A*. What 3 × 3 submatrix A_I of *A* has det $(A_I) \notin \{-1, 0, 1\}$? What is det (A_I) ? Compute A_I^{-1} . Which is the extreme point $x = A_I^{-1}b_I$ that belongs to this submatrix?

b) Which of the following matrices is TU? Argue why or why not!

$$A_{1} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}, A_{2} = \begin{pmatrix} -1 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 \end{pmatrix}.$$