Problem Set 6

514 - Networks and Combinatorial Optimization

Autumn 2023

Exercise 6.1 (10pts)

Let $D=(V, A)$ be a directed graph and let $s, t \in V$. Let $f: A \rightarrow \mathbb{R}_{\geq 0}$ be an $s-t$ flow of value β. Show that there exists an s-t flow $f^{\prime}: A \rightarrow \mathbb{Z}_{\geq 0}$ of value $\lceil\beta\rceil$ so that $\lfloor f(a)\rfloor \leq f^{\prime}(a) \leq\lceil f(a)\rceil$ for every $a \in A$.

Exercise 6.2 (10pts)

In the following graph $D=(V, A)$ (edges labelled with capacities $u(a)$), compute a maximum $s-t$ flow under u and a minimum s - t cut $\delta^{\text {out }}(U)$. What are their values? It suffices to state the final outcomes.

Exercise 6.3 (10pts)

Let $D=(V, A)$ be a directed graph with two distinguished nodes $s, t \in V$. A set U is called an $s-t$ vertex cut if $U \subseteq V \backslash\{s, t\}$ and every $s-t$ path intersects U. A collection of $s-t$ paths P_{1}, \ldots, P_{N} is called internally vertex disjoint if they have no nodes in common other than s and t. Prove the following using the MaxFlow=MinCut Theorem: Let $D=(V, A)$ be a directed graph with $s, t \in V$ so that $(s, t) \notin A$. Then the maximum number of internally vertex-disjoint s-t paths equals the minimum $|U|$ where U is an s-t vertex cut.
Hint: Create an auxiliary graph and apply the MaxFlow=MinCut Theorem there!
Remark. Two exercises are taken from A. Schrijver's lecture notes.

