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Chapter 1

Introduction to Lattices

In this chapter, we introduce the concept of lattices. Lattices are fundamentally

important in discrete geometry, cryptography, discrete optimization and com-

puter science as a whole. For this introductory chapter, we follow to some extend

the short, but very readable material in Chapter 2 of the text book “Lectures on
Discrete Geometry” by Jiri Matousek [Mat02] and to some extend the excellent

lecture notes by Oded Regev1 as well as the ones by Chris Peikert2. The author is

grateful to Victor Reis for carefully checking the manuscript and providing useful

feedback.

1.1 Basics of Lattices

Lattices are integral combinations of linearly independent vectors. Formally, a

lattice is a set { k∑

i=1

λi bi |λ1, . . . ,λk ∈Z
}

where b1, . . . ,bk ∈ Rn are linearly independent vectors. An alternative definition

is to say that a lattice is a discrete subgroup of Rn , where “discrete” means that

there is an ε> 0 so that all points in the lattice have distance at least ε from each

other. We denote the number rank(Λ) := k as the rank of the lattice. In other

words, rank(Λ) = dim(span(Λ)).

If k = n, then the lattice has full rank. As every lattice is just a full rank lattice

when restricted to the subspace span{b1, . . . ,bk}, most of the time we will con-

sider full-rank lattices. In fact, we will drop the term “full-rank” and assume it

implicitly from now on if not announced otherwise.

1See http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2009
2see http://www.cc.gatech.edu/~cpeikert/lic13
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For the sake of brevity, let B ∈ Rn×n be the matrix that has the basis vectors

b1, . . . ,bn as columns. Then we abbreviate the lattice as

Λ(B ) =
{ n∑

i=1

λi bi |λ1, . . . ,λn ∈Z
}

The matrix B itself is also called a basis of the lattice Λ(B ). Note that a lattice

has more than one basis. For example adding any integral multiple of bi to b j

for j 6= i will preserve the set of points that can be generated. Below we see an

example of two different bases for the same underlying lattice:

b b b b b

b b b b

b b b b b

b b b b

0
b1

b2

b b b b b

b b b b

b b b b b

b b b b

0
b1

b2

General notation and definitions. Let us fix some notation for later: We denote

B n
2 := {x ∈ Rn | ‖x‖2 ≤ 1} as the Euclidean ball and more generally B n

p := {x ∈
Rn | ‖x‖p ≤ 1} is the ball for the norm ‖x‖p := (

∑n
i=1

|xi |p )1/p for 1 ≤ p <∞ with

B n
∞ := [−1,1]n is the cube. For a measurable set A ⊆Rn we write Voln(A) :=

∫
A 1d x

as the n-dimensional volume. Frequently we will need an estimate on the volume

of B n
2 . A loose but convenient estimate is as follows:

Lemma 1.1. For all n ≥ 1 one has 2n ≤ Voln(
p

nB n
2 ) ≤ (2e)n .

Proof. On the one hand
p

nB n
2 contains the cube B n

∞ and so Voln(
p

nB n
2 ) ≥ Voln(B n

∞) =
2n . On the other hand

p
nB n

2 is contained in B n
1 and so Voln(

p
nB n

2 ) ≤ Voln(nB n
1 ) =

(2n)n

n!
≤ (2e)n as n! ≥ ( n

e )n for all n ≥ 2 (and the claim is true anyway for n = 1).

For a matrix A ∈ Rn×n we write detn(A) as the determinant. We use the index

n to indicate the format of the matrix.

Recall that a set K ⊆Rn is called convex if for all x , y ∈ K and 0≤λ≤ 1 one also

has λx+(1−λ)y ∈K . A set K is (centrally) symmetric if x ∈K if and only if −x ∈ K .

In particular for a convex symmetric set K , we can define a norm that is called

the Minkowski norm ‖x‖K := min{λ≥ 0 : x ∈ λK }. In other words, ‖x‖K gives the

scaling factor that one needs until the scaled copy of K includes x . For example

the Euclidean norm ‖ · ‖2 is the norm ‖ · ‖K for K := B n
2 . For a vector y ∈ Rn , we

define y+K := {x+y | x ∈ K } as the translate of K by y . For sets A,B ⊆Rn we write

A+B = {a +b | a ∈ A, b ∈ B} as the Minkowski sum. Throughout this manuscript
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we will denote vectors and matrices in bold. For example the matrix B ∈ Rm×n

has columns B 1, . . . ,B n and rows B1, . . . ,Bm but entries Bi j ∈R.

1.1.1 Unimodular matrices

We want to spend a bit of time characterizing the different bases for a lattice.

Definition 1.2. An n×n matrixU is called unimodular, if U ∈Zn×n and detn(U ) ∈
{±1}.

Lemma 1.3. If U is unimodular, then U−1 is unimodular.

Proof. We have detn(U−1) = 1
detn (U )

∈ {−1,1}. So, it remains to argue that U−1

has only integral entries. Set U i j ∈ Zn×n as the matrix where the i th column is

replaced by the j th unit vector e j
3. Then detn(U i j ) ∈Z and by Cramer’s rule

U−1
i j =

detn(U i j )

detn(U )
∈Z.

We will now see that two matrices span the same lattice if and only if they

differ by a unimodular matrix:

Lemma 1.4. Let B1,B2 ∈ Rn×n non-singular. Then Λ(B1) = Λ(B2) if and only if

there is a unimodular matrix U with B2 = B1U .

Proof. First, suppose that B2 = B1U with U being unimodular. The important

observation is that the map f : Zn → Zn with f (x) := U x is a bijection on the

integer lattice as U x ∈Zn for x ∈Zn and any vector y ∈Zn is hit by U (U−1 y) = y .

Then

Λ(B2) = {B2λ |λ ∈Zn} = {B1Uλ |λ ∈Zn} =Λ(B1).

Now, let us go the other way around and assume that Λ(B1) = Λ(B2). Then any

column of B1 is an integral combination of columns in B2 and vice versa. We can

use those integral coefficients to fill matrices U ,V ∈ Zn×n so that B2 = B1U and

B1 = B2V . Then

detn(B1) = detn(B2V ) = detn(B1UV ) = detn(B1) ·detn(U ) ·detn(V )

As detn(U ),detn(V ) ∈Z, we must have detn(U ) ∈ {−1,1} (and in fact it is not hard

to argue that V =U−1).

3Sounds like we have accidentally switched row and column indices — but it was on purpose.
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Note that the unimodular matrix U can be found in polynomial time using

row reduction / Gauss elimination. Hence, for given matrices B1,B2 one can test

in polynomial time whether they generate the same lattice.

1.1.2 The fundamental parallelepiped

The fundamental parallelepiped of the lattice Λ(B ) is the polytope

P(B ) :=
{ n∑

i=1

λi bi | 0 ≤λi < 1 ∀i ∈ [n]
}

We see that this definition actually depends on the basis:

b b b b b

b b b b

b b b b b

b b b b

0
b1

b2 P(B )

b b b b b

b b b b

b b b b b

b b b b

0
b1

b2 P(B )

Let us make some observation: Since b1, . . . ,bn is a basis of Rn , we know that for

every x ∈Rn there is a unique coefficient vector λ∈Rn so that x =
∑n

i=1λi bi . That

means x can be written as

x =
n∑

i=1

⌊λi ⌋bi

︸ ︷︷ ︸
∈Λ(B )

+
n∑

i=1

(λi −⌊λi ⌋)bi

︸ ︷︷ ︸
∈P(B )

.

In other words, the translates of the parallelepiped placed at lattices points ex-

actly partition the Rn . We call this a tiling of Rn . The tiling of the space with

parallelepipeds can be visualized as follows:

b b b bb b

b b b b b b

b b b b bb

b b b b bb

0

Note that actually we can rewrite the fundamental parallelepiped as

P(B ) = {B x : x ∈ [0,1)n},
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that means it is the image of the hypercube [0,1)n under the linear map given by

the matrix B . Then by the transformation formula

Voln(P(B )) = Voln([0,1)n)︸ ︷︷ ︸
=1

·|detn(B )|

While the fundamental parallelepiped itself does depend on the choice of the

basis — its volume does not!

Lemma 1.5. Let B ∈ Rn×n and let Λ := Λ(B ) be the generated lattice. Then the

determinant of the lattice det(Λ) := |detn(B )| is independent of the chosen basis.

Moreover, det(Λ) = Voln(P(B )).

Proof. Clear, because for different basis B ,B ′ ∈ Rn of the same lattice, there is a

unimodular transformationU ∈Zn×n with B ′ = BU . Then |detn(B ′)| = |detn(B )|·
|detn(U )| = |detn(B )|.

Note that the quantity 1
Voln (P(B ))

gives the density of the lattice. For example

the number of lattice points in a ball of large radius R > 0 is

|Λ(B )∩R ·B n
2 | ≈

Voln(R ·B n
2 )

Voln(P(B ))

The “≈” should be understood that the ratio of both sides goes to 1 as R → ∞.

This is another more geometric argument why the volume of the fundamental

parallelepiped cannot depend on the basis.

1.2 Minkowski’s Theorem

We now come to Minkowski’s Theorem which says that every large enough sym-

metric convex set must contain a non-zero lattice point.

Theorem 1.6 (Minkowski’s First Theorem (1889)). Let Λ ⊆ Rn be a full rank lat-

tice and let K ⊆Rn be a bounded symmetric convex set with Voln(K ) > 2n det(Λ).

Then K ∩ (Λ\ {0}) 6= ;.

Proof. First, by assumption we have Voln( 1
2

K ) > det(Λ). Next, place copies of 1
2

K
at every lattice point in Λ.
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b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

z

x

y

x + 1
2

K

y + 1
2

K

Then on average, points in Rn are covered more than once. So there must be two

different lattice points x , y ∈ Λ so that the translates x + 1
2

K and y + 1
2

K overlap.

Let z ∈ (x + 1
2

K )∩ (y + 1
2

K ) be a point in that intersection. Then

‖x − y‖K ≤ ‖x − z‖K︸ ︷︷ ︸
≤1/2

+‖y − z‖K︸ ︷︷ ︸
≤1/2

≤ 1

Hence (x − y) ∈Λ/{0} is the lattice point that we are looking for.

Admittedly, this argument was a bit informal as we talked about the average

density of an infinite covering. But one can make the argument nicely finite. Let

D > 0 be so that K ⊆ D ·B [−1,1]n = D ·(P(B )−P(B )). For R ∈N, R ·P(B )+K fully

contains at least Rn translates of K placed at lattice points. Hence

Voln(translates in R ·P(B )+K )

Voln(R ·P(B )+K )
≥

Rn ·Voln( 1
2

K )

Voln(R ·P(B )+D · (P(B )−P(B )))

=
( R

R +2D

)n Voln( 1
2

K )

det(Λ)︸ ︷︷ ︸
>1

> 1

if R is large enough and some point in R ·P(B )+K must be covered twice.

It is not difficult to give a quantitative version of Minkowski’s Theorem; we

will discuss the proof in the Exercises:

Theorem 1.7. Let Λ⊆ Rn be a full rank lattice and let K ⊆ Rn be a bounded sym-

metric convex set. Then |K ∩Λ| ≥ Voln (K )
2n det(Λ)

.

There is another theorem that is closely related to the one of Minkowski. Sup-

pose that S is an arbitrary set; then S could be large without containing a lattice

point. But it still has to contain differences that are lattice points.

Theorem 1.8 (Blichfeldt). Let Λ ⊆ Rn be a full rank lattice and let S ⊆ Rn be a

measurable set with Voln(S)> det(Λ). Then there are s1, s2 ∈ S with s1 − s2 ∈Λ.
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Proof. Place copies of x +S = {x + s | s ∈ S} for all x ∈Λ. Again one can argue that

there will be different points x1, x2 ∈Λ with (x1+S)∩(x2+S) 6= ; (similar to above;

we are skipping the details).

x1 + s1 = x2 + s2
x1 +S x2 +S

Let s1, s2 ∈ S be the points with x1+s1 = x2+s2. Rearranging gives s1−s2 = x2−x1 ∈
Λ. This gives the claim.

s1 s2

∈Λ

S

1.2.1 Minkowski’s Theorem and the Shortest Vector

A particularly interesting vector in a lattice is the Shortest Vector with respect to

the ‖ ·‖2-norm. Let us abbreviate λ1(Λ) := min{‖x‖2 | x ∈Λ/{0}} as its length.

b b b

b b b

b b b

0

λ1(Λ)

In fact, finding the shortest vector (or its length) is an NP-hard problem4. How-

ever, one can get some estimates on it:

Theorem 1.9. Any lattice Λ⊆Rn one has λ1(Λ) ≤
p

n ·det(Λ)1/n .

Proof. First, for r := det(Λ)1/n , the hypercube [−r,r ]n has a volume of

Voln([−r,r ]n) = (2r )n ≥ 2n det(Λ).

Hence by Theorem 1.6 there is a point x ∈Λ\{0} with ‖x‖∞ ≤ det(Λ)1/n . Of course

‖x‖2 ≤
p

n · ‖x‖∞, which implies the claim.

4To be precise, finding the shortest vector in the ‖ · ‖∞ is NP-hard [vEB81]. For the Euclidean

norm this is only known under randomized reductions [Ajt98].
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Note that the scaling in the claim actually makes sense: if we scale the lattice

Λ by a factor s > 0, then the length of the shortest vector also scales with s, while

det(Λ) changes by a factor of sn. The analysis can be improved to c
p

n det(Λ)1/n

for a constant c < 1 — however, this is best possible. There are lattices for every

n with determinant 1 and shortest vector of length Ω(
p

n).

Rather than only studying λ1(Λ) we are also interested in the “i th shortest

vector” in a lattice. More precisely we call

λi (Λ) := min{r ≥ 0 | dim(span(r B n
2 ∩Λ)) ≥ i }

the i th successive minimum. That means one has i many linearly independent

vectors of length at most λi (Λ) and 0<λ1(Λ) ≤λ2(Λ) ≤ . . . ≤λn(Λ).

b b b

b b b

b b b

0

λ1(Λ)

b b b

b b b

b b b

0

λ1(Λ)

λ2(Λ)

1.2.2 More on Successive Minima

Let Λ⊆Rn be a full rank lattice and let v1, . . . , vn ∈Λ be the linearly independent

vectors attaining the successive minima, that means the vectors are linearly inde-

pendent and ‖vi‖2 = λi (Λ). Clearly, v1, . . . , vn are a basis of Rn , so naturally one

might ask whether they are also a basis of the lattice Λ? We want to discuss an

illustrative example showing that this is not the case.

Let us call an integer vector x ∈Zn even if all its coordinates x1, . . . , xn are even.

Similarly, let us call the vector odd when all coordinates are odd. Consider the set

Λ := {x ∈Z
n | (x is even) or (x is odd)}.

Note that this is indeed a lattice because the sum of two odd vectors is even; the

sum of an odd and an even vector is odd; and so on. For n = 2 the lattice looks as

follows:
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1

2

−1

−2

1 2−1−2

b b b

b b b

b b b

even

odd

Now consider the higher-dimensional case with n ≥ 5. Then every odd vector

x ∈ Λ has length ‖x‖2 ≥
p

n. We have λi (Λ) = 2 for all i ∈ {1, . . . ,n} since the

vectors 2e1, . . . ,2en are linearly independent even integer vectors and the lattice

does not contain any shorter vector (the only options would be (1,0, . . . ,0) and

(1,1,0, . . . ,0) but these are not in the lattice). On the other hand, every odd vector

has length at least
p

n. The lattice does include odd vectors like 1 := (1, . . . ,1) and

these vectors are not integer combinations of even vectors. Hence any basis for

Λ must include an odd vector of length at least
p

n. In particular, the vectors

attaining the successive minima do not form a basis of the lattice.

1.2.3 Dirichlet’s Theorem

We will now see another elegant application of Minkowski’s First Theorem. Sup-

pose we have a vector α ∈ [0,1]n of real numbers and we want to approximate the

vector as well as possible with a vector of rational numbers so that the common

denominator is at most a parameter Q. One can find some obvious applications

in computer science, where one simply cannot work with real numbers but has

to use rational approximations all the time. Then the most obvious choice would

be (⌈α1Q⌋
Q

, . . . ,
⌈αnQ⌋

Q

)

where ⌈·⌋ rounds up or down to the nearest integer. One can easily see that the

rounding error in every component is upper bounded by 1
2Q . Is this best possible?

Well, the task was to have a common denominator that is at most Q. So, we are

allowed to pick any denominator in {1, . . . ,Q}, but we haven’t made use of that

freedom.

Theorem 1.10 (Dirichlet). For anyα∈]0,1]n and Q ∈N, there are numbers p1, . . . , pn ∈
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Z≥0 and q ∈ {1, . . . ,Q} so that

max
i=1,...,n

∣∣∣∣
pi

q
−αi

∣∣∣∣≤
1

Q1/n q

Proof. If we abbreviate ε := 1
Q1/n and multiply the inequality in the claim by q ,

then we get the constraint |pi − q ·αi | ≤ ε for all i = 1, . . . ,n. Note that this is a

linear constraint, hence we can reduce our problem to finding an integer point

in the polytope

K :=
{

(p1, . . . , pn , q) ∈Rn+1 | |pi −q ·αi | ≤ ε∀i = 1, . . . ,n; |q | ≤Q
}

Note that on purpose, we admitted negative numbers to make the set K symmet-

ric. For example for n = 1, one obtains the following picture:

Q−Q

ε
ε

q

p1

p1 −qα1 ≤ ε

p1 −qα1 ≥−εK

One should think about K as a thin, but long “slab” along the line defined by

p−q ·α= 0. Geometrically speaking, the set K is a parallelepiped and his volume

is equal to the volume of the box with length 2Q in one direction and 2ε in n
directions. Hence

Voln(K ) = 2Q · (2Q−1/n)n = 2n+1.

Now we can apply Minkowski’s theorem and we obtain (p1, . . . , pn , q) ∈ (K∩Zn+1)\

{0}. For symmetry reasons, we can assume that q ≥ 0. Note that it is impossible

that q = 0, because otherwise |pi | ≤Q−1/n < 1 which implies that p1 = . . . = pn = 0

and we would get a contradiction. Hence q ∈ {1, . . . ,Q} and we have the desired

approximation.
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1.3 The Gram Schmidt orthogonalization

We have already mentioned that it is NP-hard to find the shortest vector in a lat-

tice. Our goal is to be at least able to find an approximate shortest vector. That

means for a lattice Λ(B ) we want to find a vector x ∈Λ(B )\{0} in polynomial time

that has length ‖x‖2 ≤ α ·λ1(Λ(B )). Here, α := α(n) ≥ 1 is the so-called approx-
imation factor that we would like to be as small as possible. Before we come to

that algorithm, we need a useful procedure.

The Gram-Schmidt orthogonalisation takes linearly independent vectors b1, . . . ,bn ∈
Rn as input and it computes an orthogonal basis b∗

1 , . . . ,b∗
n so that span(b1, . . . ,bk) =

span(b∗
1 , . . . ,b∗

k ) for all k = 1, . . . ,n. The idea is that we go through the vectors

b1, . . . bn in that order and for each i we subtract all components of b1, . . . ,bi−1

from bi and call the remainder b∗
i . Formally the method is as follows:

Gram-Schmidt orthogonalisation

Input: Vectors b1, . . . ,bn ∈Rn

Output: Orthogonal basis b∗
1 , . . . ,b∗

n

(1) b∗
1 := b1

(2) b∗
2 := b2 −µ1,2b∗

1 with µ1,2 := 〈b2,b∗
1 〉

‖b∗
1 ‖

2
2

(3) . . .

( j ) b∗
j := b j −

∑
i< j µi , j b∗

i with µi j := 〈b j ,b∗
i 〉

‖b∗
i ‖

2
2

∀ j = 1, . . . ,n

Note that b∗
i is the projection of bi on span{b1, . . . ,bi−1}⊥. For example for n = 2

the method can be visualized as follows:

0
b1 = b∗

1

b2

b∗
2

µ12b∗
1

Note that the outcome of the Gram-Schmidt orthogonalization crucially depends

on the order of the vectors. The next observation is that by Cavalieri’s princi-
ple, the “shifting” does not change the volume of the fundamental parallelepiped.

Hence

det(Λ(B )) = Voln(P(B )) =
n∏

i=1

‖b∗
i ‖2.

The Gram-Schmidt orthogonalization gives us a nice lower bound on the

length of a shortest vector.
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Theorem 1.11. Let B be a basis and B∗ = (b∗
1 , . . . ,b∗

n) be its Gram-Schmidt orthog-

onalization. Then λ1(Λ(B )) ≥ mini=1,...,n ‖b∗
i ‖2.

Proof. Let x ∈ Λ(B ) be any lattice vector and let x =
∑n

i=1 yi bi with yi ∈ Z be

the linear combination that generates it. Let k be the largest index with λk 6= 0.

Define the subspace U := span{b1, . . . ,bk−1} = span{b∗
1 , . . . ,b∗

k−1
}.

bk

b∗
k x

U
yk b∗

k +U

0

Then x lies on a translate of that subspace which is yk b∗
k +U . Hence ‖x‖2 ≥

d(x ,U ) = |yk | · ‖b∗
k‖2 ≥ ‖b∗

k‖2 where d(x ,U ) tells the distance of x to U .

In particular b∗
1 = b1 is always lattice vector — b∗

2 , . . . ,b∗
n generally not. One

idea to find a short lattice vector would be to find a basis (and an ordering on

the vectors!) so that ‖b∗
1‖2 ≤ ρ · ‖b∗

i ‖2 for all i and some ρ. Then by the previous

lemmaλ1(Λ(B )) ≥ mini=1,...,n ‖b∗
i ‖2 ≥ 1

ρ‖b1‖2, hence b1 would be aρ-approximation

to the shortest vector. Later, this will be the goal of the LLL-algorithm.

1.4 Minkowski’s 2nd Theorem

The Gram-Schmidt orthogonalization will also be helpful in deriving Minkowski’s

Second Theorem that gives us some control over the successive minima λi (Λ):

Theorem 1.12 (Minkowski’s Second Theorem). For any full-rank lattice Λ ⊆ Rn

one has ( n∏

i=1

λi (Λ)
)1/n

≤
p

n ·det(Λ)1/n .

While Minkowski’s First Theorem only tells us thatλ1(Λ) is at most
p

n·det(Λ)1/n ,

the Second Theorem gives the stronger statement that even the geometric aver-
age of λ1(Λ), . . . ,Λn(Λ) is bounded by that same quantity. Take any orthonormal
basis u1, . . . ,un ∈Rn and any positive coefficients α1, . . . ,αn > 0. Then

E =
{

x ∈R
n |

n∑

i=1

1

α2
i

· 〈x ,ui 〉2 ≤ 1
}
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is an ellipsoid. Ellipsoids are convex symmetric bodies and their volume is Voln(E ) =
Voln(B n

2 ) ·
∏n

i=1αi .

0
u1

u2
α1u1

α2u2

E

Now we come to the proof where we follow the exposition of Regev [Reg09a].

Proof. We abbreviate λi :=λi (Λ). Let b1, . . . ,bn ∈Λ\ {0} be the vectors that attain

the successive minima, that means λi = ‖bi‖2 with λ1 ≤ . . . ≤λn . Let b∗
1 , . . . ,b∗

n be

the Gram Schmidt orthogonalization (in that order). We consider the ellipsoid

E =
{

x ∈Rn |
n∑

i=1

( 〈x ,b∗
i 〉

‖b∗
i ‖2 ·λi

)2
≤ 1

}

b

b

b

b

b
b

b
b1 b2

b∗
2

Let int(E ) = {x | . . . < 1} be the interior of that ellipsoid. We claim that int(E )∩Λ=
{0}. Take any lattice vector x ∈ Λ \ {0}. Let k be maximal so that λk ≤ ‖x‖2

(i.e. ‖x‖2 < λk+1 or k = n). Note that this means that x ∈ span(b1, . . . ,bk ) =
span(b∗

1 , . . . ,b∗
k ) since otherwise, we could have chosen x instead of bk+1 and the

value of λk+1 would have been shorter than it is. Now we can bound

n∑

i=1

( 〈x ,b∗
i 〉

‖bi‖2 ·λi

)2

〈x ,b∗
i 〉=0 ∀i>k

λ1≤...≤λk≥
1

λ2
k

k∑

i=1

〈x ,
b∗

i

‖b∗
i ‖2

〉2

︸ ︷︷ ︸
=‖x‖2

2

=
‖x‖2

2

λ2
k

≥ 1

This implies that indeed x ∉ int(E ). Since E does not have a lattice point in its

interior, Minkowski’s First Theorem gives an upper bound on its volume:

2n ·det(Λ) ≥ Voln(E ) = Voln(B n
2 ) ·

n∏

i=1

λi
Lem 1.1
≥

( 2
p

n

)n
·

n∏

i=1

λi

Rearranging then gives the claim.
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1.5 The LLL-algorithm

For the presentation of the LLL-algorithm, we are loosely following the exposi-

tion of Chris Peikert’s excellent lecture notes [Pei13]. The main statement will

be:

Theorem 1.13 (Lenstra-Lenstra-Lovász 1982). Given a regular matrix B ∈ Qn×n

one can compute a vector x ∈ Λ(B ) \ {0} of length ‖x‖2 ≤ 2n/2 ·λ1(Λ(B )) in poly-

nomial time.

If B has integral entries then the running time is actually of the form O(n6log3(n‖B‖∞)).

The importance of this algorithm cannot be underestimated. Until now — 40

years after its discovery — the LLL-algorithm is basically the only algorithm that

gives any kind of non-trivial guarantee for any lattice problem in polynomial

time!

Let us consider a basis b1, . . . ,bn (here for n = 2) and wonder what kind of

operations we could perform make the basis as orthogonal as possible, while it

still generates the same lattice.

• Subtracting vectors from each other: In n = 2, if we have a vector b2, we can

always subtract multiples of b1 from it so that |µ1,2| ≤ 1
2

. In higher dimen-

sions we will see that we can always achieve that |µi j | ≤ 1
2

for all i < j .

b b b b b

b b b b

b b b b b

0
b1

b2

b b b b b

b b b b

b b b b b

0
b1

b2

• Switching the order: One the other hand, in n = 2 dimensions it might be

that b1 is a lot longer than b2 so that we would not make progress in sub-

tracting b1 from b2. But in that case we can swap the order of b1 and b2.

In higher dimensions it will make sense to swap bi and bi+1 if ‖bi‖2 ≫
‖bi+1‖2.

b b b b b

b b b b

b b b b b

0

b1b2
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1.5.1 Coefficient reduction

We want to begin by discussing how to make use of the first procedure, where

we subtract integer multiples of vectors in the basis from other basis vectors. Let

B = (b1, . . . ,bn) be a basis and let µi j := 〈b j ,b∗
i 〉

‖b∗
i ‖

2
2

be the coefficients from the Gram-

Schmidt orthogonalisation.

Definition 1.14. We call a basis Coefficient-reduced if |µi j | ≤ 1
2

for all 1 ≤ i < j ≤ n.

Lemma 1.15. Given any basis B = (b1, . . . ,bn) one can compute a coefficient-

reduced basis B̃ in polynomial time so that Λ(B̃ ) =Λ(B ) and the Gram-Schmidt

orthogonalizations are identical.

Proof. Suppose that B = (b1, . . . ,bn) is a lattice basis andµi j are the Gram-Schmidt

coefficients, that means

b j = b∗
j +

j−1∑

i=1

µi j ·b∗
i ∀ j ∈ [n]. (∗)

Now fix indices 1 ≤ ℓ < k ≤ n and q ∈ Z and consider the updated basis B̃ with

vectors

b̃ j :=
{

b j +q ·bℓ if j = k

b j otherwise.

Clearly, Λ(B̃ ) =Λ(B ). Let µ̃i j be the updated Gram-Schmidt coefficients for B̃ . In

particular b̃∗
1 = b∗

1 , . . . , b̃∗
k−1

= b∗
k−1

and for the coefficients we have µ̃i j = µi j for

all pairs (i , j ) with i < j < k since only bk has changed. Adding up (∗) for j = k
and j = ℓ we obtain

b̃k = bk +q ·bℓ = b∗
k +

∑

i<ℓ

(
µi k +q ·µiℓ

)

︸ ︷︷ ︸
=µ̃i k

·b∗
i + (µℓk +q)︸ ︷︷ ︸

=µ̃ℓk

·b∗
ℓ +

k−1∑

i=ℓ+1

µi k︸︷︷︸
=µ̃i k

b∗
i

Then we see that µ̃i k = µi k for all i > ℓ. Moreover, we can choose q ∈ Z so that

|µ̃ℓ,k | = |µℓ,k + q | ≤ 1
2

. In fact, also µ̃i j = µ̃i j for all j > k, though we would need

that property. In the figure below we show which coefficients are guaranteed to

not have changed:
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µℓk

µi j : j < k

unchanged coefficients

ℓ

k

Now suppose we denote the above procedure by

B̃ := update(B ,ℓ,k) =
(
b1, . . . ,bk−1,bk −⌈µℓ,k⌋bℓ,bk+1, . . . ,bn

)
.

Then it is clear that we need to go through all index pairs (ℓ,k) in the right order

and we can bring all coefficients into the interval [−1
2

, 1
2

]:

(1) FOR k = 1 TO n DO

(2) FOR ℓ= k −1 DOWNTO 1 DO

(3) B := update(B ,ℓ,k)

That shows the claim.

1.5.2 The main procedure

The crucial definition in the LLL-algorithm is the following:

Definition 1.16. Let B ∈ Rn×n be a lattice basis and let µi j be the coefficients

from the Gram-Schmidt orthogonalization. The basis is called LLL-reduced if

the following is satisfied

• Coefficient reduced: |µi , j | ≤ 1
2

for all 1≤ i < j ≤ n

• Lovász condition: ‖b∗
i ‖

2
2 ≤ 2‖b∗

i+1
‖2

2 for i = 1, . . . ,n −1

First, let us see why this definition is desirable:

Lemma 1.17. Let B = (b1, . . . ,bn) be an LLL-reduced basis. Then ‖b1‖2 ≤ 2n/2 ·
λ1(Λ(B )).
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Proof. Note that the 1st vector in the basis has b1 = b∗
1 . Applying the Lovász

condition gives

‖b1‖2
2 = ‖b∗

1‖
2
2 ≤ 2‖b∗

2‖
2
2 ≤ . . . ≤ 2i−1 · ‖b∗

i ‖
2
2

On the other hand we can use Theorem 1.11 to lower bound the length of the

shortest vector:

λ1(Λ(B ))2 ≥ min
i=1,...,n

‖b∗
i ‖

2
2 ≥ min

i=1,...,n
2−(i−1)‖b1‖2

2 ≥ 2−n · ‖b1‖2
2

Taking square roots then gives the claim.

This is the algorithm that will compute an LLL-reduced basis:

LLL-algorithm

Input: A lattice basis B = (b1, . . . ,bn) ∈Rn×n

Output: An LLL reduced basis B̃ = (b̃1, . . . , b̃n)

(1) Compute a Gram Schmidt orthogonalization b∗
1 , . . . ,b∗

n with coefficients µi j and

update whenever we change the order of the basis

(2) WHILE B is not LLL-reduced DO

(3) Apply coefficient reduction so that |µi j | ≤ 1
2

(4) If there is an index i with ‖b∗
i ‖

2
2 > 2‖b∗

i+1
‖2

2 then swap bi and bi+1 in the

ordering.

Obviously, the algorithm only terminates when it has found an LLL-reduced

basis. Let us now prove that the algorithm terminates within a polynomial num-

ber of iterations. For this sake, we consider the potential function

Φ(B ) =
n∏

i=1

‖b∗
i ‖

n+1−i
2

and we want to argue that it is decreasing. Intuitively, the potential function

wants the vectors b∗
i with small i to be as small as possible. In particular, the

point is that we swap i with i + 1 if ‖b∗
i ‖2 is a lot longer than ‖b∗

i+1
‖2; one can

expect that this should decrease the potential function. Let us define

Volk (b1, . . . ,bk )

as the k-dimensional volume of the parallelepiped spanned by b1, . . . ,bk . Note

that by orthogonalizing the vectors, we do not change the volume of that paral-

lelepiped (this is again Cavalieri’s principle). Hence

Volk(b1, . . . ,bk) =
k∏

i=1

‖b∗
i ‖2
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We can use this to rewrite the potential function as

Φ(B ) =
n∏

k=1

Volk(b1, . . . ,bk )

We want to really understand what’s going on, so here is a standalone lemma:

Lemma 1.18. Suppose we have vectors (a1, a2) with Gram Schmidt orthogonal-

ization (a∗
1 , a∗

2 ) so that ‖a∗
1 ‖

2
2 ≥ 2‖a∗

2 ‖
2
2 and µ := 〈a1,a2〉

‖a1‖2
2

≤ 1
2

. Let (a∗∗
2 , a∗∗

1 ) be the

Gram Schmidt Orthogonalization for the reverse order (a2, a1). Then ‖a∗∗
2 ‖2 ≤√

3
4
· ‖a∗

1 ‖2.

a1

a2

a∗
1

a∗
2

0 a1

a2

a∗∗
1

a∗∗
2

0

Proof. Let us first write down the vectors in both orthogonalizations depending

on a1, a2 and the inner product µ:

a∗
1 = a1, a∗

2 = a2 −
〈a1, a2〉
‖a1‖2

2︸ ︷︷ ︸
=µ

a1, and a∗∗
2 = a2

This can be rewritten to a∗∗
2 = a2 = a∗

2 +µa∗
1 . We inspect the square of the desired

ratio and get:

‖a∗∗
2 ‖2

2

‖a∗
1 ‖

2
2

=
‖a∗

2 +µ ·a∗
1 ‖

2
2

‖a∗
1 ‖

2
2

Pythagoras & a∗
1 ⊥a∗

2=
‖a∗

2‖
2
2 +µ2‖a∗

1‖
2
2

‖a∗
1 ‖

2
2

≤
‖a∗

2 ‖
2
2

‖a∗
1 ‖

2
2︸ ︷︷ ︸

≤1/2

+
1

4
≤

3

4

Lemma 1.19. In each iteration Φ(B ) reduces by a constant factor.

Proof. First, observe that making B coefficient-reduced does not change the Gram-

Schmidt orthogonalization and hence leaves the potential functionΦ(B ) unchanged.

Now, let B be a coefficient-reduced basis at the beginning of (4) and let B̃ be the
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basis after we swapped index i . Then the whole Gram-Schmidt orthogonalisa-

tion of B and B̃ is identical — except for vectors i and i +1. We can hence write

Φ(B̃ )

Φ(B )
=

Voli (b1, . . . ,bi−1,bi+1)

Voli (b1, . . . ,bi−1,bi )

Let a1 be the projection of bi on the subspace U := span{b1, . . . ,bi−1}⊥ and let

a2 be the projection of bi+1 on that subspace. In the notation of the previous

lemma, let (a∗
1 , a∗

2 ) be the orthogonalization of (a1, a2) (in that order) and let

(a∗
2 , a∗

1 ) be the orthogonalization of (a2, a1) (again in that order). Then a∗
1 = b∗

i
and a∗∗

2 = b̃∗
i+1

. Since the volumes of both parallelepipeds is proportional to the

distance of the last vector to the subspace U , we get

Φ(B̃ )

Φ(B )
=

voli (b1, . . . ,bi−1,bi+1)

voli (b1, . . . ,bi−1,bi )
=

‖a∗∗
2 ‖2

‖a∗
1 ‖2

≤
√

3

4
< 1

using Lemma 1.18.

Now it is easy to show that the LLL is a polynomial time algorithm. Origi-

nally, B could have been any matrix with rational entries. But we can scale any

such matrix so that the entries become integral. Note that an entry Bi j used

≈ log2(|Bi j |) bits in the input. Hence, a polynomial time algorithm should have

a running time that is polynomial in n and in log(‖B‖∞). Moreover, the squared

volume of a parallelepiped that is spanned by integral vectors will be integral.

Lemma 1.20. Let b1, . . . ,bk ∈ Zn be linearly independent integral vectors. Then

Volk (b1, . . . ,bk)2 ∈Z≥1.

Proof sketch. We have restricted our attention to full rank lattices so far. But there

are more general definitions for lattices of lower rank. Let B = (b1, . . . ,bk) ∈Zn×k .

Consider the lattice Λ(B ) spanned by b1, . . . ,bk . One can show that5

Volk(b1, . . . ,bk ) =
√

detk (B T B )

Since B T B ∈ Zk×k is an integral matrix one has detk (B T B ) ∈ Z and the claim

follows.

The last lemma implies that in particular volk (b1, . . . ,bk) ≥ 1 for all k = 1, . . . ,n.

Lemma 1.21. Suppose that B ∈Zn×n . Then the LLL-algorithm applied to B takes

O(n2 logmax{n,‖B‖∞}) many iterations.

5The reader may want to double-check that in case of k = n, this is exactly |det(B )|.
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Proof. Suppose that b1, . . . ,bn are the original columns of the input matrix B .

Since the Gram-Schmidt process is a projection, it cannot make vectors longer.

Hence ‖b∗
i ‖2 ≤ ‖bi‖2 ≤

p
n · ‖B‖∞. Hence before the first iteration, the potential

function is bounded by Φ(B ) ≤ (
p

n ·‖B‖∞)n2
. Now, let B̃ = (b̃1, . . . , b̃n) be a matrix

in an arbitrary iteration of the LLL algorithm. Since B̃ is obtained by subtracting

and permuting columns in the integral matrix B , we know that B̃ ∈ Zn×n . As we

observed earlier, we have

Φ(B̃ ) =
n∏

k=1

Volk (b1, . . . ,bk)︸ ︷︷ ︸
≥1

≥ 1

Since the potential function decreases by a constant factor in each iteration, the

claim follows.

1.5.3 The orthogonality defect

We want to further discuss that the LLL-algorithm does not only find a short vec-

tor, but the LLL-reduced basis has a lot more properties. The LLL-reduced basis

is really a “good” basis in the sense that at least it is approximately orthogonal.

b b b b b

b b b b

b b b b b

b b b b

0
b1

b2

“good” basis

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

0
b1

b2

“bad” basis

For a lattice basis B = (b1, . . . ,bn), we define the orthogonality defect as

γ(B ) :=
∏n

i=1 ‖bi‖2∏n
i=1 ‖b∗

i ‖2

Note that γ(B ) ≥ 1 and we have γ(B ) = 1 if and only if b1, . . . ,bn are pairwise

orthogonal. So, γ(B ) is indeed a measure for how orthogonal a basis is. Even

from a non-constructive viewpoint, it is non-trivial to argue that for every lattice

there even exists a basis with γ(B ) bounded by some function of n.

Lemma 1.22. The orthogonality defect of an LLL-reduced basis B = (b1, . . . ,bn) is

γ(B ) ≤ 2n2/2. Moreover one has ‖bk‖2 ≤ 2k/2‖b∗
k‖2 for all k = 1, . . . ,n.
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Proof. Now it is important that we also have control over intermediate vectors.

Recall that by the properties of the Gram-Schmidt orthogonalization, we have

bk = b∗
k +

k−1∑

i=1

µi k b∗
i .

Taking norms, we get

‖bk‖2
2 =

∥∥∥b∗
k+

k−1∑

i=1

µi k b∗
i

∥∥∥
2

2
= ‖b∗

k‖
2
2+

k−1∑

i=1

µ2
i k︸︷︷︸

≤1/4

‖b∗
i ‖

2
2︸ ︷︷ ︸

≤2k−i ‖b∗
k ‖

2
2

≤ ‖b∗
k‖

2
2·

(
1+

1

4

k−1∑

i=1

2k−i
)

︸ ︷︷ ︸
≤2k

≤ 2k ·‖b∗
k‖

2
2

using that ‖b∗
j ‖

2
2 ≤ 2‖b∗

j+1
‖2

2 for all j = 1, . . . ,n −1. Then being generous with the

constants, we get that

γ(B ) =
n∏

k=1

‖bk‖2

‖b∗
k‖2︸ ︷︷ ︸

≤2n/2

≤ 2n2/2.

Lemma 1.23. An LLL-reduced basis B = (b1, . . . ,bn) satisfies maxi=1,...,n ‖bi‖2 ≤
2nλn(Λ(B )).

Proof. Set Λ := Λ(B ). Consider the subspace U := span{b1, . . . ,bn−1} and fix a

point x =
∑n

i=1 bi zi ∈ Λ with zn 6= 0 and ‖x‖2 ≤ λn(Λ). Then λn(Λ) ≥ ‖x‖2 ≥
d(x ,U ) = |zn |·‖b∗

n‖2 ≥ ‖b∗
n‖2. So it remains to relate the length of the basis vectors

to b∗
n .

Let j be the index with ‖b j‖2 = maxi=1,...,n ‖bi‖2. Then ‖b j ‖2 ≤ 2n/2‖b∗
j ‖2 ≤

2n‖b∗
n‖2 ≤ 2nλ(Λ) where we use the “moreover” part of Lemma 1.22 as well as the

fact that ‖b∗
i ‖

2
2 ≤ 2‖b∗

i+1
‖2

2 for all i = 1, . . . ,n −1 as the basis is LLL-reduced.

A different definition of a reduced basis is due to Korkine and Zolotarev and

is called K-Z-reduced basis. Such a basis has an orthogonality defect of at most

nn and we will see the construction later in Section 1.9. However, no polynomial

time algorithm is known to compute such a basis.

1.6 Breaking Knapsack Cryptosystems

The approximation guarantee of 2n/2 provided by the LLL-algorithm may sound

weak, but it is already enough for a couple of very surprising applications. We

want to show-case one of them here.
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For a public key cryptosystem, the goal is that two parties A (say Alice) and B
(say, Bob) can communicate a secret message over a public channel without that

any third party C could decrypt it.

Alice Bob

unsecure

channel

A

B

A

Alice creates a

public key and

a private key

Bob receives the

public key and uses

it to encrypt his

secret message x for Alice

Alice uses her private

key to decode

the message

public key

encrypted message x

To be more precise, there will be a public key, which Alice would generate and

then put on her webpage. Then Bob could see that public key and he would

use it to encrypt a message that he wants to send to Alice. Even if a third party

wiretaps the message that Bob sends to Alice and knows the public key, we want

that C is still unable to decrypt the message. The important fact behind such a

cryptosystem is that Alice and Bob do not need to agree on any key in advance –

it suffices to communicate over the unsecure channel.

The idea behind the Knapsack cryptosystem is the following: Alice could cre-

ate some large numbers a1, . . . , an ∈ N and publish them as public key. If Bob

wants to send a secret message x ∈ {0,1}n to Alice, he could compute the sum

S :=
∑n

i=1 ai xi and send Alice the number S. Knapsack is an NP-hard problem,

so Bob could hope that his message is safe enough. But in any meaningful cryp-

tosystem, at least the intended receiver Alice should be able to decrypt the mes-

sage efficiently. So, the Knapsack instance has to be “simple”. One way of having

an easy Knapsack instance is if the numbers ai are super-increasing, that means

there is a permutation π : [n] → [n] so that

aπ(i ) >
∑

j :π( j )<π(i )

a j ∀i ∈ [n].

It is a simple exercise to show that in this case, given a sum S =
∑n

i=1 ai xi , one

can recover the vector x ∈ {0,1}n with a polynomial time greedy-style algorithm.
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But of course, also a third party C would know how to solve such a Knapsack prob-

lem. So, we need one more ingredient to “hide” the super increasing sequence.

We simply take a large number M >
∑n

i=1
ai and some random W ∈ {1, . . . , M −1}

with gcd(M ,W ) = 1 and compute numbers ãi := ai ·W mod M . Here it is help-

ful to remember that the map a 7→ a ·W mod M is a bijection on {0, . . . , M − 1}

and the inverse function is simply a 7→ a ·W −1 mod M . The inverse W −1 with

W ·W −1 ≡M 1 exists as M and W are coprime. We use that function to randomly

“shuffle” the numbers:

0

0

M −1

M −1

a1 a2 a3

ã1ã2 ã3

·W mod M·W −1 mod M

Now, those numbers ã1, . . . , ãn form the public key. Note that the numbers of the

super increasing sequence are now wildly mixed. Now, Bob receives the public

key ã1, . . . , ãn and computes the sum S̃ =
∑n

i=1 ãi xi . Then he sends the message S̃
to Alice. Alice computes S := S̃ ·W −1 mod M and then uses the super-increasing

property to compute the unique vector x satisfying S =
∑n

i=1 ai xi (here we use

that
∑n

i=1 ai xi ≤ M). Note that her private key consists of the pair (M ,W ) (and

the permutation of the indices). The whole public key Knapsack crypto system

can be visualized as follows:

Alice Bob

unsecure

channel

A

B

A

Alice generates

super inc. (a1, . . . , an)

and M ,W with

M >
∑n

i=1
ai ,gcd(W , M) = 1.

Computes ãi := ai ·W mod M
Bob has secret

message x ∈ {0,1}n

Computes S̃ :=
∑n

i=1
ãi xi

Alice computes

S = S̃ ·W −1 mod M . Then

finds x with S =
∑n

i=1
ai xi

public key ã1, . . . , ãn

encrypted message S̃

It seemed that in order to decrypt the message without knowing the private

key (the numbers M ,W ), one would have to solve the Knapsack problem. The re-

maining ingredient for a working cryptosystem would be the generation of a hard
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Knapsack instance. Intuitively one might think that taking a random instance

with large enough coefficients would give such a hard instance. Surprisingly, this

is false due to the LLL algorithm.

1.6.1 A polynomial time algorithm to solve sparse knapsack in-

stance

While Knapsack is NP-hard in the worst case, it turned out that very sparse Knap-

sack instances admit polynomial time algorithms. Note that here, we do not try

to optimize any constant.

Theorem 1.24 (Lagarias, Odlyzko 1985). Suppose we generate a Knapsack instance

by picking independently a1, . . . , an ∼ { 1
2
·24n2

, . . . ,24n2
} at random. Then take a

vector x ∈ {0,1}n and compute S :=
∑n

i=1
ai xi . Then there is a polynomial time

algorithm which on input (a,S), with high probability recovers the vector x .

Proof. Let us define an (n +1)-dimensional basis

B = (b0,b1, . . . ,bn) =




0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 0 . . . 1

2nS −2n a1 −2n a2 −2n a3 . . . −2n an




and let us consider the lattice Λ(B ) that is spanned by the columns b0, . . . ,bn of

this matrix. First of all, we claim that this lattice contains a very short vector,

namely b0 +
∑n

i=1 xi bi =
(

x

0

)
. The length of this vector is ‖x‖2 ≤

p
n. Hence, we

can use the LLL-algorithm to compute a vector in the lattice Λ(B ) of length at

most ‖x‖2 ·2n/2 ≪ 2n . It remains to show that any such short vector is actually

a multiple of (x ,0) (in fact, the LLL-algorithm returns a basis and the following

claim even implies that the shortest vector in that basis must be ±(x ,0)):

Claim I. With high probability, the only vectors z ∈Λ(B ) with ‖z‖2 < 2n are multi-
ples of (x ,0).

Let z ∈Λ(B ) be a lattice vector with ‖z‖2< 2n . We can write z =αb0+
∑n

i=1
yi bi

for integer coefficients α, y1, . . . , yn ∈ Z. The last coordinate of z is 2n · (αS −∑n
i=1

yi ai ). Since the absolute value of this number has to be less than 2n , we

know that indeed
∑n

i=1 yi ai = αS. Since ‖z‖2 < 2n , we also know that ‖y‖∞ ≤ 2n .

Then α≤ 2n ·2n , since otherwise, we would have |α|S >
∑n

i=1 ai yi .
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Note that the number of triples (x , y ,α) with x ∈ {0,1}n , ‖y‖∞ ≤ 2n and |α| ≤
2n ·2n is bounded by 2n ·2n·(n+1) ·2n ·32n+1 ≤ 23n2

. So, in order to finish Claim I it

suffices to show the following:

Claim II. Fix a triple (x , y ,α) with y ∉Zx . Then

Pr
a∼[24n2

]n

[ n∑

i=1

yi ai =α ·
( n∑

i=1

ai xi

)]
≤

1

2
·2−4n2

(∗)

Proof of Claim II. By assumption y is not a multiple of x , so we know that so there

is an index j with y j 6=αx j . Now suppose that the value of a1, . . . , a j−1, a j+1, . . . , an

has been fixed and we just pick a j ∼ { 1
2
·24n2

, . . . ,24n2
} at random. Then the equa-

tion in (∗) can be rearranged to

a j (y j −αx j )︸ ︷︷ ︸
6=0

=α
∑

i 6= j
xi ai −

∑

i 6= j
yi ai (∗∗)

It doesn’t actually matter what the right hand side of (∗∗) is, just observe that

there will be at most one choice of a j that could satisfy the equation. The bound

on the probability follows since we are drawing a j from { 1
2
·24n2

, . . . ,24n2
}.

The original attack on the Knapsack cryptosystem was by Shamir. The gener-

alized argument for low-density subset-sum problem is by Lagarias and Odlyzko

with a later simplification of Frieze. For more information, we recommend the

survey The Rise and Fall of Knapsack Cryptosystems by Odlyzko [Odl90].

1.7 The dual lattice and applications

An important point is that Minkowski’s Theorem is inherently non-constructive,

that means given a symmetric convex set K with Voln(K ) > 2n , we know it must

contain a non-zero integer point — but the proof method does not provide a

polynomial time algorithm to find that point. One might think that this is a pure

artefact of the proof and a different proof technique will be algorithmic. But such

a proof would have tremendous consequences. The reader may be reminded,

that there are cryptosystems that rely on the assumption that it is hard to approx-

imate the Shortest Vector Problem up to small polynomial factors. Moreover, one

can show that even an approximate constructive proof for Minkowski’s Theorem

would imply an approximation algorithm for λ1(Λ). The proof is via an applica-

tion of the concept of dual lattices.



32 CHAPTER 1. INTRODUCTION TO LATTICES

1.7.1 Dual lattices

Let Λ⊆Rn be a full-rank lattice. Then the dual lattice is

Λ
∗ = {y ∈Rn | 〈y , x〉 ∈Z∀x ∈Λ}

In order to get some intuition, take a lattice vector x ∈ Λ. Then all dual lattice

vectors lie on the hyperplanes Hk = {y ∈ Rn | 〈x , y〉 = k} with k ∈ Z. In particular,

each dual vector y ∈Λ
∗ will either be orthogonal to x or it will have a separation

of at least 1
‖x‖2

from H0. Loosely speaking, if lattice vectors in some direction are

short in Λ, they will be long in this direction in Λ
∗ and vice versa. We reproduce

a helpful picture from [Reg09a]:

b b b b b b b

b b b b b b b

x

y

lattice Λ

b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b

1
‖x‖2

1
‖y‖2

dual lattice Λ
∗

The next lemma will show that Λ∗ is indeed a lattice and we will see that its

basis is just the transpose inverse of the original basis:

Lemma 1.25. Let Λ := Λ(B ) be a full rank lattice generated by B ∈ Rn×n . Then

(B−1)T is a lattice basis for the dual lattice Λ
∗.

Proof. Let us define Λ
′ := {(B−1)T µ |µ ∈Zn} as the candidate lattice. For any vec-

tors x = Bλ ∈ Λ and y = (B−1)Tµ with coefficients λ,µ ∈ Zn , the inner product

is

〈x , y〉 = (Bλ)T ((B−1)Tµ) =λT B T (B−1)T
︸ ︷︷ ︸

=In

µ= 〈λ,µ〉 ∈Z

and hence Λ
′ ⊆Λ

∗.

For the other direction, take a point y ∈Λ
∗. Since (B−1)T has full rank, there

must be a unique vector µ ∈Rn with y = (B−1)Tµ. Then

Z
Def. dual lattice

⊇ {〈x , y〉 : x ∈Λ} = {〈λ,µ〉 : λ ∈Zn}
λ=ei⊇ {µ1, . . . ,µn}

We see that µ∈Zn and hence Λ
∗ ⊆Λ

′.
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We can use this insight to derive

Lemma 1.26. For a full rank lattice Λ=Λ(B ) the following holds:

(i) (Λ∗)∗ =Λ

(ii) det(Λ∗) = 1
det(Λ)

.

Proof. The first claim follows from the last lemma with the observation that (((B−1)T )−1)T =
B . The 2nd claim follows from det(Λ∗)·det(Λ) = |detn((B−1)T )·detn(B )| = |detn(B−1B )| =
|detn(In)| = 1.

1.7.2 Solving Shortest Vector via Minkowski’s Theorem

We will implicitly use the following lemma — we postpone the proof to Section 1.8.

Lemma 1.27. Let B ∈ Rn×n be a basis for lattice Λ := Λ(B ) and let y ∈ Qn . Then

there is a polynomial time algorithm to find a lattice basis B ′ for the sublattice

Λ
′ := {x ∈Λ | 〈x , y〉 = 0}.

Recall that Minkowski’s Theorem guarantees that there is always a lattice vec-

tor x with ‖x‖2 ≤
p

n ·det(Λ)1/n . Now we show the proof that an approximate

version of Minkowski’s theorem would imply an approximation algorithm for the

Shortest Vector Problem.

Theorem 1.28 (Lenstra-Schnorr 1990). Suppose that we have a polynomial time

algorithm that for any n-dimensional lattice Λ is able to find a vector x ∈Λ \ {0}

with ‖x‖2 ≤ f (n)·det(Λ)1/n , where f (n) is a non-decreasing function. Then there

exists a polynomial time f (n)2-approximation algorithm for the Shortest Vector

problem in any lattice.

Proof. First, we use the assumed algorithm to find a lattice vector x ∈ Λ \ {0} of

length ‖x‖2 ≤ f (n) ·det(Λ)1/n . Is that point x a good approximation for the short-

est vector? Well, not always as it is perfectly possible that λ1(Λ) ≪ det(Λ)1/n . So,

we apply the algorithm again, but now to find a vector y ∈ Λ
∗ \ {0} in the dual

lattice, with ‖y‖2 ≤ f (n)·det(Λ∗)1/n = f (n)

det(Λ)1/n . Crucially, by definition of the dual

lattice, we know that 〈x ′, y〉 ∈Z for all x ′ ∈Λ. In other words, all lattice vectors in

Λ lie on hyperplanes of the form 〈·, y〉 ∈Z.
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0

y

b b b

b b b

b b b

b b b

1
‖y‖2

≥ det(Λ)1/n

f (n)

〈 · , y〉 = 2

〈 · , y〉 = 1

〈 · , y〉 = 0

〈 · , y〉 =−1

∈Λ

Let x∗ ∈Λ\ {0} be the unknown shortest vector. We distinguish two cases:

• Case 1: One has 〈x∗, y〉 ∈Z\{0}. The distance of the hyperplanes 〈·, y〉 =Z to

each other is 1
‖y‖2

, hence we have a lower bound of ‖x∗‖2 ≥ 1
‖y‖2

≥ det(Λ)1/n

f (n)
.

Our found lattice vector has length ‖x‖2 ≤ f (n) ·det(Λ)1/n ≤ f (n)2 · ‖x∗‖2,

hence x is the desired f (n)2-approximation.

• Case 2: One has 〈x∗, y〉 = 0. In this case, the shortest vector x∗ lies in the

sublattice Λ
′ := {x ′ ∈Λ : 〈x ′, y〉 = 0} of rank n −1. We apply our approxima-

tion algorithm recursively to that sublattice and inductively obtain a lattice

vector x ′ ∈Λ
′\{0} of length ‖x ′‖2 ≤ f (n−1)2 ·λ1(Λ′) ≤ f (n)2 ·λ1(Λ). Here we

have used that f is non-decreasing. Implicitly, we also used Lemma 1.27 to

compute the basis for the sublattice Λ
′ in polynomial time.

While we do not know in our algorithm in which case we are in, we can com-

pare the length x with the length of the vector provided by Case 2 and return the

shorter one.

We should remark that the rank of the lattice {x ∈ Λ | 〈x , y〉 = 0} is indeed

n−1, that means there are indeed n−1 linearly independent lattice vectors in the

hyperplane 〈x , y〉 = 0. The only prerequisite that is needed for this conclusion is

that y is rational. But it is possible that the sublattice is a lot sparser, that means

the determinant of the sublattice might be a lot larger than det(Λ).

1.8 The Hermite Normal Form

The question that we want to answer here is, how one can compute a lattice ba-

sis for the intersection of a lattice Λ with a subspace. For this section, we follow

Chapter 4 and 5 in [Sch99]. Let us keep the situation a bit more general and con-

sider a matrix B = (b1, . . . ,bm) ∈Qn×m with m ≥ n and full row rank, that means

span(b1, . . . ,bm) = Rn . We also want to consider the lattice Λ(B ) = {
∑m

i=1λi bi |
λ1, . . . ,λm ∈Z}. Note that now the vectors spanning the lattice are not necessarily
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linearly independent. However, we will see that there is a lattice basis B̃ ∈Qn×n

so that Λ(B̃) =Λ(B ).

The first question is, how can we change the matrix B without changing the

generated lattice?

Definition 1.29. The following operations on a matrix B = (b1, . . . ,bm) ∈ Rn×m

are called unimodular column operations:

a) Exchanging columns bi and b j for i 6= j .

b) Replacing bi by −bi .

c) Replacing bi by bi +α ·b j for j 6= i and some α ∈Z.

The following is easy to see:

Corollary 1.30. Let B ∈Rn×m be a regular matrix and let B̃ be the matrix after any

number of unimodular column operations. Then Λ(B ) =Λ(B̃ ).

The question arises whether there is a structurally rich “normal form” that

one can bring every lattice basis into. And indeed, this normal form exists:

Definition 1.31. Let B ∈ Qn×m be a matrix. Then we say that B is in Hermite
normal form if

i) One has B = (L,0) where L is a lower triangular matrix

ii) Bi j ≥ 0 for all i , j ∈ [n]

iii) Each diagonal entry Bi i is the unique maximum entry for that row i

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

B11

B22

B33

. . .

Bnn

[0,B22[∋
[0,B33[∋

[0,Bnn[∋

The first observation is that as B is rational, we can scale B so that B ∈ Zn×m .

Before we move on with the general case, let us discuss the special case that B ∈
Z1×m as only one row. For this case, we know that the Euclidean algorithm can

add and subtract entries until only one non-zero entry is left which can be moved
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to the leftmost entry. Note that the non-zero entry will be precisely the greatest

common divisor:

(B11, . . . ,B1m)
unimodular column operations7→

(
gcd(B11, . . . ,B1m),0, . . . ,0

)

Note that the emerging row is indeed in Hermite normal form. We will now see

an algorithm that is a generalization of the Euclidean algorithm to the matrix

world:

Theorem 1.32. There is an algorithm that takes any matrix B ∈Zn×m as input and

performs poly(n,m, log‖B‖∞) many unimodular row operations to obtain B̃ in

Hermite normal form.

Proof. Let B ∈Zn×m be the input matrix. We will now apply unimodular column

operations until B is in Hermite normal form:

(1) FOR i = 1 TO n DO

(2) Perform the Euclidean algorithm to entries (Bi i ,Bi ,i+1, . . . ,Bi ,m) (actu-

ally to columns i , . . . ,m) and obtain entries (B ′
i i ,0, . . . ,0)

0 0 0 0 0 0 0

0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Bi i Bi m

0 0 0 0 0 0 0

0 0 0 0 0 0

∗ ∗ 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

B ′
i i

(3) Add multiples of column i to columns 1, . . . , i −1 until 0 ≤ Bi j < Bi i for

all j = 1, . . . , i −1

We know that Euclid’s algorithm takes polynomial time, hence each iteration of

(2) takes a polynomial number of column operations. It is somewhat clear that

the matrix that we get at the end will indeed be in Hermite normal form.

The above argument shows that the number of iterations is bounded. But it

does not immediately imply that the encoding length of any intermediate num-

ber is polynomial as well. In fact, it takes quite some effort. To get that result one

has to do computations modulo M where M is the largest absolute value of any

subdeterminant of B . The details can be found in [Sch99].

Corollary 1.33. For any integral matrix A ∈Zn×m one can compute a unimodular

matrix U ∈ Zm×m in time poly(n,m, log‖A‖∞) so that AU = (B ,0) is in Hermite

normal form.
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One can also show the following:

Theorem 1.34. The Hermite normal form of every matrix is unique.

Again, for a proof, see [Sch99]. We call a subspace U ⊆ Rn rational if it has a

basis whose vectors are from Qn (or equivalently is U = {x ∈Rn | 〈ai , x〉 = 0 for i =
1, . . . ,k} for a1, . . . , ak ∈Rn).

Lemma 1.35. Let Λ(B ) be a full rank lattice with B ∈ Qn×n and let U ⊆ Rn be

a rational subspace. Then there is a polynomial time algorithm to compute a

lattice basis B ′ ∈Qn×dim(U ) so that Λ(B ′) =Λ∩U .

Proof. Let k := dim(U ). After applying a (rational) linear transformation we may

assume that U = span(en−k+1 , . . . ,en). Let B̃ = (b1, . . . , b̃n) be the Hermite normal

form of B . Then the sublattice Λ∩U is spanned by the vectors b̃n−k+1, . . . , b̃n .

1.9 Korkine-Zolotarev reduced basis

We have seen in Section 1.5.3 that an LLL-reduced lattice basis B has an orthog-
onality defect of at most 2n2/2. Moreover, using the LLL-algorithm one can com-

pute such a basis in polynomial time. One might wonder whether an even bet-

ter lattice basis can be obtained if we drop the requirement of a polynomial

time algorithm. And indeed we will see that for any lattice Λ there is always a

basis B = (b1, . . . ,bn) so that the orthogonality defect γ(B ) =
∏n

i=1
‖bi ‖2

det(Λ)
satisfies

γ(B ) ≤ nn . To make this sound more impressive, consider a lattice, normalized

so that det(Λ) = 1. Then in an LLL-reduced basis, the geometric average length

of a basis vector is γ(B )1/n ≤ 2n/2. In contrast, the basis that we will discuss here

will satisfy γ(B )1/n ≤ n. For more details on this topic we refer to the textbook of

Micciancio and Goldwasser [MG02].

To fix some notation, for a subspace U ⊆Rn we define U⊥ := {x ∈Rn | 〈x , y〉 =
0 ∀y ∈U } as the orthogonal complement. We also writeπU : Rn →U withπU (x) :=
argmin{‖x−y‖2 : y ∈U } as the orthogonal projection of x into U . In particular for

y ∈U and z ∈U⊥ we have πU (y + z)= y .
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0

x

πU (x)

U

U⊥

R2

Again, for a lattice basis B = (b1, . . . ,bn) we denote (b∗
1 , . . . ,b∗

n) as the Gram-Schmidt

orthogonalization with coefficients µi j := 〈b j ,b∗
i 〉

‖b∗
i ‖

2
2

.

Definition 1.36. Let B = (b1, . . . ,bn) be the basis for a full-rank lattice Λ. De-

fine a subspace Ui := span{b1, . . . ,bi−1}⊥ = span{b∗
i , . . . ,b∗

n}. We call the basis B

Korkine-Zolotarev reduced (KZ-reduced) if

(a) For all i = 1, . . . ,n, the vector b∗
i is a shortest lattice vector in πUi (Λ).

(b) The basis B is coefficient-reduced.

To get some intuition, note that U1 = Rn and b1 = b∗
1 has to be the shortest

lattice vector in Λ. Moreover, U2 = {x ∈ Rn | 〈x ,b∗
1 〉 = 0} and πU2 (Λ) is the (n −1)-

dimensional lattice that is obtained by projecting Λ on U2. Again, b∗
2 =πU2 (b2) is

the shortest lattice vector in πU2 (Λ). For example, below is a KZ-reduced basis in

R2:

U2

b b b

b b b

b b b

b1

b2

b∗
2

0

∈πU2 (Λ)

∈Λ

It will also be convenient to remember that for all i = 1, . . . ,n and x ∈Rn one has

πUi (x) =
n∑

j=i
〈x ,b∗

j 〉 ·
b∗

j

‖b∗
j ‖

2
2
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We know that any basis can be made coefficient-reduced in polynomial time

without changing the Gram-Schmidt orthogonalization, hence (b) comes for free.

On the other hand, finding a KZ-reduced must be at least NP-hard as it contains a

shortest lattice vector as b1. Also, for an LLL-reduced basis we had the condition

‖b∗
i+1

‖2
2 ≥

1
2
‖b∗

i ‖
2
2 that we are not requiring for a KZ-reduced basis. Surprisingly,

such a condition is implicitly satisfied anyway:

Lemma 1.37. For a KZ-reduced basis B = (b1, . . . ,bn) one has ‖b∗
i+1

‖2
2 ≥ 3

4
‖b∗

i ‖
2
2

for all i = 1, . . . ,n −1.

Proof. First, we have

πUi (bi+1) =
n∑

j=i
〈bi+1,b∗

j 〉︸ ︷︷ ︸
=0 if j>i+1

·
b∗

j

‖b∗
j ‖

2
2

=
〈bi+1,b∗

i+1
〉

‖b∗
i+1

‖2
2︸ ︷︷ ︸

=1

b∗
i+1+

〈bi+1,b∗
i 〉

‖b∗
i ‖

2
2︸ ︷︷ ︸

=µi ,i+1

b∗
i = b∗

i+1+µi ,i+1b∗
i .

Then we can estimate

‖b∗
i ‖

2
2

b∗
i shortest vector

≤ ‖πUi (bi+1)‖2
2

orthogonality
= ‖b∗

i+1‖
2
2+µ

2
i ,i+1︸ ︷︷ ︸
≤1/4

‖b∗
i ‖

2
2

coef.-reduced
≤ ‖b∗

i+1‖
2
2+

1

4
‖b∗

i ‖
2
2,

using that b∗
i is a shortest vector in the latticeπUi (Λ). Rearranging gives the claim.

Next, we will prove that every lattice admits a KZ-reduced basis. In fact, we

will provide an algorithm to find a KZ-reduced basis with n calls to a shortest

vector oracle. By a slight abuse of notation, we will start with a given latticeΛ and

then iteratively determine the Gram-Schmidt orthogonalization b∗
1 , . . . ,b∗

n for the

KZ-reduced basis in this order. Only after this, we will determine the vectors

b1, . . . ,bn .

Exponential time algorithm for KZ-reduction

Input: Full-rank lattice Λ⊆Rn

Output: KZ-reduced basis b1, . . . ,bn for Λ

(1) FOR i = 1 TO n DO

(2) Define Ui := {x ∈Rn | 〈x ,b∗
j 〉 = 0∀ j = 1, . . . , i −1}.

(3) Compute the shortest vector in πUi (Λ) \ {0} and call it b∗
i .

(4) Given the Gram-Schmidt orthogonalization (b∗
1 , . . . ,b∗

n), recover a basis

B = (b1, . . . ,bn) that has this GS orthogonalization and satisfies −1
2
≤

µi j ≤ 1
2

for all 1 ≤ i < j ≤ n in polynomial time.
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Lemma 1.38. The algorithm computes a KZ-reduced basis B = (b1, . . . ,bn) for the

lattice Λ.

Proof. It suffices to show how to extend b∗
1 , . . . ,b∗

n to any basis of Λ in step (4)

— then the procedure in Lemma 1.15 can make the basis coefficient-reduced in

polynomial time. For i ∈ {1, . . . ,n}, let bi ∈Λ be an arbitrary vector with πUi (bi ) =
b∗

i , which exists by choice of the b∗
i . First, note that this will give n linearly

independent lattice vectors and the Gram-Schmidt orthogonalization is clearly

b∗
1 , . . . ,b∗

n . It remains to show that b1, . . . ,bn form indeed a lattice basis of Λ. To

see this, take any lattice vector x ∈ Λ and write it as x = Bλ. We have to argue

that λ ∈ Zn . Suppose this is not the case and for some index i one has λi ∉ Z

but λi+1, . . . ,λn ∈ Z. Without loss of generality suppose that λi > 0. Then also

x ′ := x −
∑n

j=i+1 λ j b j − ⌊λi ⌋bi is a lattice vector and if we write x ′ = Bλ′, then

0 < λ′
i < 1 and λ′

i+1
= . . . = λ′

n = 0. Considering the projection of x ′ we observe

that

πUi (x ′) =πUi

( i−1∑

j=1

λ j b j

)

︸ ︷︷ ︸
=0

+λi πUi (bi )︸ ︷︷ ︸
=b∗

i

=λi b∗
i

is non-zero lattice vector in πUi (Λ) that is strictly shorter than b∗
i — this is a con-

tradiction to the choice of b∗
i . The claim then follows.

In Chapter 2 we will discuss an algorithm that finds a shortest vector (with

respect to the ‖ ·‖2-norm) in time 2O(n). This then implies the following:

Corollary 1.39. For a lattice Λ :=Λ(B̃ ) one can compute a KZ-reduced basis B =
(b1, . . . ,bn) in time 2O(n) times a polynomial in the encoding length of B̃ .

Recall that for a lattice Λ, the i th successive minimum is the smallest value

λi so that Λ∩λi B n
2 contains at least i linearly independent lattice vectors. The

crucial insight is that the length of the basis vectors can be bounded be the cor-

responding successive minima:

Lemma 1.40. For a KZ-reduced basis B = (b1, . . . ,bn) one has ‖bi‖2 ≤
p

n ·λi (Λ)

for all i = 1, . . . ,n.

Proof. First, condition (a) implies that in KZ-reduced basis, each Gram-Schmidt

vector has a length that is bounded by the corresponding successive minimum:

Claim. One has ‖b∗
i ‖2 ≤λi for all i = 1, . . . ,n.

Proof. Let v1, . . . , vn ∈ Λ \ {0} be the linearly independent lattice vectors with
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‖vi‖2 = λi for i = 1, . . . ,n. Since πUi is a projection on a dim(Ui ) = n − i + 1 di-

mensional space, there must be at least one index j ∈ {1, . . . , i } so that πUi (v j ) 6= 0.

Since b∗
i will be the shortest non-zero lattice vector in πUi (Λ), we conclude that

‖b∗
i ‖2

b∗
i shortest vector

≤ ‖πUi (v j )‖2

projection
≤ ‖v j ‖2

λ1≤......≤λn≤ ‖vi‖2

and the claim follows.

Since the basis B is coefficient-reduced, we can now bound the length of the

basis vectors by estimating

‖bi‖2
2 =

∥∥∥b∗
i +

i−1∑

j=1

µ j i b∗
j

∥∥∥
2

2
= ‖b∗

i ‖
2
2︸ ︷︷ ︸

≤λ2
i

+
i−1∑

j=1

µ2
j i︸︷︷︸

≤1/4

· ‖b∗
j ‖

2
2︸ ︷︷ ︸

≤λ2
j ≤λ

2
i

≤ n ·λ2
i .

Taking square roots gives then ‖bi‖2 ≤
p

n ·λi .

Now, we can easily show the main theorem for this section:

Theorem 1.41. The orthogonality defect of a KZ-reduced basis B = (b1, . . . ,bn) is

γ(B ) ≤ nn .

Proof. We know from Lemma 1.40 that the length of each basis vector is bounded

by the corresponding successive minimum and from Minkowski’s Second Theo-

rem (see Section 1.4) we have a general upper bound on the product of those:

n∏

i=1

‖bi‖2

Lem. 1.40
≤ nn/2 ·

n∏

i=1

λi (Λ)
Mink. 2nd Thm

≤ nn/2 ·nn/2 ·det(Λ).

Then dividing both sides by det(Λ) gives γ(B ) ≤ nn .

We can also show that the orthogonality defect of a KZ-basis is approximately

optimal:

Lemma 1.42. There is a lattice Λ⊆Rn for which any basis B has an orthogonality

defect of γ(B ) ≥ (
p

n
12

)n .

Proof. We will see in Lemma 1.46 that there is a lattice Λ with det(Λ) = 1 and

λ1(Λ) ≥
p

n
12

. Let B = (b1, . . . ,bn) be any lattice basis for Λ. Then γ(B ) =
∏n

i=1
‖bi ‖2

det(Λ)
≥

λ1(Λ)n ≥ (
p

n
12

)n .
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1.10 The covering radius and a tight lattice for Minkowski’s

Theorem

We define the covering radius of a lattice Λ as the quantity

µ(Λ) := max
y∈Rn

min
x∈Λ

‖y −x‖2

In words, the covering radius µ(Λ) gives the furthest distance of any point y ∈Rn

to the lattice Λ.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

y

µ(Λ)

It is not surprising that one can prove some relation to the density of a lattice.

Lemma 1.43. For any full rank lattice Λ in Rn one has µ(Λ) ≥
p

n
6

·det(Λ)1/n .

Proof. After scaling we may assume that det(Λ) = 1. As we know from Lemma 1.1

we have Voln(
p

n
6

B n
2 ) ≤ ( 2e

6
)n < 1. Then the translates Λ+

p
n

6
B n

2 do not cover the

whole Rn . Any uncovered point y ∈ Rn \ (Λ+
p

n
6

B n
2 ) has a distance of more than

p
n

6
to the lattice.

Another useful lower bound for the covering radius is in terms of the n-th

successive minimum.

Lemma 1.44. For any full rank lattice Λ⊆Rn , one has µ(Λ) ≥ λn (Λ)
2

.

Proof. Let v1, . . . , vn ∈ Λ \ {0} be the linearly independent vectors with λi (Λ) =
‖vi‖2. Let us abbreviate H := span{v1, . . . , vn−1} as the (n−1)-dimensional hyper-

plane and in wise foresight, let us denote the normal vector of that hyperplane

by t , that means H = {x ∈Rn | 〈x , t〉 = 0}. Let us also scale t so that ‖t‖2 = 1
2
‖vn‖2.
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H
0

vn

t

1
2
λn(Λ)

λn(Λ)

By definition we know that int(λn(Λ) ·B n
2 \ H) does not contain a lattice point.

Moreover t+ λn (Λ)
2

B n
2 ⊆λn(Λ)·B n

2 \H . Hence the ball t+ λn (Λ)
2

B n
2 does not contain

a lattice point in its interior and so the covering radius is µ(Λ) ≥ λn (Λ)
2

.

We want to use the notion of covering radius to construct a lattice where

Minkowski’s First Theorem is tight up to constants (and then immediately Minkowski’s

2nd Theorem is tight as well). Interestingly, the construction is iterative. Key ar-

gument is to show that in any lattice Λ with µ(Λ) > 2λ1(Λ), we can double the

density of the lattice without decreasing λ1(Λ).

Lemma 1.45. For any full rank lattice Λ ⊆ Rn one can construct another lattice

Λ
′ ⊆Rn with det(Λ′) = 1

2
det(Λ) and λ1(Λ′) ≥ min{λ1(Λ),

µ(Λ)

2
}.

Proof. Let y ∈ Rn be a point attaining the covering radius, i.e. d(y ,Λ) = µ(Λ).

Now, let x∗ ∈Λ be a lattice point minimizing ‖2y −x∗‖2. By the definition of cov-

ering radius we have ‖y− x∗

2
‖2 = 1

2
‖2y−x∗‖2 ≤

µ(Λ)

2
. That means x∗

2
is not a lattice

point. Hence Λ
′ := Λ+ (Λ+ x∗

2
) is a lattice with twice the density of Λ, meaning

that det(Λ′) = 1
2

det(Λ). A visualization in as follows (though it seems that in R2

one has y = x∗

2
which may not necessarily be true in higher dimensions):

b

b

b

b

b

b

b

b

b

b

b

b

y = x∗

2

lattice Λ

0

x∗

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

lattice Λ
′

0

It remains to prove that theΛ
′ does not contain short vectors. For the “old” lattice

vectors x ∈ Λ \ {0} we still have ‖x‖2 ≥ λ1(Λ). So consider a “new” vector of the

form x − x∗

2
with x ∈Λ. Then by the reverse triangle inequality we have

∥∥∥x −
x∗

2

∥∥∥
2
≥ ‖x − y‖2︸ ︷︷ ︸

≥µ(Λ)

−
∥∥∥x∗

2
− y

∥∥∥
2︸ ︷︷ ︸

≤µ(Λ)/2

≥
µ(Λ)

2
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Either way, the claim holds true.

Lemma 1.46. There exists a full rank lattice Λ ⊆ Rn with det(Λ) = 1 and λ1(Λ) ≥p
n

12
.

Proof. We start with an arbitrary lattice, say Λ0 := Zn . Then given a lattice Λt

we use Lemma 1.45 to construct Λt+1 with det(Λt+1) = 1
2

det(Λt ) and λ1(Λt+1) ≥
min{λ1(Λt ),

µ(Λt )

2
}. Consider the first iteration t where the length of the shortest

vector strictly increases; in that case

λ1(Λt ) >
µ(Λt )

2

Lem 1.43
≥

p
n

12
det(Λt )1/n

Then the scaled lattice Λ := Λt

det(Λt )1/n satisfies the claim.

We cite a stronger result without proof (see e.g. the textbook of [MH73]):

Theorem 1.47 (Conway, Thompson). There exists a latticeΛ⊆Rn that is self-dual

(i.e. Λ∗ =Λ) with λ1(Λ) =λ1(Λ∗) ≥Ω(
p

n).

1.11 Exercises

Exercise 1.1.

Let Λ = Λ(B ) with B ∈ Rn×n be a lattice. Show that for any ε > 0 there is a radius R :=
R(ε,n,B ) so that

(1−ε) ·
Voln(R ·B n

2 )

det(Λ)
≤ |RB n

2 ∩Λ| ≤ (1+ε) ·
Voln(R ·B n

2 )

det(Λ)

Exercise 1.2.

Solve the following:

a) Let K ⊆ Rn be a symmetric convex set with Voln(K ) > k ·2n for some k ∈N. Show

that |K ∩Zn| ≥ k +1.

b) Is the following claim true: For any k ∈ {1, . . . ,n} there is a value f (k) so that for

any symmetric convex body K with Voln(K ) > f (k) ·2n , K ∩Zn contains k linearly

independent vectors.

Exercise 1.3.
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This is an application of Dirichlet’s Theorem: Let a ∈ (0,1]n be a real vector and consider

the hyperplane H := {x ∈ Rn | 〈a, x〉 = 0}. Then there is a rational vector ã ∈ Zn

q with

q ≤ (2nR)n so that H̃ := {x ∈Rn | 〈ã, x〉 = 0} satisfies the following:

∀x ∈ {−R , . . . ,R}n :
(
x ∈ H ⇒ x ∈ H̃

)
.

Remark. You don’t have to prove it but the same argument should also show that for all

x ∈ {−R , . . . ,R}n one has x ∈ H≤ ⇒ x ∈ H̃≤ where H≤ = {x ∈Rn | 〈a, x〉 ≤ 0}.

Exercise 1.4.

Let S ⊆ Rn be a measurable, compact set with Voln(S) > k for some k ∈ Z≥0. Then there

are points s0, . . . , sk ∈ S with si − s j ∈Zn \ {0} for all i 6= j .

Exercise 1.5.

Let Λ⊆Rn be a full rank lattice. Show that λ1(Λ) ·λn(Λ∗)≥ 1, where Λ
∗ is the dual lattice.

Exercise 1.6.

Prove that for any lattice Λ⊆Rn , one has λ1(Λ) ·λ1(Λ∗) ≤ n.

Remark: A stronger theorem of Banaszczyk [Ban93a] that we will see in Chapter 4 shows

that even λ1(Λ) ·λn(Λ∗) ≤ n. This has an important consequence. Consider the follow-

ing computational problem: Given a lattice Λ and a parameter K , distinguish the cases

λ1(Λ) ≤ L and λ1(Λ) > n ·L. The consequence of this exercise is that this problem is in

NP∩ coNP in the sense that one can give an efficiently checkable proof for λ1(Λ) ≤ L

(simply give me a short vector) and one can also certify is λ1(Λ) > n ·L (give me the short

dual basis). The remarkable fact is that this gap problem is not known to be in P .

Exercise 1.7.

Consider the matrix

B =
(
2 3 4

2 4 6

)

Compute the Hermite Normal form of B .

Exercise 1.8.

Let a = (a1, . . . , an) ∈Zn be a vector of integer numbers. The original Euclidean algorithm
does the following:

(1) REPEAT

(2) Select the index i with |ai | minimal.

(3) For all j 6= i replace a j by min{|a j + z ·ai | | z ∈Z}.

Prove that the algorithm terminates after at most O(log‖a‖∞) many iterations.
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Exercise 1.9.

Let A ∈Zm×n and b ∈Zm with m ≤ n where A has full row rank. Show that in polynomial

time one can compute a vector x ∈Zn with Ax = b (or decide that no such vector exists).

Remark: Use Cor. 1.33.

Exercise 1.10.

Let Λ⊆Rn be a full-rank lattice. Assume that b1, . . . ,bn ∈Λ are linearly-independent and

minimize |det(b1, . . . ,bn)|. Prove that b1, . . . ,bn are indeed a basis of Λ.

Exercise 1.11.

We want to consider a relaxed version of a KZ-reduced basis. We say that a basis B =
(b1, . . . ,bn) ∈ Rn×n for a lattice Λ is α-KZ-reduced for α ≥ 1 if B is coefficient reduced

and ‖b∗
i ‖2 ≤ α ·λ1(πUi (Λ)) for all i = 1, . . . ,n. Here πUi is again the projection into Ui :=

span{b1, . . . ,bi−1}⊥. Show that the orthogonality defect of such a basis is γ(B )≤ (αn)n .

Exercise 1.12.

Let Λ ⊆ Rn be a full rank lattice and let B ∈ Rn×n be an LLL-reduced basis for Λ. Prove

that for all i ∈ {1, . . . ,n} one has ‖bi‖2 ≤ 2(n+1)/2λi (Λ).

Hint. You may use following observation: Consider an LLL-reduced B = (b1, . . . ,bn) and

for some index i ∈ {1, . . . ,n}, define the subspace U := span{b1, . . . ,bi−1} and let b̃ j :=
ΠU⊥(b j ) where ΠU⊥ denotes the projection into the subspace U⊥. Then b̃i , . . . , b̃n is an

LLL-reduced basis for the lattice Λ̃ := {
∑n

j=i y j b̃ j : y j ∈Z}.

Exercise 1.13.

Let Λ ⊆ Rn be a full rank lattice. Then for any k-dimensional sublattice Λ̃ ⊆ Λ one has

det(Λ̃)≥ (λ1(Λ)p
k

)k .



Chapter 2

The Closest Vector Problem

In this chapter, we will study a new problem:

CLOSEST VECTOR PROBLEM (CVP)

Input: A full rank lattice Λ(B ) ⊆ Rn given by a regular matrix B ∈ Qn×n and a

target vector t ∈Rn .

Goal: Find the lattice vector x ∈Λ(B ) minimizing ‖x − t‖2.

A small example is as follows:

b b b

b b

b b b

tx

We will use the notation CVP(Λ(B ), t ) to denote the value of the optimum solu-

tion. One might imagine CVP as a more general version of the Shortest Vector

problem (in the exercises, we will justify this claim). The main contents of this

chapter will be the Nearest Plane algorithm by Babai and the Voronoi cell algo-

rithm by Micciancio1 and Voulgaris [MV10, MV13].

2.1 A 2O(n2)-algorithm for Closest Vector

To warm up, we want to describe a simple algorithm that solves CVP in time

2O(n2). So, let B be the given lattice basis. In a first step, we replace B with an LLL-
reduced basis, which only takes polynomial time, see Chapter 1. Suppose that

1The following link contains slides of Micciancio on the algorithm:

https://cseweb.ucsd.edu/~daniele/papers/Voronoi-slides.pdf

47

https://cseweb.ucsd.edu/~daniele/papers/Voronoi-slides.pdf
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(b∗
1 , . . . ,b∗

n) is the Gram-Schmidt orthogonalization of that basis. That sequence

of vectors has many properties, for example span{b1, . . . ,bi } = span{b∗
1 , . . . ,b∗

i }

for all i . Moreover, as B is LLL-reduced we know that ‖b1‖2
2 = ‖b∗

1‖
2
2 ≤ 2 · ‖b∗

2‖
2
2 ≤

4‖b∗
3‖

2
2 ≤ . . . ≤ 2n−1‖b∗

n‖2
2. Now, consider the target vector t and letΛ′= {

∑n−1
i=1 λi bi :

λi ∈ Z ∀i = 1, . . . ,n −1} be the (n −1)-dimensional sublattice formed by the first

n − 1 vectors. By the properties of the Gram-Schmidt orthogonalization, the

whole lattice can be covered by affine subspaces of the form span(Λ′)+kb∗
n for

k ∈ Z. Let us call each such subspace a layer. If we want to find the closest lat-

tice point v∗ ∈ Λ to t , then this can be done as follows: guess the right layer

containing v∗ and compute the orthogonal projection t∗ of t on that layer. Then

compute the closest vector to t∗ with respect to the lower-dimensional lattice Λ
′.

b b b

b b b

b b b

b b b

b∗
n

t

v∗ t∗
Λ

′+Zb∗
n

To make this recursive computation at least mildly efficient, we need to be able

to bound the number of layers that we need to try out. In particular, v∗ does not

need to lie on the closest layer (as we can see in the picture above). But here is

the crucial insight (still in the notation from above):

Lemma 2.1. Let t ∈ Rn be any target vector. Then the closest lattice point v∗ lies

on one of the at 2 ·2n layers that are closest to t .

This claim follows immediately from the following:

Lemma 2.2. Let Λ(B ) be any lattice with LLL-reduced basis B and Gram-Schmidt

orthogonalization b∗
1 , . . . ,b∗

n . For any target vector t , one has CVP(Λ(B ), t ) ≤ 2n‖b∗
n‖2.

Proof. Let Q := {
∑n

i=1λi b∗
i : |λi | ≤ 1

2
∀i = 1, . . . ,n} be a parallelepiped with center

0 whose sides are spanned by the Gram-Schmidt orthogonalization. Geometri-

cally speaking, Q is a shifted and translated version of the fundamental paral-

lelepiped of the basis B . In particular, Q and P(B ) have the same volume and

both have the property that translates of them by lattice vectors exactly partition

Rn (apart from a zero set).
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b b b

b b b

b b b

1
2

b∗
1

1
2

b∗
2

Q

Hence for each point t ∈Rn , there is a lattice point v ∈Λ(B ) so that t ∈ v+Q. This

point satisfies ‖t −v‖2
2 ≤

∑n
i=1 ‖

1
2

b∗
i ‖

2
2 ≤

∑n
i=1 2n−i ‖b∗

n‖2
2 ≤ 2n‖b∗

n‖2
2.

Theorem 2.3. The Closest vector problem can be solved in time 2O(n2).

Proof. Let T (n) be the running time to solve CVP in dimension n. Then we just

discussed that T (n) ≤ 2·2n ·T (n−1). Applying induction then gives the claim.

Obviously this is just a simple and naive algorithm. The induction can be

done in a smarter way, see the nO(n) ·poly(input) algorithm by Kannan [Kan87a].

But one might already see one potential for improvement: in each of the 2 ·2n

recursions we are solving the closest vector problem for the same lattice — just

each time with different target vectors. If we could come up with some kind of

preprocessing for the lattice, then we might reuse those computations in each of

the recursions and speed up the algorithm.

An even simpler 2O(n2)-time algorithm works for the Shortest Vector prob-

lem by computing an LLL-reduced basis B for a lattice and trying out all lattices

points of the form B y with ‖y‖∞ ≤ 23n .

Theorem 2.4. Let Λ ⊆ Rn be a full-rank lattice with LLL-reduced basis B ∈ Rn×n .

Then all shortest lattice vectors (with respect to the ‖ ·‖2-norm) are contained in

S := {B y | y ∈Zn and ‖y‖∞ ≤ 23n}.

We will develop the proof in Exercise 2.1.

2.2 Babai’s nearest plane algorithm

In this section we want to describe the so called Nearest plane algorithm due to

Babai [Bab86] which for any lattice Λ⊆Rn and target vector t ∈Rn finds a vector

x ∈Λ with ‖x − t‖2 ≤ 2n/2 ·CVP(Λ, t ) in polynomial time. The key ingredient is (of

course) to rely on an LLL-reduced basis B = (b1, . . . ,bn) for the lattice Λ. Again

we will use in particular the properties of the Gram Schmidt orthogonalization

b∗
1 , . . . ,b∗

n of that basis.
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The input for the algorithm is a basis b1, . . . ,bn ∈Rm for the lattice and a target

vector t in the span of those vectors. Due to the recursion, in later iterations the

lattice will not have full rank even if that was the case for the original lattice. For

a subspace U ⊆ Rm , we will denote πU (t ) as the orthogonal projection on U . For

the algorithm itself, the basis does not need to be LLL-reduced, but parts of the

analysis will rely on it.

NEARESTPLANEALGO

Input: Basis b1, . . . ,bn for a lattice Λ; target vector t ∈ span(b1, . . . ,bn)

Output: Lattice vector x ∈Λ

(1) Set U := span{b1, . . . ,bn−1}

(2) Let K :=
{

x ∈Rm | | 〈x ,
b∗

n
‖b∗

n‖2
〉 | ≤ 1

2
‖b∗

n‖2

}

(3) Compute α ∈Z so that t −αbn ∈K

(4) If n = 1 then return αbn

(5) Return NEARESTPLANEALGO((b1, . . . ,bn−1),πU (t −αbn))+αbn

To get some intuition about the algorithm consider the subspace U := span{b1, . . . ,bn−1}

and note thatΛ is contained in the translates of that subspace that are of the form

αb∗
n +U with α ∈Z. The set K are all the points for which the closest translate is

the one going through the origin. Then the algorithm translates t so that t −αbn

is closeest to U , then one computes the projection onto U and recurses.

U

b b

b b

b b

b b

b b

t −αbn

0

b∗
n

t

bnK = {x : | 〈x ,b∗
n〉 | ≤

‖b∗
n‖2

2

2
}

Replacing t by t −αbn does not change the approximation error, hence for the

analysis we will be able to assume that α = 0 to simplify the notation. Note that

b1, . . . ,bn−1 is again an LLL-reduced basis of the sublattice Λ
′ := {

∑n−1
i=1 yi bi : y ∈

Zn−1} =Λ∩U .
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U

b b

b b

b b

b b

0

b∗
n t

x∗

πU (t )

First, we prove an absolute bound on the distance of t to the produced vector

— this itself does not yet imply a bound relative to the optimum value CVP(Λ, t )

but it will be useful later.

Lemma 2.5. Let Λ⊆Rn be a lattice with basis B = (b1, . . . ,bn) and let t ∈ span(B ).

Then x := NEARESTPLANEALGO(B , t ) satisfies ‖x − t‖2
2 ≤

1
4

∑n
i=1‖b∗

i ‖
2
2. Moreover,

if B is LLL-reduced then ‖x − t‖2
2 ≤ 2n−2‖b∗

n‖2
2.

Proof. As discussed above we may assume for simplicity that α= 0 which means

that t ∈ K . Then

‖x − t‖2
2

orthogonality
= ‖t −πU (t )‖2

2 +‖x −πU (t )‖2
2 (2.1)

(∗)
≤ 〈t ,

b∗
n

‖b∗
n‖2

〉2

︸ ︷︷ ︸
≤‖ 1

2 b∗
n‖2

2

+
1

4

n−1∑

i=1

‖b∗
i ‖

2
2 ≤

1

4

n∑

i=1

‖b∗
i ‖

2
2

In (∗) we use ‖t −πU (t )‖2
2 = 〈t ,

b∗
n

‖b∗
n‖2

〉2 on the left hand side and we apply induc-

tion on the right hand side with the target vector πU (t ) ∈ span{b1, . . . ,bn−1}.

For the “moreover part” we may assume that the basis is LLL-reduced and so

‖b∗
i ‖

2
2 ≤ 2‖b∗

i+1
‖2

2 which means that ‖b∗
i ‖

2
2 ≤ 2n−i‖b∗

n‖2
2. Then using (2.1) we have

‖x − t‖2
2 ≤

1

4

n∑

i=1

‖b∗
i ‖

2
2 ≤

‖b∗
n‖2

2

4

n∑

i=1

2n−i

︸ ︷︷ ︸
≤2n

≤ 2n−2‖b∗
n‖

2
2

Finally, we prove an approximation ratio of 2n/2. The intuition is as follows:

either the value of CVP(Λ, t ) is at least 1
2
‖b∗

n‖2 and the absolute guarantee from

Lemma 2.5 is good enough for a 2n/2 approximation. Or the value of CVP(Λ, t ) is

less than 1
2
‖b∗

n‖2, but then the algorithm recurses on the “correct” translate that

contains the optimum solution and the algorithm does not make any error in the

first recursion step.
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Theorem 2.6. Let Λ be a lattice with LLL-reduced basis B = (b1, . . . ,bn) and let t ∈
span{b1, . . . ,bn} be a target vector. Then x := NEARESTPLANEALGO(B , t ) satisfies

‖x − t‖2 ≤ 2n/2CVP(Λ, t ).

Proof. We fix an optimum solution x∗ ∈ Λ, i.e. ‖x∗− t‖2 = CVP(Λ, t ). We prove

the claim by induction over n. Again we may assume that α = 0 (and t ∈ K ) as

since shifting t by a lattice point does not affect the approximation ratio. If it

happens that the optimum value satisfies ‖x∗−t‖2 ≥ 1
2
‖b∗

n‖2, then by Lemma 2.5

we know that our solution satisfies ‖x − t‖2 ≤ 2n/2−1‖b∗
n‖2 ≤ 2n/2−1 ·2‖x∗− t‖2 =

2n/2‖x∗− t‖2 and we are done. Otherwise we have ‖x∗ − t‖2 < 1
2
‖b∗

n‖2. Recall

that | 〈t ,b∗
n〉 | ≤ 1

2
‖b∗

n‖2
2 and so | 〈x∗,b∗

n〉 | < ‖b∗
n‖2

2. As x∗ ∈ Λ, this means that

x∗ has to lie on the shift going through the origin, i.e. x∗ ∈ Λ∩U . In partic-

ular, x∗ is still an optimum solution for CVP((b1, . . . ,bn−1),πU (t )) and still x :=
NEARESTPLANEALGO((b1, . . . ,bn−1),πU (t )). Then by induction ‖x−πU(t )‖2 ≤ 2(n−1)/2‖x∗−
πU (t )‖2. Hence

‖x − t‖2
2

orthog.
= ‖t −πU (t )‖2

2 +‖x −πU (t )‖2
2

≤ 2n−1
(
‖t −πU (t )‖2

2 +‖x∗−πU (t )‖2
2

)

orthog.
= 2n−1‖x∗− t‖2

2

which satisfies the claim.

A second look at the algorithm also reveals which lattice point the algorithm

actually finds:

Corollary 2.7. Let Λ⊆ Rn be a lattice with basis B . Denote Q := {
∑n

i=1
yi b∗

i : y ∈
[−1

2
, 1

2
]n}. Then x := NEARESTPLANEALGO(B , t ) gives a lattice point so that t ∈

x +Q.

One can easily see the claim by induction; we skip the proof here.

b b b

b b b

b b b

1
2

b∗
1

1
2

b∗
2

Q 0

t

x

Another useful property is that if the target vector t is close enough to the lattice

then one can even compute an optimum solution in polynomial time. We leave

the proof as an exercise (see Exercise 2.5).
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Lemma 2.8. Let Λ ⊆ Rn be a full rank lattice and let t ∈ Rn be a vector with

CVP(Λ, t ) < 2−n/2−1λ1(Λ). Then one can find a vector x ∈Λwith ‖x−t‖2 = CVP(Λ, t )

in polynomial time.

2.3 The Voronoi cell algorithm of Micciancio and Voul-

garis

In this section, we want to explain an important concept that is the base for the

algorithm of Micciancio and Voulgaris [MV10, MV13].

2.3.1 The Voronoi cell

For a full rank lattice Λ :=Λ(B ) ⊆ Rn , the (closed) Voronoi cell is the set of points

in Rn that are closer to 0 than to any other lattice point (or at equal distance).

Formally, we define

V =
{

x ∈Rn : ‖x‖2 ≤ ‖x −v‖2 ∀v ∈Λ\ {0}
}

b

bb

b

b

b

b

b

b
0

v

V

Hv

Note that the set of points that are closer to 0 than to v ∈Λ (or at equals distance)

are exactly the set of points in the closed halfspace

Hv =
{

x ∈R
n | ‖x‖2 ≤ ‖x −v‖2

}
=

{
x ∈R

n | 〈x , v〉 ≤
1

2
‖v‖2

2

}

Geometrically, the normal vector of this halfspace is v and it contains the point
v
2

on its boundary:
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v

0 Hv

v
2

v

Using this definition, we can write V as intersection of all those halfspaces

V =
⋂

v∈Λ/{0}

Hv

From that definition, we see that V is a symmetric, closed convex set. The set

must be full-dimensional as it contains the open ball of radius 1
2
λ1(Λ) around

the origin.

We can give a brief argument why V is defined by finitely many half-spaces

and hence is an (open) polytope. Consider the set Q :=
⋂

v∈{±b1,...,±bn } Hv where

b1, . . . ,bn is any basis forΛ. ThenV ⊆Q and as b1, . . . ,bn are linearly independent,

the set Q will be bounded.

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

0

b1

b2Q

Then for any v ∈Λ\2Q one has thatV ⊆Q ⊆ Hv . Hence the only Voronoi-relevant

vectors are the finitely many vectors in Λ∩2Q.

Every irredundant halfspace Hv describing the cell must induce a (n − 1)-

dimensional facet of V . Hence there is a unique minimal set R ⊆ Λ \ {0} so that

V =
⋂

v∈R Hv . We call that set R the Voronoi-relevant vectors.

We summarize a few properties:

Lemma 2.9 (Geometry of the Voronoi cell). Let Λ ⊆ Rn be a full rank lattice with

Voronoi cell V .
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(a) The set V is convex, full-dimensional, bounded and symmetric and ‖·‖V is

a norm.

(b) If V ∩ (v +V) 6= ; for v ∈Λ, then v
2
∈V ∩ (v +V).

(c) If w ∈ Λ is Voronoi-relevant, then the unique closest lattice vectors to w
2

are 0 and w .

(d) The translates x +V with x ∈Λ form a tiling of Rn (i.e. Λ+V covers every

point in Rn exactly once except for the points of measure zero that have

equal minimum distance to several lattice points).

(e) One has λ1(Λ)
2

B n
2 ⊆V ⊆ nλn(Λ)B n

2 .

Proof. (a) and (c) follow from the above discussion. (d) is clear. For (b), let x ∈Rn

be a point with ‖x‖V ,‖x −v‖V ≤ 1. Then ‖ v
2
‖V ≤ ‖ v

2
− x

2
‖V +‖ x

2
‖V ≤ 1

2
+ 1

2
= 1. We

will show (e) in the exercises.

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

v
v
2

V

Now, things are getting a little more interesting as we show that there is a

limited number of Voronoi relevant vectors:

Lemma 2.10. The number of Voronoi relevant vectors is |R| ≤ 2n+1.

Proof. Recall thatΛ :=Λ(B ) where B has the columns b1, . . . ,bn . Let X := {
∑n

i=1
λi bi |

λi ∈ {0,1} ∀i = 1, . . . ,n} be the vertices of the fundamental parallelepiped of the

basis B . Note that |X | = 2n . Fix a vector v ∈ X and consider the translated lattice

v +2Λ. We claim that at most two of the lattice vectors in that translated lattice

are Voronoi relevant. In fact, we claim something stronger:

Claim. Apart from v∗ := argmin{‖x‖2 : x ∈ v + 2Λ} and −v∗, there is no other
Voronoi relevant vector in v +2Λ.
Proof. Suppose that w ∈ v +Λ is Voronoi-relevant. Let v∗ be the shortest lattice
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vector of the same parity as w , that means v∗ = argmin{‖x‖2 : x ∈ v + 2Λ}. We

assume for the sake of contradiction that w 6∈ {v∗,−v∗}.

We know that u := 1
2

(v∗+w ) ∈Λ. We claim that the distance of the midpoint
w
2

to u is not larger than the distance to 0 and w :

∥∥∥w

2
−u

∥∥∥
2
=

∥∥∥w

2
−

1

2
(v∗+w )

∥∥∥
2
=

1

2
‖v∗‖2 ≤

1

2
‖w‖2

This is a contradiction to Lemma 2.9.(c), which says that the closest lattice vec-

tors to w
2

are exactly 0 and w .

b b b b b

b b b b

b b b b b

0

b

b

b

bb

u = 1
2

(v∗+w )

v∗

w

The last lemma also provides us with a possibility to compute the Voronoi

relevant vectors:

Lemma 2.11. The Voronoi relevant vectors for a Voronoi cell V for lattice Λ(B )

can be computed by 2O(n) many CVP calls with the same lattice Λ(B ) (but differ-

ent target vectors).

Proof. For every λ ∈ {0,1}n we need to find the shortest vector in the shifted lat-

tice t +2Λ with t :=
∑n

i=1λi bi . That is the same as solving CVP(2Λ(B ),−t ) which

is the same as CVP(Λ(B ),− t
2

).

It seems that if we want to use the Voronoi cell in an algorithm for CVP, we

first have to solve 2O(n) instances of CVP. This seems utterly stupid — but it will

work!

2.3.2 Computing a closest vector

We can now come to the main algorithm which on input t ∈Rn computes a clos-

est lattice vector x ∈Λ(B ). Here, we assume that we do have a description of the

Voronoi cell in form of the Voronoi relevant vectors R . Note that this task is equiv-

alent to finding a lattice vector x ∈Λ(B ) so that t − x ∈ V . The algorithm is now

as follows: starting at t , subtract iteratively multiples of lattice vectors in R until

we reach a point in the cell V . Then the sum of the subtracted vectors will be the

optimum solution x . A detailed description is as follows:
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Closest vector algorithm

Input: A lattice basis B ∈ Rn×n , a target vector t ∈ Rn , the list of Voronoi rele-

vant vectors R ⊆Λ(B ) \ {0} describing the Voronoi cell V

Output: The lattice vector x ∈Λ(B ) minimizing ‖t −x‖2

(1) Set s := t

(2) WHILE s ∉V DO

(3) Compute the minimal value δ> 0 so that s ∈ δ ·V
(4) Write δ= 2k ·α with k ∈Z≥0 and 1 ≤α< 2

(5) Find the vector v ∈R so that s lies on the boundary of δHv

(6) Update s := s −2k v

(7) Return t − s

For the analysis, it suffices to consider the situation with k = 0. In other words,

we assume that the original vector t satisfies t ∈ 2V . We will show that within

2O(n) iterations, we reach a point in V . The general claim follows from the fact

that 2kV is exactly the Voronoi cell of the scaled lattice Λ(2kB ). Hence the algo-

rithm iterates only over polynomially many choices of k.

So, let us understand what happens in one iteration.

Lemma 2.12. Let t ∈ (2V)\V and let 1 ≤ δ< 2 be the minimal value so that t ∈ δV .

Let v ∈ R be the Voronoi relevant vector so that t lies on the boundary of δHv .

Then t −v ∈ 2V and ‖t −v‖2 < ‖t‖2.

Proof. Let p := t −δ v
2

; note that p ⊥ v . Consider the line φ : R→ Rn with φ(λ) :=
p +λ · v

2
that satisfies φ(δ) = t and φ(δ−2) = t − v . Then ‖φ(λ)‖2 is a symmetric,

convex function which is minimized for λ = 0. Hence ‖t − v‖2 = ‖φ(δ− 2)‖2 <
‖φ(δ)‖2 since |δ−2| < |δ|.
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b bb

b bb

b b b

0 v

t =φ(δ)φ(δ−2) = t −v

p

δVV

By assumption we have t
δ ∈ v +V and so by the triangle inequality

‖t −v‖V ≤
∥∥∥∥

t

δ
−v

∥∥∥∥
V︸ ︷︷ ︸

≤1

+
(
1−

1

δ

)
‖t‖V︸ ︷︷ ︸
≤δ

≤ δ

The algorithm computes shorter and shorter vectors in 2V , so it will definitely

terminate in finite time. It remains to show that only 2O(n) iterations are needed.

Lemma 2.13. Let V be the Voronoi cell of a lattice Λ ⊆ Rn and let t ∈ 2V . Then

|(t −Λ)∩2V | ≤ 2O(n).

Proof. Since t ∈ 2V , it suffices to show that |Λ∩4V | ≤ 2O(n). Suppose |Λ∩4V | > 4n .

By a counting argument, there must be two distinct vectors x , y ∈ 4V ∩Λ so that

x − y ∈ 4Λ \ {0}. Then v := 1
4

(x − y) has v ∈ Λ and v ∈ V . But there is no lattice

vector in V except 0.

The lemma shows that for every fixed value of k, the algorithm iteratively

finds shorter vectors and hence will not revisit a vector. Then after at most 2O(n)

iterations, the value of k will be decreased by one.
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2.3.3 Putting things together

Setting up the recursion is not completely trivial in this case. Let us define two

running times that we want to analyze

TVoronoi(n) = time to compute the Voronoi cell in an n-dim. lattice

TCVP(n,k) = time to solve k many CVP in the same n-dim. lattice

We can get the following sequence of recursions2:

TVoronoi(n)
(1)
≤ TCVP(n,2O(n))

(2)
≤ TCVP(n −1,2O(n) ·2O(n))

(3)
≤ TVoronoi(n −1)+2O(n) ·2O(n) ·2O(n).

Here we use in (1) that we can compute the Voronoi cell with 2O(n) CVP computa-

tions in the same lattice. In (2), we use the dimension reduction argument from

Section 2.1 saying that a CVP computation can be reduced to 2O(n) CVP compu-

tations in the same (n−1)-dimensional lattice. Finally, in (3) we use that to solve

k many CVP computations in the same lattice, we need to compute the Voronoi

cell only once and then run a 2O(n)-time algorithm for each of the k target vec-

tors. From the recursion we conclude that TVoronoi(n) ≤
∑n

k=1
2O(k) = 2O(n) and

TCVP(n,1)≤ 2O(n) as well.

2.4 Enumerating lattice points

As we discussed, the algorithm by Micciancio and Voulgaris finds the closest lat-

tice vector to a given target vector t . But it is also possible to modify the algorithm

in order to enumerate all lattice points close to t . Additionally we will gain some

geometric insights:

Theorem 2.14. Given a lattice Λ = Λ(B ) ⊆ Rn , an ellipsoid E and a vector t ∈
Rn , one can enumerate the points S := Λ∩ (E + t ) in time 2O(n) · (|S|+1) times a

polynomial in the encoding length of B , E and t .

2As so often in the literature of lattice algorithms we have omitted polynomial factors depend-

ing on the encoding length of the lattice. For generally one could let TVoronoi(n,L) denote the

time to compute the Voronoi cell in an n-dimensional lattice with L bits encoding length. Similar

one can extend TCvp(n,k,L) to be the time it takes to solve k many CVP’s for target vectors t with

‖t‖
V̄
≤ 2poly(n,L) in a lattice of encoding length L. Then indeed TVoronoi(n,L)

(1)
≤ TCVP(n,2O(n),L)

(2)
≤

TCVP(n−1,2O(n) ·2O(n),L)
(3)
≤ TVoronoi(n−1,L)+2O(n) ·2O(n) ·2O(n) ·poly(n,L).
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Proof. After applying a linear transformation we may assume that E = r B n
2 for

some r > 0. Let R ⊆ Λ be the Voronoi-relevant vectors. Recall that |R| ≤ 2n+1

and moreover, we can compute R in time 2O(n), see Lemma 2.10. Next, we define

an infinite graph G = (Λ,E ) whose vertices are the lattice points and where the

edges are of the form E = {{x , y} | x , y ∈Λ and x − y ∈ R}. Note that the graph has

a degree of |R|.

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

t

t + r B n
2

Our argument rests crucially on the following insight:

Claim. For any t ∈Rn and r > 0, the induced subgraph G[S] with S :=Λ∩(t+r B n
2 )

is connected.
Proof of claim. By perturbing t and marginally increasing r without including

new lattice points, we may assume that the closest lattice vector to t is unique.

Let us call that lattice vector x∗ ∈Λ. Next, fix any x0 ∈ S. We claim that there is a

path from x0 to x∗ in G[S]. Suppose that x0 6= x∗ since otherwise there is nothing

to show. Then x0 ∉ t +V . From Lemma 2.12 we know that there is a Voronoi-

relevant vector v ∈ R so that ‖(x0 + v)− t‖2 < ‖x − t‖2. We set x1 := x0 + v ∈ S
and note that {x0, x1} ∈ E . Then we can continue a path x0, x1, x2, . . . ∈ S with

‖x0 − t‖2 > ‖x1 − t‖2 > ‖x2 − t‖2 > . . .. That path must be finite and terminate in

x∗.

To conclude the argument, we note that x∗ can be found in time 2O(n) and

one can explore the connected graph G[S] by trying the directions R from each

discovered point, paying a running time of at most 2O(n) per point.

2.5 Exercises

Exercise 2.1.

Let Λ ⊆ Rn be a full-rank lattice with LLL-reduced basis B ∈ Rn×n and Gram Schmidt

orthogonalization b∗
1 , . . . ,b∗

n . We abbreviate µi , j =
〈b j ,b∗

i 〉
‖b∗

i ‖
2
2

. First, we fix an arbitrary x =
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B y with y ∈Rn .

(i) Prove that ‖x‖2
2 =

∑n
k=1

‖b∗
k‖

2
2 ·

(
yk +

∑
j>k µk , j y j

)2

(ii) Prove that for all k ∈ {1, . . . ,n} one has ‖x‖2
2 ≥ 2−k‖bk‖2

2 ·max{|yk |− 1
2

∑
j>k |y j |,0}2.

Now fix a x ∈Λ\ {0} with ‖x‖2 =λ1(Λ) and let y ∈Zn be so that x = B y .

(iii) Prove that for all k ∈ {1, . . . ,n} one has |yk | ≤ max{2(k+2)/2,
∑

j>k |y j |}.

(iv) Prove that for all k ∈ {1, . . . ,n} one has |yk | ≤ 23n−k .

Exercise 2.2.

One might wonder whether the algorithm can be modified to work with different norms,

say with ‖ · ‖∞. To examine this, consider the points (0,0) and (2,1) in R2 and draw the

region of points that are closer to (0,0) than to (2,1) with respect to the ‖·‖∞-norm. What

do you think, can you guarantee that Voronoi cells with respect to ‖ ·‖∞ are convex?

Exercise 2.3.

In this exercise, we want to show that CVP is not harder than CVP in the sense that we can

use an oracle for CVP to solve the CVP problem. We denote CVP(B ′, t ) := argmin{‖x−t‖2 :

x ∈Λ(B ′)}. Suppose that B = (b1, . . . ,bn) is the input basis for our CVP problem. Consider

the following algorithm:

(1) FOR i = 1 TO n DO

(2) Set vi := CVP((b1, . . . ,bi−1,2bi ,bi+1, . . . ,bn),bi ).

(3) Return the shortest vector in {vi −bi | i = 1, . . . ,n}

Note that the algorithm calls the CVP oracle only n times on a lattice of dimension n.

Prove that the algorithm returns the shortest vector in Λ(B ) \ {0}.

Remark: There is no natural reduction known that goes the other way. Both problems

are NP-hard, so there will be some reduction. But any known reduction from CVP to CVP

causes at least a quadratic blowup in the dimension.

Exercise 2.4.

Let B ∈Rn×n be a regular matrix. Prove that V ⊆ n ·λn(Λ) ·B n
2 where V is the Voronoi cell

of the lattice Λ :=Λ(B ).

Exercise 2.5.

For a lattice Λ let us write CVP(Λ, t ) as the value of the closest vector problems. We have

seen in an earlier exercise that for any lattice Λ, the number of lattice vectors of length,

say 2 ·λ1(Λ) is bounded by 2O(n). Here we want to show that this is not true anymore for
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CVP. To be precise, for any function f (n), construct a lattice in n dimensions and a point

t so that |{x ∈Λ | ‖x − t‖2 ≤ 2 ·CVP(Λ, t )}| ≥ f (n).

Exercise 2.6.

Give a formal proof for the following claim: For any lattice basis B = (b1, . . . ,bn) with

Gram-Schmidt orthogonalization b∗
1 , . . . ,b∗

n define Q := {
∑n

i=1λi b∗
i | 1

2 ≤ λi < 1
2 ∀i ∈ [n]}.

Then x +Q for x ∈Λ(B ) form a tiling of Rn (meaning that for each t ∈Rn there is exactly

one x ∈Λ(B ) with t ∈ x +Q).

Exercise 2.7.

Prove the statement from Lemma 2.8: Let Λ ⊆ Rn be a full rank lattice and let t ∈ Rn be

a vector with CVP(Λ, t ) < 2−n/2−1λ1(Λ). Then one can find a vector x ∈Λ with ‖x − t‖2 =
CVP(Λ, t ) in polynomial time.

Exercise 2.8.

For the CLOSEST VECTOR PROBLEM WITH PREPROCESSING (CVPP), an algorithm is first

given the basis B ∈Rn×n of a full rank lattice Λ :=Λ(B ). Then the algorithm may perform

any computation of any length. Then the algorithm is given a target vector t ∈Rn and has

to find a lattice vector x ∈Λ so that ‖x−t‖2 is minimized. Prove that there is an algorithm

for CVPP (whose 2nd stage runs in polynomial time) that finds a O(n1.5)-approximation.



Chapter 3

The Sieving Algorithm

In this chapter, we discuss the Sieving algorithm due to Ajtai, Kumar and Sivaku-

mar [AKS01]. Later on the algorithm has appeared in many variations in the liter-

ature. In terms of exposition we follow again the lecture notes of Regev [Reg09a],

though we keep it more general and state the algorithm somewhat differently.

Here we make no attempt to optimize any constants.

In the following, we fix a full-rank latticeΛ⊆Rn and a symmetric convex body

K ⊆ Rn . We define λ1(Λ,K ) = min{‖x‖K : x ∈Λ \ {0}} as the length of the shortest

non-zero vector with respect to the norm ‖ · ‖K . The main result of this chapter

will be the following:

Theorem 3.1. Given a lattice Λ⊆Rn and a symmetric convex body K ⊆Rn , there

is a randomized algorithm that with high probability finds a vector attaining

min{‖x‖K : x ∈Λ\ {0}} in time 2O(n).

The original work of [AKS01] and the notes by Regev [Reg09a] restrict their

attention to the Euclidean norm ‖·‖2, but unlike the Voronoi cell algorithm from

Chapter 2.3, the AKS algorithm does not actually use any property specific to the

Euclidean case.

3.1 The algorithm

Since we can approximate any norm ‖·‖K by a Euclidean norm1, we may use the

LLL-algorithm to determine λ1(Λ,K ) up to a factor of 2O(n); then by trying out

1To be precise, one can rephrase John’s theorem as follows: For any symmetric convex body

K ⊆ Rn there is a positive definite matrix A ∈ Rn×n so that ‖Ax‖2 ≤ ‖x‖K ≤
p

n · ‖Ax‖2 for all

x ∈Rn .
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O(n) candidate values and rescaling the lattice we may assume that 1≤λ1(Λ,K ) <
1.5. We will use the (non-trivial) fact that given a symmetric convex body one can

compute a uniform random sample x ∼ K in polynomial time (up to a negligible

statistical error); see [DFK91] for details.

Next, fix any basis B ∈ Rn×n for the lattice Λ (the basis does not need to be

LLL-reduced). Recall that P(B ) = {Bλ : λ ∈ [0,1)n} denotes the fundamental par-
allelepiped. For a vector x ∈ Rn we define y := x mod P(B ) as the unique point

so that y ∈P(B ) and x−y ∈Λ. That point can be efficiently computed as follows:

write x = Bλ for some λ∈Rn . Then

y =
n∑

i=1

(λi −⌊λi ⌋) ·bi ∈P(B ) and y −x =
n∑

i=1

−(⌊λi ⌋)bi ∈Λ

In particular if we draw x at random, then y−x is a random lattice vector, though

it is not entirely clear what properties that distribution would have. In particular

if the basis is far from orthogonal, then even if x is rather short, the vector y − x

can be very long.

b b b b b b

b b b b b

b b b b b b

0

y

x
y −x

P(B )

The sieving algorithm then works as follows:

Sieving algorithm

Input: Lattice Λ=Λ(B ) ⊆Rn , norm ‖ ·‖K , N ∈N

Output: Sequence (xt , yt )t∈T where T ⊆ [N ]

(1) SET L :=; and T :=;
(2) FOR t = 1 TO N DO

(3) Draw x ∼ K uniformly at random

(4) Compute y := x mod P(B )

(5) WHILE ‖y‖K > 4 DO

(6) IF there is an (x ′, y ′) ∈ L with ‖y − y ′‖K ≤ 1
2
‖y‖K THEN

(7) Replace y by y − (y ′−x ′)

(8) ELSE

(9) Add (x , y) to L
(10) GOTO (2) (and increase t )

(11) SET (xt , yt ) := (x , y)

(12) Add t to T
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An informal description of the algorithm is as follows: we generate a random

pair (x , y) where x ∼ K and y −x ∈Λ. Then we iteratively try to reduce the length

of the vector by subtracting a lattice vector y ′− x ′ with (x ′, y ′) ∈ L. An important

subtlety is that we measure the length of the current iterate as ‖y‖K and not as

the length of the lattice vector y −x . Even though the difference is only ‖y − (y −
x)‖K ≤ 1, this will be crucial in the analysis. The reduction stops when the length

reaches a threshold of 4. If the reduction fails, then we add the reduced pair (x , y)

to the list L. Note that the algorithm generates an output sequence (xt , yt )t∈T

where ‖yt‖K ≤ 4 and xt ∈K .

3.2 The analysis

Now we start the formal analysis.

Lemma 3.2. At any point in the algorithm, the current pair (x , y) and any pair

added to L satisfy y −x ∈Λ.

Proof. When we initialize the pair in (3), we have y = x mod P(B ) and so y −x ∈
Λ as discussed previously. In any reduction step where y − x ∈Λ and y ′− x ′ ∈Λ,

also the new pair satisfies y − (y ′−x ′)−x ∈Λ.

In the following it will be convenient to abbreviate M := maxi=1,...,n ‖bi‖K . At

certain points we will assume that M ≥ 1. We verify that the WHILE loop actually

terminates quickly:

Lemma 3.3. The WHILE loop of (5) terminates after O(log(nM)) iterations.

Proof. Consider an iteration of the WHILE loop with current iterate (x , y) and

suppose (x ′, y ′) ∈ L is the pair with ‖y − y ′‖K ≤ 1
2
‖y‖K that is being used in the

reduction. Then the next iterate has length

‖y − (y ′−x ′)‖K ≤ ‖y − y ′‖K +‖x ′‖K ≤
1

2
‖y‖K︸ ︷︷ ︸
≥4

+1 ≤
3

4
‖y‖K ,

meaning the length decreases geometrically. At any moment in the WHILE loop,

the iterate (x , y) satisfies 4≤ ‖y‖K ≤
∑n

i=1‖bi‖K ≤ nM which then gives the claim.

We also need a standard packing argument:

Lemma 3.4. Let K ⊆ Rn be any symmetric convex body and let Z ⊆ αK so that

‖z1 − z2‖K ≥β for all distinct z1, z2 ∈ Z . Then |Z | ≤ ( 2α
β +1)n .
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Proof. The interior of the translates z+ β
2

K are disjoint for all z ∈ Z while they are

contained in (α+ β
2

)K . Comparing the volumes gives

|Z | ·
(β

2

)n
Voln(K ) = Voln

( ⋃
z∈Z

(
z +

β

2
K

))
≤ Voln

((
α+

β

2

)
K

)
=

(
α+

β

2

)n
Voln(K )

Rearranging gives |Z | ≤ (
α+β/2

β/2
)n = ( 2α

β
+1)n .

We can use this packing argument to show that the list L does not grow too

large:

Lemma 3.5. At any point in the algorithm one has |L| ≤ 9n ·O(ln(nM)).

Proof. For some radius α consider Rα := {y ′ | (x ′, y ′) ∈ L and α
2
≤ ‖y ′‖K ≤α}. Con-

sider the moment when the algorithm adds a pair (x , y) to L so that y ∈ Rα.

Then ‖y − y ′‖K > 1
2
‖y‖K ≥ α

4
for all y ′ ∈ Rα. Then by induction one can easily

prove that all y1, y2 ∈ Rα satisfy ‖y1 − y2‖K ≥ α
4

. Hence by Lemma 3.4 we have

|Rα| ≤ ( 2α
α/4

+1)n = 9n for all α. Accounting for the different length classes we have

|L| ≤
∑

α∈2Z:8≤α≤2nM |Rα| ≤ 9n ·O(log(nM)) which gives the claim.

Lemma 3.5 then guarantees that the number of successful iterations is |T | ≥
N −9n ·Θ(ln(nM)). Moreover, we already know that for each t ∈ T one has yt −
xt ∈ 5K ∩Λ. But so far we did not exclude the possibility that all such lattice

vectors are 0. We now come to the ingenious argument that guarantees that this

is not the case and indeed the output of the algorithm can be used to derive the

shortest vector. More precisely, we will use the randomness coming from the

initialization x ∼ K to argue that for every short enough lattice vector v there

is a lattice vector w , so that the algorithm returns yt1 − xt1 = w and yt2 − xt2 =
w +v for some iterations t1, t2. In the following, we use the term “overwhelming

probability” when the chance of failure is 2−nω(1)
.

Lemma 3.6. Assume 1 ≤ λ1(Λ,K ) ≤ 1.5 and fix any v ∈ 1.5K ∩Λ. Then if N ≥
48n ·C ln(nM) for a large enough constant C , then with overwhelming probability,

v is contained in the set of differences {(yi −xi )− (y j −x j ) : i , j ∈ T }.

Proof. Consider the regions Q1 := K ∩(K +v) and Q2 := K ∩(K −v). First we prove

that the regions are large enough for our purpose:

Claim I. One has Voln(Q1) = Voln(Q2) ≥ 4−nVoln(K ).
Proof of Claim I. By symmetry one clearly has Voln(Q1) = Voln(Q2). Observe that
v
2
+K

4
⊆ K∩(K+v) since for any x ∈K one has ‖ v

2
+ x

4
‖K ≤ 1

2
‖v‖K+ 1

4
‖x‖K ≤ 3

4
+ 1

4
= 1

by the triangle inequality and so v
2
+ K

4
⊆ K . Similarly ‖( v

2
+ x

4
)−v‖K ≤ 1 for x ∈ K

and so v
2
+ K

4
⊆ v +K .
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0
v

v
2

−v

K
v +K

K −v

v
2
+ K

4

Then Voln(Q1) ≥ Voln( 1
4

K ) = 4−nVoln(K ).

We define a bijection τ : K → K with

τ(x) :=





x +v if x ∈Q2

x −v if x ∈Q1

x otherwise

0
v

−v

x1
τ(x1)

x2

τ(x2)

K
v +K

K −v

Q1
Q2

Since v ∈Λ, we have x mod P(B ) = τ(x) mod P(B ) for all x ∈ K . Purely for

the sake of analysis we will modify the algorithm in a way that does not change

its behavior but will allow us to prove its correctness. We replace step (3) with the

following:

(3’) Draw x ∼ K . With probability 1/2, replace x by τ(x).

We call the operation of replacing x by τ(x) “tossing x”. Observe that tossing does

not change the behaviour of the algorithm since τ(x) is still uniform from K . Also

note that the modified algorithm needs access to v in order to compute τ; hence

indeed this is not an algorithm that we could actually implement.

Recall that x mod P(B ) = τ(x) mod P(B ) and so the initial choice of y does

not depend on whether x was tossed. Then let us defer the decision whether x is

tossed; we will make that decision when a pair (x , y) is added to L and at the very

end of the algorithm we make that decision for each xt with t ∈ T .
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Consider the iterations T ∗ := {t ∈ T | xt ∈Q1 ∪Q2} and for each lattice vector

w ∈ Λ, we denote T ∗
w := {t ∈ T ∗ | w = yt − xt } (here we mean the vectors before

the tossing decision is made).

Claim II. With overwhelming probability, there is a vector w ∈ Λ so that |T ∗
w | ≥

( 12
11

)n .
Proof of Claim. In each of the iterations t , we sample x ∼ K independently. By

Claim I, we have an expected number of N
4n iterations where x ∈ Q1 ∩Q2. By a

standard Chernov bound argument, the actual number of such iterations is at

least 1
2
· N

4n with overwhelming probability. Conditioning on this event we have

|T ∗| ≥ 1
2

N
4n −9n ·O(ln(nM)) ≥ 12n if C is chosen large enough.

Next, denote W := {w ∈Λ : T ∗
w 6= ;}. Note that for any t one has ‖yt − xt‖K ≤

‖yt‖K +‖xt‖K ≤ 5, implying that W ⊆ 5K . Moreover for distinct w1, w2 ∈ W one

has ‖w1 −w2‖K ≥λ1(Λ,K ) ≥ 1. Then we can bound the size of W as |W | ≤ (2 ·5+
1)n = 11n using Lemma 3.4. Then there must be some lattice vector w ∈Λ so that

|T ∗
w | ≥ |T ∗|

|W | ≥
12n

11n .

Fix the vector w ∈ Λ from Claim II and condition on the event |T ∗
w | ≥ ( 12

11
)n

to happen. Consider our modified hypothetical algorithm which at the very end,

for each t ∈ T flips an independent coin to decide whether to write (xt , yt ) or

(τ(xt ), yt ) in the output list. Again with overwhelming probability, there will be

an iteration t1 ∈ T ∗
w which is tossed (say with xt1 ∈Q1 for symmetry reasons) and

another iteration t2 ∈ T ∗
w which is not tossed. Then their difference vector is

(yt1 −τ(xt1 ))− (yt2 −xt2 ) = (yt1 −xt1︸ ︷︷ ︸
=w

+v)− (yt2 −xt2︸ ︷︷ ︸
=w

) = v

as claimed.

This concludes the analysis of the sieving algorithm. As indicated earlier, the

algorithm is surprisingly flexible and can be used to find not just the shortest

vector. It can also provide the following guarantee (where we use the “natural”

constants coming out of the algorithm):

Theorem 3.7. Let 0 < ε≤ 1
2

and consider a latticeΛ :=Λ(B ) ⊆Rn and a symmetric

convex body K ⊆ Rn . Then there is a randomized algorithm with running time

(1/ε)Θ(n) · log(nM) (where M := maxi=1,...,n ‖bi‖K ), which returns a random set Z
with the following properties: (A) Z ⊆ 10K ∩Λ; (B) for each v ∈ 1.5K ∩Λ one has

Pr[∃z ∈ Z : ‖v − z‖K ≤ ε] ≥ 1−2−nω(1)
.

This statement can be used for an approximation algorithm for the Closest

Vector problem.
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Theorem 3.8. Let 0 < ε ≤ 1
2

. Given a lattice Λ := Λ(B ) ⊆ Rn , a symmetric convex

body K ⊆Rn and a target vector t , there is a randomized algorithm that with high

probability finds a (1+ε)-approximate solution to min{‖t − x‖K : x ∈ Λ} in time

(1/ε)O(n) times a polynomial in the encoding length of B .

We will leave the details of both claims as exercises. Similarly one can also

find approximate i th successive minima:

Theorem 3.9 ([BN09]). Let 0 < ε ≤ 1
2

and consider a lattice Λ :=Λ(B ) ⊆ Rn and a

symmetric convex body K ⊆Rn . Then in time (1/ε)O(n) times a polynomial in the

encoding length of B one can find linearly independent vectors v1, . . . , vn ∈Λ so

that ‖vi‖K ≤ (1+ε) ·λi (Λ,K ) for all i = 1, . . . ,n.

3.3 Exercises

Exercise 3.1.

Prove Theorem 3.7.

Exercise 3.2.

In this exercise, we want to explain how to prove Theorem 3.8. Fix 0 < ε≤ 1
2

and consider

a full rank lattice Λ :=Λ(B ) with B ∈Rn×n , a symmetric convex body K ⊆Rn and a target

vector t ∈ Rn . Let x∗ ∈Λ be a minimizer to min{‖t − x‖K : x ∈Λ}. We assume that (after

scaling) we have ‖t − x∗‖K = 1. We extend the setting by one dimension and define a

(n +1)-dimensional lattice Λ̃ :=Λ(B̃ ) given by B̃ :=
(

B t

0 1

)
. We also define a symmetric

convex body K̃ ⊆Rn+1 so that ‖(x , x(n+1))‖K̃ := (1−ε)‖x‖K +ε|x(n+1)|. Apply Theorem 3.7

to Λ̃ and K̃ with parameter ε̃ := ε
2 . Show that from the random set Z̃ you can extract a

(1+2ε)-approximation to the Closest vector problem (with high probability).

Exercise 3.3.

Let Λ ⊆ Rn be a full rank lattice and let K ⊆ Rn be a symmetric convex body. Then for

any t > 0, |Λ∩ t ·λ1(Λ,K ) ·K | ≤ (2t +1)n .
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Chapter 4

Banaszczyk’s Transference Theorems

Recall that for a lattice Λ we denoted Λ
∗ := {y ∈Rn | 〈x , y〉 ∈Z∀x ∈Λ} as the dual

lattice. Also recall that λi (Λ) gives the minimum value so that there are i linearly

independent vectors v1, . . . , vi ∈Λ with ‖v1‖2, . . . ,‖vi‖2 ≤ λi (Λ). The goal for this

chapter is to show a relation between short vectors in a lattice Λ and the dual

lattice Λ
∗. We will see in an exercise that using lattice basis reduction one can

prove that always λ1(Λ) ·λn (Λ∗) ≤ 2O(n2). This is already a remarkable statement

in the sense that knowing the length λ1(Λ) of a single vector in the primal lattice

gives an upper bound on n vectors in the dual lattice. However, the bound is

exponentially large and hence quite weak. Here, we prove the following:

Theorem 4.1 (Banaszczyk ’93 [Ban93b]). For any full-rank lattice Λ⊆Rn one has
1
2
≤λ1(Λ) ·µ(Λ∗) ≤ n.

Then as promised we may infer the following1:

Corollary 4.2. For any full-rank lattice Λ⊆Rn one has 1 ≤λ1(Λ) ·λn(Λ∗) ≤ 2n.

Proof. The lower bound λ1(Λ) ·λn (Λ∗) ≥ 1 follows because for any x ∈Λ, y ∈Λ
∗

one has 〈x , y〉 ∈ Z. For the upper bound we use λ1(Λ) ·λn(Λ∗) ≤ 2λ1(λ) ·µ(Λ∗) ≤
2n using Lemma 1.45.

Recall that Minkowski’s theorem implies thatλ1(Λ) ≤
p

n·det(Λ)1/n andλ1(Λ∗) ≤p
n ·det(Λ∗)1/n which then already gives the qualitatively weaker bound of λ1(Λ)·

λ1(Λ∗) ≤ n. Also note that the upper bound in Cor 4.2 is asymptotically tight

since by Theorem 1.47 there is a latticeΛwithλi(Λ) ≥Ω(
p

n) andλi (Λ∗) ≥Ω(
p

n)

for all i = 1, . . . ,n.

1We note that the original paper of [Ban93b] shows a bound of n rather than 2n.
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The technique used for proving Banaszczyk’s Theorem are fundamentally dif-

ferent from the techniques we have seen so far. They rely on Fourier analysis
and the Discrete Gaussian. This chapter is a reproduction of the fantastic lecture

notes of Regev [Reg09a] plus the original paper [Ban96] and plus some invaluable

input from Stefan Steinerberger.

4.1 Fourier analysis

The idea behind Fourier analysis is to express a function f in a different basis

(the Fourier basis). Many insights can be derived from this view that are hidden

otherwise.

4.1.1 The Fourier Transform

A classical object of study in functional analysis is the Fourier transform.

Definition 4.3. For a function f : Rn → C with
∫
Rn | f (x)| d x < ∞ we define the

Fourier transform as the function f̂ : Rn →C with

f̂ (y) :=
∫

Rn
f (x) ·e−2πi〈x ,y〉d x

It is not hard to see that some technical conditions on function f are needed.

In the proof of Banaszczyk’s Theorem we will apply the Fourier transform only

to a family of functions f that are continuous and decay exponentially. Hence

we will never run into any convergence problem. Occasionally we will call such

functions “nice enough” without making this more formal.

A popular view is to consider the function f (x) as a “signal” and the Fourier

coefficient f̂ (y) gives the amplitudes of the “frequency” y of that signal. There is

also an explicit way to assemble the “frequencies” to recover the “signal”.

Theorem 4.4 (Fourier Inversion Formula). For a continuous function f : Rn → C

with
∫
Rn | f (x)|d x <∞ and

∫
Rn | f̂ (y)|d y <∞ one has

f (x) =
∫

Rn
f̂ (y) ·e2πi〈x ,y〉d y ∀x ∈Rn

Proof. Before we start with the main argument, we prove a claim that will be

useful:

Claim. For v ∈Rn and β> 0 one has
∫
Rn e2πi〈v ,y〉−β‖y‖2

2 d y = exp(−‖v‖2
2π

2

β
) ·

(√
π
β

)n .
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Proof of Claim. By symmetry we may assume that v =αe1 for some α≥ 0. Then

one can factor the integral into products as

∫

Rn
e2πi〈v ,y〉−β‖y‖2

2 d y =
(∫

R

e2πiαy1−βy2
1 d y1

︸ ︷︷ ︸
=exp(−π2α2

β
)·
√

π
β

)
·
(∫

R

e−βz2

d z
︸ ︷︷ ︸

=
√

π
β

)n−1
= e−α2π2/β ·

(π
β

)n/2

Now fix an x ∈ Rn . Naively one might try to start the proof by inserting the

definition of f̂ (y) into the right hand side of the expression
∫
Rn f̂ (y) ·e2πi〈x ,y〉d y .

The problem is that the order of the emerging double integral cannot be swapped

due to convergence issues. The trick is to first multiply the expression with a

dampening factor e−ε‖y‖2
2 to deal with the convergence issue. By the assumption

on f and f̂ , the error that we make will go to 0 as ε → 0 which then gives the

claim. Please note that in the interest of time and space we do not spell out all

the limits in the argument. We write

∫

Rn
f̂ (y) ·e2πi〈x ,y〉d y

ε→0≈
∫

Rn
f̂ (y) ·e2πi〈x ,y〉 ·e−ε‖y‖2

2 d y

Def f̂
=

∫

Rn

(∫

Rn
f (x ′) ·e−2πi〈x ′,y〉d x ′

)
·e2πi〈x ,y〉−ε‖y‖2

2 d y

=
∫

Rn
f (x ′) ·

(∫

Rn
e2πi〈x−x ′ ,y〉−ε‖y‖2

2 d y
)
d x ′

Claim I w. β:=ε,v :=x−x ′
=

(√π

ε

)n
∫

Rn
f (x ′) ·exp

(
−
π2

ε
‖x −x ′‖2

2

)
d x ′

f cont., ε→0
≈

(√π

ε

)n
f (x)

∫

Rn
exp

(
−
π2

ε
‖x −x ′‖2

2

)
d x ′

shift=
(√π

ε

)n
f (x)

∫

Rn
exp

(
−
π2

ε
‖x ′‖2

2

)
d x ′

Claim I w. β:=π2

ε ,v :=0
=

(√π

ε

)n
· f (x) ·

(√ π

(π2/ε)

)n
= f (x)

Additionally we will need a variant of the Fourier transform that is custom

tailored to lattices.

4.1.2 The Fourier series representation

In the following, letΛ⊆Rn be a full-rank lattice. We say that a function f : Rn →R

is Λ-periodic if f (x) = f (x + y) for all x ∈ Rn and y ∈ Λ. In other words, shifting
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the argument of f by a lattice point leaves the value invariant. For example, the

function dist(x ,Λ) := min{‖x−y‖2 : y ∈Λ} that gives the distance of a point to the

nearest lattice point is a natural Λ-periodic function. Now we want to define a

discrete version of the Fourier transform:

Definition 4.5. Let Λ = Λ(B ) ⊆ Rn be a full-rank lattice and let f : Rn → C be a

Λ-periodic function. Define the Fourier series f̃ : Λ∗ →C as

f̃ (y) :=
1

det(Λ)
·
∫

P(B )
f (x) ·e−2πi〈x ,y〉 d x ∀y ∈Λ

∗.

Loosely speaking, the difference to the Fourier transform is that the integral

is over a bounded region rather than Rn and that f̃ (y) is only defined for dual

lattice vectors. Observe that the definition itself includes a concrete basis B for

the lattice. We leave it as an exercise to prove that the values f̃ (y) do not depend

on the chosen basis. It might be useful to keep in mind that one can equivalently

write

f̃ (y) := E
x∼P(B )

[
f (x) ·e−2πi〈x ,y〉

]
∀y ∈Λ

∗

where x ∼ P(B ) means we take a uniform sample from the fundamental region

P(B ).

Now we come to the discrete analogue of Theorem 4.4.

Theorem 4.6 (Fourier series representation). Let Λ = Λ(B ) ⊆ Rn be a full-rank

lattice and let f : Rn →C be a nice enough Λ-periodic function and let f̃ : Λ∗ →C

be its Fourier series. Then

f (x) =
∑

y∈Λ∗
f̃ (y) ·e2πi〈x ,y〉 ∀x ∈Rn

Before we give a formal proof, we will explain what it means and why it makes

sense. Fix a full-rank lattice Λ := Λ(B ) and consider the set V := { f : Rn → C |
f is Λ-periodic}2 which forms a vector space. We can define a (complex) inner
product 〈·, ·〉V for this vector space which for function f , g ∈V has the value

〈 f , g 〉V := E
x∼P(B )

[
f (x) ·g (x)

]
=

1

det(Λ)

∫

P(B )
f (x) ·g (x) d x ,

where a+bi := a −bi gives the complex conjugate. For a dual vector y ∈Λ
∗, we

define a function χy : Rn → C with χy (x) := exp(2πi 〈x , y〉). Note that each func-

tion χy is also Λ-periodic since for x ∈Rn and z ∈Λ one has

χy (x + z) = exp(2πi 〈x , y〉) ·exp(2πi 〈z , y〉︸ ︷︷ ︸
∈Z

)

︸ ︷︷ ︸
=1

=χy (x).

2I suppose for a formal argument one should be adding some “niceness” conditions here
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Next, for two dual vectors y , y ′ ∈ Λ
∗ we can verify that the inner product of

the corresponding functions is

〈χy ,χy ′〉V = E
x∼P(B )

[
exp(2πi 〈x , y〉) ·exp(−2πi 〈x , y ′〉)

]

= E
x∼P(B )

[
exp(2πi 〈x , y − y ′〉)

]

=
n∏

j=1

E
λ j∼[0,1]

[
exp

(
2πiλ j 〈B j , y − y ′〉︸ ︷︷ ︸

∈Z

)]

︸ ︷︷ ︸
=1 if 〈B j ,y−y ′〉=0,=0 o.w.

=
{

1 if y − y ′ = 0

0 if y − y ′ 6= 0

Hence the family {χy }y∈Λ∗ is an infinite orthonormal set of functions contained

in V . Next, we note that the inner product of a function f ∈ V with one of the

functions χy for y ∈Λ
∗ is indeed

〈 f ,χy〉V =
1

det(Λ)

∫

P(B )
f (x) ·exp(−2πi 〈y , x〉)d x

Def. f̃
= f̃ (y)

Now, we have not proven that {χy }y∈Λ∗ is indeed an orthonormal basis of V . But

if we accept that as a fact, then the only way to write f as a linear combination in

terms of that basis is

f (x) =
∑

y∈Λ∗
〈 f ,χy〉 ·χy (x) =

∑

y∈Λ∗
f̃ (y) ·e2πi〈y ,x〉 ∀x ∈Rn

And that identity is precisely the Fourier inversion formula!

4.1.3 The proof of the Fourier Series Representation

Now, we come to the formal proof of the Fourier Series Representation Theorem in

form of Theorem 4.6. Here we follow the exposition due to Stefan Steinerberger.

After applying a linear transformation, it will suffice to consider the lattice Λ =
Zn which conveniently has the dual lattice Λ

∗ = Zn . Recall that for a function

f : Rn →C and y ∈Zn we have the Fourier series coefficient

f̃ (y) :=
∫

[0,1]n
f (x) ·e−2πi〈x ,y〉d x

It will be convenient to abbreviate a function F : Rn →C with

F (x) :=
∑

y∈Zn
f̃ (y) ·e2πi〈x ,y〉
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and the truncation Fk : Rn →C with

Fk (x) :=
∑

y∈Zn :‖y‖∞≤k
f̃ (y) ·e2πi〈x ,y〉

Then the main goal will be to prove:

Theorem 4.7. If f : Rn →C is sufficiently often differentiable, then f (x) = F (x) for

all x ∈Rn .

Here the vague term “sufficiently often differentiable” will mean that there is

some (large enough) polynomial p(n) so that for all α ∈ Zn
≥0 with ‖α‖1 ≤ p(n),

the derivative
∂α1

∂xα1

1

∂α2

∂xα2

2

. . .
∂αn

∂xαn
n

f (x)

exists.

Upper bounding the Fourier Series Coefficients

Note that by definition one has | f̃ (y)| = |Ex∼P(B )[ f (x)·e−2πi〈x ,y〉]| ≤ Ex∼P(B )[| f (x)|].
However, one can prove that the Fourier series coefficients are indeed quickly de-

caying. Note that the constant C f ,α in the upcoming bound will depend on the

function f and on α but crucially not on the Fourier coefficient y .

Lemma 4.8. Let α ∈Zn
≥0 and let f : Rn → R be ‖α‖1-times continuously differen-

tiable. Then there is a constant C f ,α > 0 so that

| f̃ (y)| ≤C f ,α ·
n∏

i=1

1

|yi |αi
∀y ∈Zn with yi = 0 ⇒αi = 0

Proof. Fix a vector α ∈Zn
≥0 and an index i with αi > 0. Then for y ∈Zn with yi 6= 0

one we can write

| f̃ (y)| =
∣∣∣
∫

[0,1]n
f (x) ·e−2πi〈x ,y〉d x

∣∣∣
1
a (eax )′=eax

=
∣∣∣

1

2πi yi

∫

[0,1]n
f (x) ·

( ∂

∂xi
e−2πi〈x ,y〉

)
d x

∣∣∣

int. by parts
=

∣∣∣
1

2πi yi

∫

[0,1]n

( ∂

∂xi
f (x)

)
e−2πi〈x ,y〉d x

∣∣∣

where we use integration by parts3. If we iterate this argument α1-times for the

3Which is
∫1

0 u(x)v ′(x)d x = u(1)v(1)−u(0)v(0)−
∫1

0 u′(x)v(x)d x. Note that if — as in our case

— the functions u and v are 1-periodic, then u(1)v(1)−u(0)v(0) = 0.
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first coordinate, α2-times for the second coordinate etc, then we obtain the rep-

resentation

| f̃ (y)| =
∣∣∣
( n∏

i=1

1

(2πi yi )αi

)
·
∫

[0,1]n

∂α1

∂xα1

1

∂α2

∂xα2

2

. . .
∂αn

∂xαn
n

f (x)e−2πi〈x ,y〉d x
∣∣∣

≤
n∏

i=1

1

|yi |αi
· sup

x∈[0,1]n

∣∣∣ ∂α1

∂xα1

1

∂α2

∂xα2

2

. . .
∂αn

∂xαn
n

f (x)
∣∣∣

︸ ︷︷ ︸
=:C f ,α

.

as desired. Here the supremum exists as the derivative is continuous and [0,1]n

is compact.

We use this to obtain a rough but convenient upper bound on the size of the

Fourier series coefficients:

Lemma 4.9. Let f : Rn → C be sufficiently often differentiable. Then there is a

constant C f > 0 so that

| f̃ (y)| ≤C f ·
( 1

‖y‖∞

)2n
∀y ∈Zn \ {0}

Proof. Fix y ∈Zn \{0}. Let i ∈ [n] be an index with |yi | = ‖y‖∞. Choose α := 2n ·ei .

Then by Lemma 4.8 one has

| f̃ (y)| ≤C f ,α ·
1

|yi |2n =C f ,α ·
( 1

‖y‖∞

)2n

Note that the promised constant C f will then be the maximum over the n con-

stants for the different coordinates i = 1, . . . ,n.

Convergence of Fk to F

Next, we will prove that the truncation Fk converges uniformly to F as k → ∞
(though that itself does not yet tell us whether f and F are the same).

Lemma 4.10. Let f : Rn →Rbe sufficiently often differentiable. Then limk→∞ Fk (x) =
F (x) uniformly.

Proof. For the sake of convinience we assume n ≥ 2. We can bound the error
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between the functions as

|Fk (x)−F (x)| =
∣∣∣

∑

y∈Zn :‖y‖∞>k

f̃ (y) ·e2πi〈x ,y〉
∣∣∣

≤
∑

y∈Zn :‖y‖∞>k

| f̃ (y)|︸ ︷︷ ︸
≤C f /‖y‖2n

∞

· |e2πi〈x ,y〉|︸ ︷︷ ︸
≤1

Lem 4.9
≤ C f

∑

ℓ>k

|{y ∈Zn : ‖y‖∞ ≤ ℓ}|︸ ︷︷ ︸
≤(2ℓ+1)n

·
1

ℓ2n

≤ C f

∑

ℓ>k

(2ℓ+1

ℓ2

)n k→∞,n≥2−→ 0

Note that the α-th derivative of Fk is

∂α1

∂xα1

1

∂α2

∂xα2

2

. . .
∂αn

∂xαn
n

Fk (x)d x =
∑

y∈Zn :‖y‖∞≤k

( n∏

i=1

(2πi yi )αi
)
· f̃ (y) ·e2πi〈x ,y〉

Then repeating the arguments in Lemma 4.9 and Lemma 4.10 with a larger α, we

can also force that the derivatives of Fk converge uniformly. We skip the details

in order to not be repetitive:

Corollary 4.11. Let f : Rn →Rbe sufficiently often differentiable. Then F is twice

differentiable and Lipschitz continuous.

The multidimensional Fejér kernel

A crucial ingredient of the main argument will be the existence of a function that

has finite Fourier support but almost all the mass is concentrated around a single

point.

Lemma 4.12. There is a family of functionsφk : Rn →R≥0 with the following prop-

erties:

a) One has φk(x) =
∑

y∈Zd :‖y‖∞≤k ay ·e2πi〈x ,y〉 for some coefficients ay ∈R.

b) One has
∫
Rn φk(x)d x = 1.

c) There are εk > 0 so that limk→0εk = 0 and
∫

[−εk ,εk ]n φk(x)d x ≥ 1−εk .
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Proof. First we discuss the 1-dimensional case. We define the Fejér kernel as the

function Fejerk : R→R with

Fejerk (x) =
∑

|ℓ|≤k

(
1−

|ℓ|
k

)
·e iℓx =

1

k
·
(1−cos(kx)

1−cos(x)

)
=

1

k

(sin( kx
2

)

sin x
2

)2

x

Fejer2(x)

x

Fejer4(x)

k

2π
k

x

Fejer8(x)

For space reasons, we will not verify these identities here. Note that from the last

characterization it becomes obvious that Fejerk (x) ≥ 0 for all x ∈ R. Also with-

out a proof we claim that indeed
∫
R Fejerk (x)d x = 1 and for some δk > 0 with

limk→∞δk = 0 one has
∫

[−δk ,δk ] Fejerk (x) d x ≥ 1−δk meaning that most mass is

concentrated around the origin. Now we choose φk : Rn → R as the Cartesian

product of the Fejér kernel:

φk(x) :=
n∏

i=1

Fejerk (xi )

Note that in particular
∫

[−δk ,δk ]n φk(x)d x ≥ (1−δk)n andφk satisfies the claim.

It will be convenient to obtain a shifted version of the kernel where the mass

is concentrated around a point x0:

Lemma 4.13. For k ∈ N, x0 ∈ Rn there is a family of functions φk,x0
: Rn → R≥0

with the following properties:

a) One has φk,x0
(x) =

∑
y∈Zd :‖y‖∞≤k by ·e2πi〈x ,y〉 for some coefficients by ∈C.

b) One has
∫
Rn φk,x0

(x)d x = 1.

c) There are εk > 0 so that limk→0εk = 0 and
∫

x0+[−εk ,εk ]n φk(x)d x ≥ 1−εk .

Proof. Simply define Φk,x0
(x) := Φk (x0 + x). The only thing worth noting is that

the individual summands change to ay ·e2πi〈x0+x ,y〉 = by ·e2πi〈x ,y〉 where the shift

makes the coefficients by := ay e2πi〈x0 ,y〉 ∈C complex.
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Completing the proof

We have almost everything to finish the proof. Recall the functions χy : Rn → C

with χy (x) := e2πi〈x ,y〉 that we have introduced earlier. In the main argument we

would like to use Plancherel’s Theorem which ideally should be saying that for

Zn-periodic functions f , g : Rn →C one has

∫

[0,1]n
f (x)g (x)d x =

∑

y∈Zn
f̃ (y)g̃ (y) (∗)

The expression on the left of (∗) is an inner product and the value of the inner

product should be equal to the sum of the products of the coordinates in any

orthonormal basis, which is the expression on the right hand side of (∗). The

issue is we have not yet proven that {χy }y∈Zn is a basis for the space of sufficiently

differentiable functions. But this won’t be necessary as long as we know that one
of the functions f and g is spanned by finitely functions χy :

Lemma 4.14 (Semi-finite version of Plancherel’s Theorem). Let S ⊆ Zn be finite

and let f , g : Rn →Cbe twoZn-periodic functions where f is Lipschitz-continuous

and g is of the form g (x)=
∑

y∈S ayχy (x) for some ay ∈C. Then

∫

[0,1]n
f (x) ·g (x)d x =

∑

y∈S
f̃ (y) ·ay

Proof. We can simply write

∫

[0,1]n
f (x) ·g (x)d x

S finite=
∑

y∈S
ay

∫

[0,1]n
f (x) ·χy (x)d x

︸ ︷︷ ︸
= f̃ (y )

=
∑

y∈S
ay f̃ (y)

Finally we prove the main result of this section:

Proof of Theorem 4.7. Recall that the goal is to prove that f = F . So suppose for

the sake of contradiction that f 6= F , meaning there is a x0 ∈Rn with f (x0) 6= F (x0).

By peridicity and continuity we may assume that x0 ∈ (0,1)n .

On the one hand the difference x 7→ f (x)−Fk (x) is Lipschitz continuous and

converges uniformly to f (x)−F (x) and so

lim
k→∞

(∫

[0,1]n

(
f (x)−Fk (x)

)
·φk,x0

(x)d x
)
= f (x0)−F (x0) 6= 0 (∗∗)
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where we used the kernel function φk,x0
from Lemma 4.13 which moves more

and more of its mass around x0 as k →∞.

On the other hand for any y ∈ Rn with ‖y‖∞ ≤ k we have f̃ (y) = F̃k (y) and

so ã( f −Fk )(y) = 0 by linearity. As φk,x0
(x) =

∑
y∈Zn :‖y‖∞≤k ayχy (x) has only finite

Fourier support, we can apply Plancherel’s Theorem from Lemma 4.14 and

∫

[0,1]n
( f (x)−Fk (x)) ·φk,x0

(x)d x =
∑

y∈Zn :‖y‖∞≤k

( f̃ (y)− F̃k (y))︸ ︷︷ ︸
=0

·ay = 0

Then certainly taking the limit for k →∞ will give 0, too. This is a contradiction

to (∗∗). Hence f = F as claimed.

4.1.4 The Poisson Summation Formula

The Poisson Summation Formula shows that the sum of a function f over all

lattice points is the same as the sum over the Fourier transform f̂ over all points

in the dual lattice (up to normalization factor). For a discrete set A ⊆Rn we write

f (A) :=
∑

x∈A f (x). Recall that f̂ is indeed the “regular” Fourier transform. First

an auxiliary lemma:

Lemma 4.15. For a nice enough function f : Rn →C and a full-rank latticeΛ⊆Rn ,

the function ϕ(x) :=
∑

z∈Λ f (x + z) is Λ-periodic and has Fourier series coeffi-

cients

ϕ̃(y) = det(Λ∗) · f̂ (y) ∀y ∈Λ
∗

Proof. Note that ϕ is indeed Λ-periodic by construction. For any y ∈Λ
∗ we have

ϕ̃(y)
Def. Fourier series=

1

det(Λ)

∫

P(B )
ϕ(x) ·e−2πi〈x ,y〉 d x (∗)

Def. ϕ
=

1

det(Λ)

∫

P(B )

∑

z∈Λ
f (x + z) ·e−2πi〈x ,y〉 d x

swapping order
=

1

det(Λ)

∑

z∈Λ

∫

P(B )
f (x + z) ·e−2πi〈x ,y〉 d x

z∈Λ⇒ e−2πi〈z ,y〉=1=
1

det(Λ)

∑

z∈Λ

∫

P(B )
f (x + z) ·e−2πi〈x+z ,y〉 d x

Λ+P(B )=Rn

=
1

det(Λ)︸ ︷︷ ︸
=det(Λ∗)

∫

Rn
f (x) ·e−2πi〈x ,y〉 d x

︸ ︷︷ ︸
= f̂ (y )

= det(Λ∗) · f̂ (y).
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Now we come to the Poisson Summation Formula itself:

Theorem 4.16 (Poisson Summation Formula for Lattices). For a nice enough func-

tion f : Rn →C and a full-rank lattice Λ⊆Rn one has f (Λ)= det(Λ∗) · f̂ (Λ∗).

Proof. We define the function ϕ(x) :=
∑

z∈Λ f (x + z). As ϕ is Λ-periodic, we may

apply the Fourier Series Representation Theorem (Theorem 4.6). Then

f (Λ) =
∑

z∈Λ
f (0+ z)

Def. ϕ
= ϕ(0)

Fourier Series
representation=

∑

y∈Λ∗
ϕ̃(y) ·e2πi〈0,y〉

︸ ︷︷ ︸
=1

Lem 4.15=
∑

y∈Λ∗
det(Λ∗) f̂ (y)︸ ︷︷ ︸

=ϕ̃(y )

= det(Λ∗) · f̂ (Λ∗).

We leave the following extension as an exercise:

Corollary 4.17 (Shifted Poisson Summation Formula). For a nice enough func-

tion f : Rn →C, a full rank latticeΛ⊆Rn and a vector s ∈Rn one has
∑

x∈Λ exp(2πi 〈x , s〉)·
f (x) = det(Λ∗) · f̂ (Λ∗− s).

4.2 The discrete Gaussian

A crucial function in the proof of Banaszczyk’s Theorem is the discrete Gaussian
which for s > 0 is a function

ρs : Rn →R≥0 with ρs (x) := e−π‖x/s‖2
2 ∀x ∈Rn .

In particular we will consider the sum ρs(Λ) over a lattice. Intuitively, the quan-

tity ρs (Λ) counts the lattice points while the contribution of each point x ∈ Λ

fades quickly if ‖x‖2 is getting too large.

First we prove that for s = 1, the Fourier transform of the discrete Gaussian is

again the discrete Gaussian:

Lemma 4.18. For all s > 0, the Fourier transform of the discrete Gaussian is ρ̂s(x) =
sn ·ρ1/s (x) for all x ∈Rn .

Proof. Let us define the coordinate contribution as gs(x) := e−π·(x/s)2
for x ∈ R.

The following two facts can be proven using the proper integral manipulation

skills. We will skip the proof here:
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Fact I. One has ĝs (y) = s ·e−π·(ys)2
for all y ∈R.

Fact II. For any function f : Rn → R in product form f (x) =
∏n

i=1
fi (xi ) one has

f̂ (y) =
∏n

i=1 f̂i (yi ) for y ∈Rn .

Next, observe that the discrete Gaussian has a product structure and we can write

ρs (x) = e−π‖x/s‖2
2 =

n∏

i=1

e−π(xi /s)2

=
n∏

i=1

gs(xi ).

Then for y ∈Rn the Fourier transform is

ρ̂s (y)
Fact II=

n∏

i=1

ĝ (yi )
Fact I=

n∏

i=1

(s ·e−π·(s yi )2

) = sn ·e−π‖ 1
1/s y‖2

2 = sn ·ρ1/s (y).

This implies a useful relation between the sum of the discrete Gaussian over

a lattice and its dual lattice:

Corollary 4.19. For any full-rank lattice Λ⊆Rn and any s > 0 one has

ρs (Λ) = det(Λ∗) · sn ·ρ1/s (Λ∗).

Proof. Follows from Lemma 4.18 and the Poisson Summation Formula for Lat-

tices from Lemma 4.16.

It is not hard to exactly quantify the sum of the discrete Gaussian over a

shifted lattice as well. Essentially if we shift the lattice by u, then we need to

“pull out” a factor of e2πi〈y ,u〉 for every summand.

Lemma 4.20. For any full-rank lattice Λ⊆Rn , any s > 0 and u ∈Rn one has

ρs (Λ+u) = det(Λ∗) · sn ·
∑

y∈Λ∗
ρ1/s (y) ·e2πi〈y ,u〉.

Proof. We consider the function f (x) := ρs (x+u) and write the Fourier transform

as

f̂ (x) =
∫

Rn
ρs (y+u)e−2πi〈x ,y〉d y =

∫

Rn
ρs (y)e−2πi〈x ,y−u〉d y = ρ̂s (x)·e2πi 〈x ,u〉 (∗)

for x ∈Rn . Then applying Lemma 4.16 to f gives

ρs (Λ+u) = f (Λ)
Lemma 4.16= det(Λ∗) ·

∑

y∈Λ∗
f̂ (y)

(∗)= det(Λ∗) ·
∑

y∈Λ∗
ρ̂s (y) ·e2πi〈y ,u〉

ρ̂s (y )=snρ1/s (y )
= det(Λ∗) · sn ·

∑

y∈Λ∗
ρ1/s (y) ·e2πi〈y ,u〉.
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An important insight is that shifting the lattice can only decrease the sum over

the discrete Gaussian:

Lemma 4.21. Let Λ⊆Rn be a full-rank lattice, s > 0 and let u ∈Rn be a shift. Then

ρs (Λ+u) ≤ ρs (Λ).

Proof. We can estimate that

ρs (Λ+u)
Lem 4.20=

∣∣∣det(Λ∗) · sn ·
∑

y∈Λ∗
ρ1/s (y) ·e2πi〈y ,u〉

∣∣∣

≤ det(Λ∗) · sn ·
∑

y∈Λ∗
ρ1/s (y) · |e2πi〈y ,u〉|︸ ︷︷ ︸

≤1

≤ det(Λ∗) · sn ·
∑

y∈Λ∗
ρ1/s (y)

︸ ︷︷ ︸
=ρ1/s (Λ∗)

Cor. 4.19= ρs (Λ)

which gives the claim.

Increasing the scaling factor s for the discrete Gaussians means that the ef-

fective length of the lattice vectors is reduced and the sum ρs (Λ) would increase.

But we can limit the decrease and show that it cannot be more than exponential.

Lemma 4.22. Let Λ ⊆ Rn be a full-rank lattice and let u ∈ Rn and s ≥ 1. Then

ρs (Λ+u) ≤ sn ·ρ1(Λ).

Proof. It suffices to prove that ρs (Λ) ≤ sn ·ρ1(Λ) — the general claim follows then

from Lemma 4.21 where we showed that shifting can only decrease the sum of

the discrete Gaussian. We will use the formula from Cor. 4.19 twice and obtain

ρs (Λ)
Cor.4.19 for s= det(Λ∗)·sn ·

∑

y∈Λ∗
ρ1/s (y)︸ ︷︷ ︸
≤ρ1(y )

≤ det(Λ∗)·sn
∑

y∈Λ∗
ρ1(y)

Cor. 4.19 for s=1= sn·ρ1(Λ).

This gives the claim.

One might be tempted to prove the claim for u = 0 point-wise — however

it is not true that
ρs (x)

ρ1(x)
≤ sn for all x ∈ Rn and all s ≥ 1. The claim only works

amortized over all lattice points. As ρr (x) = ρ1( x
r ), Lemma 4.22 easily generalizes

to the following:

Corollary 4.23. for s ≥ 1 and any r > 0 one has ρr s (Λ+u) ≤ snρr (Λ).
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4.3 The Proof of Banaszczyk’s Theorem

Finally we come to the main part of proving the Transference Theorem of Ba-

naszczyk’s. First, if we consider the sum ρ1(Λ) =
∑

x∈Λ e−π‖x‖2
2 then we know that

always ρ1(Λ) ≥ e−π‖0‖2
2 = 1 due to the contribution of the origin. A useful insight

is that the contribution of lattice points outside of a ball of radius
p

n to ρ1(Λ) is

always negligible:

Lemma 4.24. For any full-rank lattice Λ⊆Rn and any vector u ∈Rn one has

ρ1

(
(Λ+u) \

p
nB n

2

)
≤ 2−n ·ρ1(Λ).

Proof. The proof basically uses that for long vectors the value ρs (x) increases a

lot with s, while we know that the overall sum can only grow with sn . Then clearly

long vectors could not have contributed much to the sum. More formally

2n ·ρ1(Λ)
Lem. 4.22

≥ ρ2(Λ+u)

≥ ρ2

(
(Λ+u) \

p
nB n

2

)

=
∑

y∈Λ+u:‖y‖2>
p

n

e−π‖y/2‖2
2

=
∑

y∈Λ+u:‖y‖2>
p

n

e
3
4π‖y‖2

2︸ ︷︷ ︸
≥4n

·e−π‖y‖2
2

≥ 4n ·ρ1

(
(Λ+u) \

p
nB n

2

)

Rearranging then gives the claim.

Again, we state a generalization that follows from simple scaling for later ref-

erence:

Corollary 4.25. For any full-rank lattice Λ ⊆ Rn any r > 0 and any vector u ∈ Rn

one has

ρr
(
(Λ+u) \ r

p
nB n

2

)
≤ 2−n ·ρr (Λ).

An easy consequence is that in a lattice without short vectors, essentially all

the Gaussian weight has to lie on the origin 0:

Lemma 4.26. Let Λ⊆Rn be a full-rank lattice with λ1(Λ) >
p

n. Then ρ1(Λ\{0}) ≤
2 ·2−n .

Proof. Using the previous Lemma we have

ρ1(Λ\ {0})
λ1(Λ)>

p
n= ρ1

(
Λ\

p
nB n

2

) Lem. 4.24
≤ 2−n ·ρ1(Λ) = 2−n ·

(
ρ1(0)︸ ︷︷ ︸
=1

+ρ1(Λ\ {0})
)
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Rearranging for ρ1(Λ\ {0}) then gives the claim.

We can prove that ρ1(Λ+u) ≈ det(Λ∗) if ρ1(Λ∗ \ {0}) ≪ 1. For later reference

we prove the statement in more generality than we need at the moment.

Lemma 4.27. For any full rank lattice Λ⊆Rn and any s > 0 and u ∈Rn one has

|ρs (Λ+u)− sn det(Λ∗)| ≤ sn det(Λ∗) ·ρ1/s (Λ∗ \ {0})

Proof. We write

|ρ1(Λ+u)− sn det(Λ∗)| Lem 4.20= sn det(Λ∗) ·
∣∣∣
( ∑

y∈Λ∗
ρ1/s (y) ·e2πi〈y ,u〉

)
−1

∣∣∣

≤ sn det(Λ∗)
∑

y∈Λ∗\{0}

ρ1/s (y) · |e2πi〈y ,u〉|︸ ︷︷ ︸
≤1

≤ sn det(Λ∗) ·ρ1/s (Λ∗ \ 0)

An immediate consequence is as follows:

Corollary 4.28. For any full rank lattice Λ⊆Rn and any s > 0 and u ∈Rn one has

1 ≥
ρs (Λ+u)

ρs (Λ)
≥

1−ρ1/s (Λ∗ \ {0})

1+ρ1/s (Λ∗ \ {0})

Proof. We know the upper bound already from Cor 4.23. The lower bound fol-

lows from

ρs (Λ+u)

ρs (Λ)

Lem 4.27
≥

sn det(Λ∗) · (1−ρ1/s (Λ∗ \ {0})

sn det(Λ∗) · (1+ρ1/s (Λ∗ \ {0})
=

1−ρ1/s (Λ∗ \ {0})

1+ρ1/s (Λ∗ \ {0})

The next lemma gives one crucial insight: if the lattice Λ has no vector of

length
p

n or less, then the sum ρ1(Λ∗+u) over the shifted dual lattice does only

marginally depend on the shift u. This will then quickly imply that the dual lat-

tice has no large “holes” and the covering radius has to be small.

Lemma 4.29. Let Λ ⊆ Rn be a full-rank lattice with λ1(Λ) >
p

n. Then for any

vector u ∈Rn one has

ρ1(Λ∗+u) = (1±2 ·2−n) ·det(Λ).



4.4. THE TRANSFERENCE THEOREM FOR ARBITRARY SYMMETRIC CONVEX BODIES87

Proof. We estimate that

|ρ1(Λ∗+u)−det(Λ)|
Lem 4.27

≤ det(Λ) · ρ1(Λ\ {0})︸ ︷︷ ︸
≤2·2−n by Lem. 4.26

≤ det(Λ) ·2 ·2−n

Now we can prove Banaszczyk’s result: we will show that for any latticeΛ with

no non-zero vector of length at most
p

n, the covering radius of the dual lattice

is bounded by
p

n.

Theorem 4.30. For any full rank lattice Λ⊆Rn one has λ1(Λ) ·µ(Λ∗) ≤ n.

Proof. We assume n ≥ 2. After scaling the lattice appropriately it suffices to

assume λ1(Λ) >
p

n and µ(Λ∗) >
p

n and bring this to a contradiction. From

Lemma 4.29 we know that for a lattice Λ with λ1(Λ) >
p

n, shifting the dual lat-

tice has little effect on the sum of the discrete Gaussian; applying Lemma 4.29

twice gives that for any u ∈Rn one has

ρ1(Λ∗−u)

ρ1(Λ∗)
≥

1−2 ·2−n

1+2 ·2−n ≥
1

3
(∗)

Now, fix a vector u ∈ Rn attaining the covering radius for the dual lattice, that

means Λ∗∩ (u +
p

nB n
2 ) =; (which is equivalent to (Λ∗−u)∩

p
nB n

2 =;. Then

1

3
ρ1(Λ∗)

(∗)
≤ ρ1(Λ∗−u)

Λ
∗∩(u+

p
nBn

2 )=;
= ρ1((Λ∗−u) \

p
nB n

2 )
Lem 4.24

< 2−nρ1(Λ∗)

which is a contradiction for n ≥ 2.

4.4 The Transference Theorem for arbitrary symmet-

ric convex bodies

The goal for this section is to present a transference bound for arbitrary symmet-

ric convex bodies rather than Euclidean balls. First we need to generalize some

of the introduced notation. For a symmetric convex body K ⊆Rn and a full-rank

lattice Λ⊆Rn we define the i th successive minimum with respect to norm ‖·‖K as

λi (Λ,K ) := min
{
r ≥ 0 | dim(span(Λ∩ r K )) ≥ i

}
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As before, we will be particularly interested in the length of the shortest vector in

norm ‖ · ‖K which is λ1(Λ,K ) = min{‖x‖K : x ∈Λ \ {0}}. For a convex body K ⊆Rn

we define the covering radius with respect to K as

µ(Λ,K ) = min
{
r ≥ 0 | ∀u ∈Rn : (u + r K )∩Λ 6= ;

}

Note that this definition also makes sense if K is not symmetric. But we will not

need that level of generality until the next chapter. Of course, if K is symmetric

then we can also write

µ(Λ,K ) = max
u∈Rn

min
x∈Λ

‖x −u‖K .

We denote K ◦ := {x ∈ Rn | 〈x , y〉 ≤ 1 ∀y ∈ K } as the polar of K . If K is any convex

body with 0 ∈ int(K ), then one can show that (K ◦)◦ = K . Also note that ‖ · ‖K ◦ is

the dual norm to ‖·‖K meaning that ‖x‖K ◦ = sup{〈y , x〉 : ‖y‖K ≤ 1}. The Euclidean

ball is the only self-polar body, that means (B n
2 )◦ = B n

2 . Another example is that

(B n
∞)◦ = B n

1 .

By John’s Theorem, any symmetric convex body can be approximated within

a
p

n factor with an ellipsoid and so the result from Theorem 4.30 implies that

1 ≤ λ1(Λ,K ) ·µ(Λ∗,K ◦) ≤ O(n3/2). The goal for this section is a more powerful

transference theorem for general norms that only loses a logarithmic factor com-

pared to the Euclidean norm:

Theorem 4.31 (Banaszczyk 1996). For full-rank lattice Λ⊆Rn and any symmetric

convex body K ⊆Rn one has 1≤λ1(Λ,K ) ·µ(Λ∗,K ◦) ≤O(n log(n)).

4.4.1 Fourier analysis with arbitrary symmetric convex bodies

In this subsection we will generalize a few facts on Fourier analysis from earlier to

deal with arbitrary symmetric convex bodies. Additionally we will develop some

new arguments. First, for a symmetric convex body K ⊆Rn we define

β(K ) := sup
Λ⊆Rn

lattice

sup
u∈Rn

ρ1((u +Λ) \ K )

ρ1(Λ)

Equivalently, β(K ) is the smallest number so that for any lattice Λ and any vec-

tor u one has ρ1((u +Λ) \ K ) ≤ β(K ) ·ρ1(Λ). Note that always 0 < β(K ) < 1. In

some sense a small value β(K ) — the threshold of β(K ) ≤ 1
4

will work for our

purposes — means that the set K is big and any discrete Gaussian will place a

significant fraction of weight inside K . For example in Lemma 4.24 we proved

that β(
p

nB n
2 ) ≤ 2−n meaning that

p
nB n

2 satisfies our notion of a “big” set. First

we generalize Lemma 4.26 and Lemma 4.29 to work with the new definition of a

“big” set:
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Lemma 4.32. Let Λ ⊆ Rn be a full rank lattice and let K ⊆ Rn be a symmetric

convex body with λ1(Λ,K ) > 1 and let u ∈Rn . Then the following holds:

(a) One has ρ1(Λ\ {0}) ≤ β(K )

1−β(K )
.

(b) One has |ρ1(Λ∗+u)−det(Λ)| ≤ β(K )

1−β(K )
·det(Λ).

(c) One has 1≥ ρ1(Λ∗+u)

ρ1(Λ∗)
≥ 1−2β(K ).

Proof. First we prove (a). As λ1(Λ,K ) > 1 we know that Λ∩K = {0}. Then

ρ1(Λ\ {0})
Λ∩K={0}= ρ1(Λ\ K ) ≤β(K ) ·ρ1(Λ) =β(K ) · (ρ1(0)︸ ︷︷ ︸

=1

+ρ1(Λ\ {0}))

Rearranging gives (a). For (b), we have

|ρ1(Λ∗+u)−det(Λ)|
Lem 4.27

≤ det(Λ) ·ρ1(Λ\ {0})
Lem ??
≤ det(Λ) ·

β(K )

1−β(K )

To get (c), we apply (b) twice and have

ρ1(Λ∗+u)

ρ1(Λ∗)
≥

(1− β(K )

1−β(K )
) ·det(Λ)

(1+ β(K )

1−β(K )
) ·det(Λ)

= 1−2β(K )

Finally, we generalize a part of the argument used in Theorem 4.30. It may

appear a little odd that we have two sets K and Q appear. In out later application

Q will simply be chosen as the properly scaled polar of K . But our formulation

is more general and we won’t have to worry yet about the correct scaling of the

polar.

Lemma 4.33. Let K ,Q ⊆ Rn be symmetric convex bodies with β(K ),β(Q) ≤ 1
4

.

Then for any lattice Λ⊆Rn one has

λ1(Λ,K ) ·µ(Λ∗,Q) ≤ 1

Proof. Suppose for the sake of contradiction that there is a latticeΛwithλ1(Λ,K )·
µ(Λ∗,Q) > 1. The left hand side is invariant under scaling of Λ so we may assume

that λ1(Λ,K ) > 1 and µ(Λ∗,Q) > 1. Since we have the lower bound µ(Λ∗,Q) > 1
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on the covering radius we know there is a vector u ∈ Rn so that (u +Λ
∗)∩Q =;.

By assumption this vector satisfies

ρ1((u +Λ
∗) \Q)

ρ1(Λ∗)
≤β(Q) ≤

1

4
(∗)

On the other hand we haveλ1(Λ,K ) > 1 which satisfies the assumption of Lemma 4.32.(c)

and we have
ρ1(Λ∗+u)

ρ1(Λ∗)
≥ 1−2β(K ) ≥

1

2
(∗∗)

We combine both facts together and obtain:

1

2

(∗)
≤

ρ1(u +Λ
∗)

ρ1(Λ∗)

(u+Λ∗)∩Q=;=
ρ1((u +Λ

∗) \Q)

ρ1(Λ∗)
≤

1

4

This is a contradiction.

We have most of the estimates related to the discrete Gaussian in place but

we need one estimate that is new.

Lemma 4.34. Let Λ⊆Rn be a lattice. For a unit vector a ∈ Sn−1 and t ≥ 0 consider

the region R := {x ∈Rn | 〈a, x〉 ≥ t }. Then for any u ∈Rn one has ρ1((u +Λ)∩R) ≤
e−πt2

ρ1(Λ).

0

t

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b

b b

b b b

b b b b

b b b b

a

R

Proof. We use the standard trick in measure concentration to consider an expo-

nentially weighted sum. We obtain

e2πt2

·ρ1((u +Λ)∩R)
(∗)
≤

∑

x∈u+Λ
ρ1(x) ·e2πt〈a,x〉

=
∑

x∈u+Λ
exp

(
−π‖x‖2

2 +2πt 〈a, x〉
)

=
∑

x∈u+Λ
exp

(
π‖t a‖2

2 −π‖x − t a‖2
2

)

= eπt2

·ρ1(u − t a +Λ)
(∗∗)
≤ eπt2

·ρ1(Λ)
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Here we use in (∗) that any point x ∈ u+Λ on the right hand side that is in R con-

tributes e2πt〈a,x〉 ≥ e2πt2
to the left hand side. In (∗∗) we use Lemma 4.21 telling

us that central shifts maximize the weight of the discrete Gaussian. Rearranging

gives the claim.

4.4.2 Properties of the discrete Gaussian

We want to make a small excursion to connect in particular the last proven lemma

with a very versatile concept in probability theory that deals with random vari-

ables that have Gaussian-type tails. There are several ways how one could define

“having a Gaussian-type tail” but luckily all candidate choices are equivalent. It

will also be cleaner to focus on mean-zero random variables.

Lemma 4.35 (Conditions of Sub-Gaussian tails). Let X ∈ R be a random variable

with E[X ] = 0. The following statements are equivalent in the sense that if condi-

tion i holds with si > 0 then there is an s j ∈ [
si
C ,C si ] so that also condition j holds

where C > 0 is a universal constant.

• Condition 1: One has Pr[|X | ≥ t ] ≤ 2 exp(−t 2/s2
1) for all t ≥ 0.

• Condition 2: One has E[|X |p ]1/p ≤ s2
p

p for all p ≥ 1.

• Condition 3: One has E[exp(X 2/s2
3)] ≤ 2.

• Condition 4: One has E[exp(λX )] ≤ exp(s2
4λ

2) for all λ ∈R.

We refer to the wonderful exposition in Vershynin [Ver19] for details. So it

is natural to pick one of the above conditions as a parameter determining the

concentration behavior of a random variable:

Definition 4.36. Let X ∈ R be a random variable with E[X ] = 0. We define the

sub-gaussian norm as as

‖X ‖ψ2 := inf
{

s > 0 : E
[

exp
( X 2

s2

)]
≤ 2

}

While it is not at all obvious, ‖ · ‖ψ2 is indeed a norm on the space of mean-

zero random variables, i.e. ‖t X ‖ψ2 = |t |·‖X ‖ψ2 for t ∈R and ‖X +Y ‖ψ2 ≤ ‖X ‖ψ2 +
‖Y ‖ψ2 for any jointly distributed mean-zero random variables (which may even

be dependent). Moreover one can prove the following properties:

Lemma 4.37. In the following let X1, . . . , XN be jointly distributed mean-zero ran-

dom variables.
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(i) One has E[max{|X1|, . . . , |XN |}] ≤O(
√

log(N )) ·max{‖Xi‖ψ2 : i ∈ [N ]}

(ii) If X1, . . . , XN are independent then ‖X1 + . . .+ XN‖ψ2 ≤ C · (
∑N

i=1 ‖Xi‖2
ψ2

)1/2

for a universal constant C > 0.

The proof is not difficult when using the different conditions of Lemma 4.35.

Again we refer to Vershynin [Ver19] for details.

Now back to lattices. For a full-rank lattice Λ ⊆ Rn , we define the discrete
Gaussian as the distribution D1(Λ) that yields each vector x ∈Λ with probability
ρ1(x)

ρ1(Λ)
. Despite its discrete character, we can still compare D1(Λ) to a standard

normal distribution. In fact, the Lemma 4.34 we have proven earlier implies the

following:

Lemma 4.38 (Subgaussianity of Discrete Gaussian). Let Λ ⊆ Rn be an arbitrary

full rank lattice. Then for any direction θ ∈ Sn−1, the random variable 〈θ, x〉 with

x ∼D1(Λ) satisfies ‖〈θ, x〉‖ψ2 ≤O(1).

4.4.3 Convex Geometry

Next, we need to find a way to prove that any symmetric convex body K can

be scaled so that both K and K ◦ are “big”. Let N (0, In ) be distribution of the n-

dimensional Gaussian with mean 0 and covariance matrix In . Recall that one

can generate a sample x ∼ N (0, In ) by independently sampling the coordinates

x1, . . . , xn ∼ N (0,1). We introduce a well studied quantity in convex geometry

which is the ℓ-value
ℓK := E

x∼N(0,In )

[
‖x‖2

K

]1/2

Intuitively, ℓK gives a notion of “average thinness” of a symmetric convex body.

For example for scalars of the Euclidean ball we have ℓr Bn
2
= Ex∼N(0,In )[‖x‖2

r Bn
2

]1/2 =
1
r Ex∼N(0,In )[‖x‖2

2]1/2 =
p

n
r . It turns out to be very useful to consider the prod-

uct ℓK ·ℓK ◦. In the example of the scaled Euclidean ball we have ℓr Bn
2
·ℓ(r Bn

2 )◦ =p
n

r ·r
p

n = n for all r > 0. On the other hand, it may happen that a body K is very

thin in some direction and very long in another one and so the product ℓK ·ℓK ◦

can be made as large as desired. A simple construction to see this would be the

2-dimensional ellipsoid K := {
( M y1

y2/M

)
: y ∈ B n

2 } with M large where ℓK =Θ(M) and

ℓK ◦ =Θ(M). However, one of the deepest and most important results in convex

geometry is that any symmetric convex body can be linearly transformed to that

the corresponding product of ℓ-values is almost as small as it is for the Euclidean

ball. The result is a combination of work by Lewis [Lew79], Pisier [Pis80] and

Figiel, Tomczak-Jaegerman [FTJ79].
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Theorem 4.39 (ℓℓ◦-estimate). For any symmetric symmetric convex body K ⊆Rn

there is an invertible linear map T : Rn →Rn so that ℓT (K ) ·ℓ(T (K ))◦ ≤O(n logn).

We refer to the textbook of Artstein-Avidan, Giannopoulos and Milman[AAGM15]

for details.

The next step will be to prove that a symmetric convex body K with small

ℓK -value also has a small β-value. If we think of K as the intersection of halfs-

paces then we can in principle use Lemma 4.34 to bound the weight of a discrete

Gaussian outside of K . The problem is that in order for that argument to be ef-

fective, K would have to be defined by few halfspaces where the allowed number

depends on their distance to the origin. One may not think that this approach is

feasible — after all there are bodies like K = B n
2 defined by infinitely many half-

spaces. Yet, any symmetric convex body allows an inner approximation of the

following form:

Theorem 4.40. For any symmetric convex body K ⊆Rn there is a sequence {ak}k∈N ⊆

Sn−1 of unit vectors and values βk := C
p

log(2k)

ℓK
so that the symmetric convex body

W := {x ∈ Rn | | 〈ak , x〉 | ≤ βk ∀k ∈ N} satisfies W ⊆ K . Here C > 0 is a universal

constant.

K
W

βk

ak

This statement is a consequence of the Talagrand’s Majorizing Measure Theo-
rem [Tal87] which shows that the expected supremum of any Gaussian process is

up to a constant characterized by a simpler quantity called the γ2-function. For

an excellent exposition on this method and more applications of it, we recom-

mend the recent textbook of Vershynin [Ver19].

Lemma 4.41. For any ε > 0 there is some δ > 0 so that the following holds: For

any symmetric convex body K ⊆Rn with ℓK ≤ δ one has β(K ) ≤ ε.

Proof. Fix a symmetric convex body K ⊆ Rn with ℓK ≤ δ where we will later

choose δ small enough. Let W := {x ∈ Rn : | 〈ak , x〉 | ≤ βk ∀k ∈ N} be the sym-

metric convex body with W ⊆ K from Theorem 4.40. Fix any lattice Λ ⊆ Rn and
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any vector u ∈Rn . We bound

ρ1((Λ+u) \ K )
W ⊆K
≤ ρ1((Λ+u) \W )

≤
∞∑

k=1

ρ1

({
x ∈ u +Λ : | 〈ak , x〉 | ≥βk

})

Lem 4.34
≤ ρ1(Λ)

∞∑

k=1

2 exp
(
−πβ2

k

)

= 2ρ1(Λ)
∞∑

k=1

exp
(
−
πC 2

ℓ2
K︸︷︷︸

=:α

log(2k)
)

= 2ρ1(Λ)
∞∑

k=1

1

(2k)α
≤ ε ·ρ1(Λ)

Here we can make α as large as needed by choosing δ> 0 small enough.

4.4.4 The proof of the transference theorem for arbitrary sym-

metric convex bodies

Finally we have all the tools together to prove Theorem 4.31 which we restate for

convenience:

Theorem (Theorem 4.31). For full-rank lattice Λ⊆Rn and any symmetric convex

body K ⊆Rn one has 1≤λ1(Λ,K ) ·µ(Λ∗,K ◦) ≤O(n log(n)).

Proof. Fix any symmetric convex body K ⊆ Rn . We apply Theorem 4.39 and ob-

tain a linear transformation T : Rn → Rn so that ℓT (K ) ·ℓ(T (K ))◦ ≤ C n logn. As we

have to prove the statement over all lattices Λ, we can apply any linear trans-

formation to K and to Λ without affecting whether or not the statement is true.

Hence we replace K with T (K ) and assume from now on that ℓK ·ℓK ◦ ≤C n logn;

moreover we may assume that K is scaled so that ℓK ≤ δ where δ is the constant

required by Lemma 4.41 in order to achieve the conclusion with ε := 1
4

. Then

ℓK ◦ ≤ Cn log(n)

δ . So we abbreviate s := Cn log(n)

δ2 and set Q := sK ◦. Then ℓQ = ℓK ◦
s ≤ δ.

From Lemma 4.41 we know that β(K ) ≤ 1
4

and β(Q) ≤ 1
4

. Applying Lemma 4.33

we learn that λ1(Λ,K ) ·µ1(Λ∗,Q) ≤ 1. As µ(Λ∗,Q) = 1
s µ(Λ∗,K ◦) we then have

λ1(Λ,K ) ·µ1(Λ∗,K ◦) ≤ s ≤O(n log(n)).

In an exercise we will prove that µ(Λ,K ) ≥ 1
2
λn(Λ,K ) still holds for every lat-

tice and every symmetric convex body K . We may then conclude the following:
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Theorem 4.42. For full-rank lattice Λ ⊆ Rn and any symmetric convex body K ⊆
Rn one has 1 ≤λ1(Λ,K ) ·λn(Λ∗,K ◦) ≤O(n log(n)).

4.5 Exercises

Exercise 4.1.

Prove that in any full-rank lattice Λ⊆Rn one has µ(Λ)≤ n ·λn(Λ).

Extra point: Prove that even µ(Λ) ≤O(
p

n) ·λn(Λ).

Exercise 4.2.

Show that the definition of the Fourier series does not depend on the chosen basis. More

precisely, let Λ ⊆ Rn be a full-rank lattice and let f : Rn → R be a Λ-periodic function.

Suppose B1,B2 are basis with Λ=Λ(B1) =Λ(B2). Prove that for for all y ∈Λ
∗ one has

∫

P (B1)
f (x) ·e−2πi〈x ,y〉 d x =

∫

P (B2)
f (x) ·e−2πi〈x ,y〉 d x .

Exercise 4.3.

Prove the following statement: For any symmetric convex body K ⊆Rn and any full rank

lattice Λ⊆Rn one has λ1(K ,Λ) ·λ1(K ◦,Λ∗) ≤C n where C > 0 is a universal constant.

Hint: You may use the following deep result of Blaschke-Santaló-Bourgain-Milman with-

out a proof: For any symmetric convex body K ⊆Rn one has

C n
1 ≤

Voln(K ) ·Voln(K ◦)

Voln(B n
2 )2

≤ 1

for some universal constant C1 > 0.

Exercise 4.4.

Prove the following generalization of Lemma 1.44: For any full rank lattice Λ and any

symmetric convex body K ⊆Rn one has µ(Λ,K )≥ 1
2
λn(Λ,K ).

Exercise 4.5.

Prove the Shifted Poisson Summation Formula (Cor 4.17): For a nice enough function

f : Rn → C, a full rank lattice Λ ⊆ Rn and a vector s ∈ Rn one has
∑

x∈Λ exp(2πi 〈x , s〉) ·
f (x) = det(Λ∗) · f̂ (Λ∗− s).
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Chapter 5

The Flatness Theorem and Integer

Programming

In this chapter we will discuss two applications of the Transference Theorems

from Chapter 4.

5.1 The Flatness Theorem

We know from Minkowski’s Theorem that a symmetric convex body K with Voln(K ) ≥
2n must contain an an integer point other than the origin. We would like to some-

how generalize this to arbitrary convex bodies. But it is easy to see that there are

convex bodies with arbitrarily large volume that do not intersect Zn .

K

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

Next, one might get the suspicion that it can only happen that K ∩Zn = ;, if K
is thin in some direction. It turns out that this intuition is true in a strong sense:

either there is an integer direction in which K is thin or otherwise K intersects Zn .

For a vector c ∈Zn and a convex body K ⊆Rn we define

widthc (K ) := max
{
〈c , x〉−〈c , y〉 : x , y ∈ K

}

97
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as the width of K in direction c . Moreover we define

intwidth(K ) := inf
c∈Zn \{0}

widthc (K )

as the integer width of K . Later in our application to integer programming the

following insight will be crucial:

Observation 5.1. Given K and c ∈ Zn . All points in K ∩Zn are contained in at

most wc (K )+1 many hyperplanes of the form K ∩ {x ∈Rn | c T x = δ} with δ ∈Z.

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

K

≤ wc (K )+1 hyperplanesc

It is important to note that width(K ) is not the geometric width — it is the geo-

metric width times the length ‖c‖2. In order to show that width(K ) is small one

has to find a short vector c ∈Zn so that K is thin in direction c .

Theorem 5.2 (Khinchine’s Flatness Theorem). For any convex body K ⊆ Rn at

least one of the following holds:

(A) One has K ∩Zn 6= ;
(B) There is a direction c ∈ Zn with widthc (K ) ≤ µ(Zn ,K ) ·λ1(Zn , (K −K )◦) ≤

f (n) where one can bound f (n) ≤O(n2).

In short: any lattice point free convex body K has intwidth(K ) ≤ f (n). Here

Khinchine gave the first bound on intwidth(K ) independent on the dimension —

however the polynomial upper bounds are more recent.

5.1.1 A transference bound for asymmetric bodies

We want to derive the flatness theorem from the result in Section 4.4. The issue

is that those results only hold for symmetric convex bodies. Hence we need to be

able to approximate an arbitrary convex body with a symmetric one. We remind

the reader of the well-known result due to John:
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Theorem 5.3 (John (1949)). For any convex body K ⊆ Rn there is an invertible

affine linear map T : Rn →Rn so that B n
2 ⊆ T (K ) ⊆ nB n

2 .

B n
2

nB n
2

T (K )

Equivalently, for any convex body K there is an ellipsoid E and a translate u ∈Rn

so that u + E ⊆ K ⊆ u +nE . The bound is tight in general, see for example an

equilateral simplex. However for symmetric bodies, this can be improved:

Theorem 5.4 (John (1949)). For any symmetric convex body K ⊆ Rn there is an

invertible linear map T : Rn →Rn so that B n
2 ⊆ T (K ) ⊆

p
nB n

2 .

Then we could approximate an arbitrary convex body K with an ellipsoid, as

ellipsoids are symmetric. But there is another natural choice to use. For a convex

body K ⊆ Rn , we consider the difference body K −K := {x − y : x , y ∈ K }. Then

K −K is symmetric. Moreover if 0 ∈K , then K ⊆ K −K .

0
K

K −K

Theorem 5.5. For any convex body K ⊆ Rn there is a point u ∈ K so that K −u ⊆
K −K ⊆ 2n · (K −u).

Proof. The claim is not affected by applying a linear transformation to K , hence

we may assume by John’s Theorem that B n
2 ⊆ K ⊆ nB n

2 . Then K −K ⊆ 2nB n
2 ⊆

2nK .

Theorem 5.6 (Asymmetric Transference Theorem). For any lattice Λ ⊆ Rn and

any convex body K ⊆Rn one has 1 ≤µ(Λ,K ) ·λ1(Λ∗, (K −K )◦) ≤ 2n2.

Proof. We only prove the upper bound. After applying an affine transformation

to K we may assume B n
2 ⊆ K ⊆ nB n

2 . From B n
2 ⊆ K we know that µ(Λ,B n

2 ) ≥
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µ(Λ,K ). Moreover from 1
2n B n

2 = (2nB n
2 )◦ ⊆ (K−K )◦ we conclude thatλ1(Λ∗,B n

2 ) ≥
1

2nλ1(Λ∗, (K −K )◦). Then

µ(Λ,K ) ·λ1(Λ∗, (K −K )◦) ≤µ(Λ,B n
2 ) ·2nλ1(Λ∗,B n

2 ) ≤ 2n2

using Theorem 4.30.

5.1.2 Proof of the Flatness Theorem

Now we can prove the Flatness Theorem:

Proof of Khinchine’s Flatness Theorem (Theorem 5.2). Consider a convex body K ⊆
Rn with K ∩Zn =;. From our assumption we know that µ(Zn ,K ) > 1. Let c ∈Zn

be the shortest vector with respect to the dual norm, i.e. ‖c‖(K−K )◦ = λ1(Zn , (K −
K )◦). Fix x∗ := argmax{〈c , x〉 : x ∈ K } and y∗ := argmin{〈c , y〉 : y ∈ K }. Note that

x∗− y∗ ∈K −K . Then

widthc (K ) = |〈c , x∗− y∗〉 |
C.S.
≤ ‖c‖(K−K )◦︸ ︷︷ ︸

=λ1(Zn ,(K−K )◦)

·‖x∗− y∗‖K−K︸ ︷︷ ︸
≤1≤µ(Zn ,K )

≤ λ1(Zn , (K −K )◦) ·µ(Zn ,K )
Thm 5.6

≤ 2n2

Here we use the the Cauchy Schwarz Inequality, the fact that (Zn)∗ =Zn and the

bound from the Asymmetric Transference Theorem in Theorem 5.6.

For the sake of completness we outline that in some sense the inequality used

in the flatness theorem is exact:

Lemma 5.7. The following holds:

(a) If Q ⊆Rn is a symmetric convex body, then intwidth(Q) = 2λ1(Zn ,Q).

(b) If K ⊆Rn is a convex body with µ(Zn ,K ) = 1, then

µ(Zn ,K ) ·λ1(Zn , (K −K )◦) = intwidth(K )

Proof. To see (a), we write

intwidth(Q) = 2 inf
c∈Zn \{0}

max{| 〈c , x〉 | : x ∈Q} = 2 inf
c∈Zn \{0}

‖x‖Q◦ = 2λ1(Zn ,Q◦)

as ‖ ·‖Q◦ is the dual norm to ‖ ·‖Q . Then for (b) we have

λ1(Zn , (K −K )◦)
(a)=

1

2
intwidth(K −K ) = intwidth(K )



5.2. APPLICATION TO INTEGER PROGRAMMING 101

We also want to mention without a proof, the following qualitative strength-

ening of the flatness theorem: either K is very flat in some direction or there must

actually be many directions in which the body is at least moderately flat:

Theorem 5.8 ([KL88]). Let K ⊆ Rn be a convex body with K ∩Zn = ;. Then for

some k ∈ {1, . . . ,n} there are linearly independent vectors c1, . . . ,ck ∈ Zn so that

widthci (K ) ≤O(k3 log2(2k)) for all i = 1, . . . ,k.

5.2 Application to Integer Programming

In this section we will see a beautiful application of the Flatness Theorem. Inte-

ger programming is one of the most powerful and most useful problems in dis-

crete optimization.

INTEGER PROGRAMMING (IP)

Input: A linear inequality system Ax ≤ b with A ∈Qm×n , b ∈Qm

Goal: Find a point x ∈K ∩Zn where K := {x ∈Rn | Ax ≤ b}

This problem is among the first problems that were shown to be NP-hard.

The fundamental practical importance comes from the fact that the standard ap-

proach for operations research practicioners is to model whatever problem ap-

pears in their real-world application as an integer linear program and then solve

it using quite sophisticated software tools. In this chapter, we will look at the

problem from a purely theoretical perspective. For a more detailed treatment,

we refer to the survey of Kannan [Kan87b].

As the integer programming problem is NP-hard, there is no hope for a poly-

nomial time algorithm, but it is natural to ask whether the problem can be solved

in time T (n) ·poly(m, log‖A‖∞, log‖b‖∞) where T (n) will be some exponentially

growing function of the dimension; here we have implicitly assumed that A and

b are scaled to be integers. In other words: can we solve integer programming
in polynomial time when the dimension is some fixed constant? The affirmative

answer due is to Lenstra [Len83]. The idea is that if we have any direction c ∈Zn

where say widthc (K ) ≤ nO(1), then we know that all the candidate solutions K∩Zn

lie on nO(1) many hyperplanes of the form {x ∈ Rn | 〈c , x〉 = δ} for δ ∈ Z. In each

hyperplane we have to solve an (n − 1)-dimensional subproblem. Overall this

would result in a nO(n) time algorithm. There is of course the problem that there

might not be a direction c ∈ Zn where widthc (K ) ≤ nO(1). In that case the prob-

lem is easy to be solved directly by rounding the “coordinates” of a point in the

center of K where “coordinates” is with respect to a short system of linearly inde-

pendent vectors.
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The original algorithm of Lenstra [Len83] was based on the LLL algorithm

which is even a polynomial time algorithm but it only provides exponential guar-

antees on the width. In contrast, we will rather use the exact 2O(n)-time algorithm

for finding the shortest vector as a subroutine. This gives the best known running

time (up to constants in the exponent) and makes for a cleaner algorithm.

We can now give the complete algorithm:

Lenstra’s algorithm for Integer Programming

Input: Polytope K = {x ∈ Rn | Ax ≤ b} given by matrix A ∈Qm×n and vector

b ∈Qm .

Output: Either a point K ∩Zn or decision that none exists.

(1) Compute linearly independent vectors v1, . . . , vn ∈Zn with ‖vi‖K−K ≤
2λi (Zn ,K −K ) for i = 1, . . . ,n.

(2) Compute the center a ∈K so that 1
2n (K −K ) ⊆ K −a ⊆ K −K

(3) Write a =
∑n

i=1λi vi with λi ∈R.

(4) IF x∗ := (
∑n

i=1
⌊λi ⌋vi ) ∈K THEN return x∗

(5) Compute c ∈Zn with ‖c‖(K−K )◦ =λ1(Zn , (K −K )◦)

(6) FOR all δ ∈ {⌈min{〈c , x〉 | x ∈K }⌉, . . . ,⌊max{〈c , x〉 | x ∈K }⌋} DO

(7) Run the Hermite normal form algorithm to find a lattice basis

B ′ ∈Qn×(n−1) and an offset d with d +Λ(B ′) = {x ∈Zn | c T x = δ}

(8) Run the algorithm recursively to find integer point in {x ′ ∈Rn−1 |
A(d +B ′x ′) ≤ b}

(9) Return any point in K ∩Zn that was found or decide that none exists

otherwise

In (1) we use Theorem 3.9 to compute 2-approximate successive minima in time

2O(n).

Theorem 5.9. For a polytope K = {x ∈ Rn | Ax ≤ b}, Lenstra’s algorithm finds a

point x∗ ∈ K ∩Zn in time nO(n) times a polynomial in the encoding length of A

and b (if there is any such point).

Proof. The correctness is clear in the sense that the algorithm does an exhaustive

search or terminates with finding an integral point. So it remains to bound the

running time and in particular the number of recursions.

Claim I. If the algorithm does not terminate in (4) then λn(Zn ,K −K ) ≥ 1
4n2 .

Proof of Claim I. Assume for the sake of contradiction that λn(Zn ,K −K ) < 1
4n2 .

Then the “rounding error” was

‖a −x∗‖K−K ≤
n∑

i=1

‖vi‖K−K ≤ 2n ·λn(Zn ,K −K ) ≤
1

2n
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and so x∗ ∈ K .

Claim II. In (6) the algorithm recurses on at most O(n3 log(n)) many subproblems.
Proof of Claim II. By Theorem 4.42 we know thatλn (Zn ,K −K )·λ1(Zn , (K −K )◦) ≤
O(n logn). By Claim I we know that if we reach (6) then λn(Zn ,K − K ) ≥ 1

4n2 .

Hence ‖c‖(K−K )◦ = λ1(Zn , (K − K )◦) ≤ O(n3 logn). As before we may consider

x∗ := argmax{〈c , x〉 : x ∈ K } and y∗ := argmin{〈c , y〉 : y ∈ K } and the number

of recursions is bounded by | 〈c , x∗− y∗〉 | + 1 ≤ ‖c‖(K−K )◦ · ‖x∗ − y∗‖K−K + 1 ≤
O(n3 log(n)) by Cauchy Schwarz.

Finally note that T (n) ≤O(n3 log(n)) ·T (n−1)+2O(n) where the +2O(n) comes

from the subroutines to find shortest vectors with respect to the given norms.

Overall this may be resolved to T (n) ≤ nO(n).

5.3 Improved Transference and Flatness bounds for

non-symmetric convex bodies*

This section is intended as additional material if towards the end of the course

there is time left or alternatively as additional reading material for the interested

reader. In this section we will discuss a result of Banaszczyk, Litvak, Pajor and

Szarek [BLPS99] which improves the bound of O(n2) appearing in both, the Flat-

ness Theorem 5.2 and in the Asymmetric Transference Theorem 5.6 down to

O(n3/2
√

logn)1.

5.3.1 Preliminaries

First, in order to handle asymmetric convex bodies, we need to extend some of

the notation. For a convex body K ⊆ Rn with 0 ∈ int(K ) we define the Gauge
function

‖x‖K := inf{t ≥ 0 | x ∈ tK }

If K happens to be symmetric then ‖ · ‖K is simply the norm with K as unit ball.

For an asymmetric convex body, ‖ · ‖K is not a symmetric function but we still

have the following properties:

(1) Subadditivity: ‖x + y‖K ≤ ‖x‖K +‖y‖K for all x , y ∈Rn .

(2) Positive homogeneity: ‖sx‖K = s‖x‖K for x ∈Rn and s ≥ 0.

(3) Non-negativity: ‖x‖K ≥ 0 for all x ∈Rn .

1To be precise the original paper puts in additional effort to remove the
√

log(n) factor but we

will skip that part here.
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We hope that it will not lead to confusion that we use the notation ‖·‖K for some-

thing else than a norm. Next, we extend the notion of the ℓ-value. For a convex

body K ⊆Rn with 0 ∈ int(K ) and p ≥ 1 we define

ℓp (K ) := E
x∼N(0,In )

[
‖x‖p

K

]1/p

The case ℓ(K ) := ℓ2(K ) coincides with the quantity that we have defined earlier.

The reason for us to introduce the ℓ-value with general p ≥ 1 is that sometimes it

is easier to work with the case p = 2 and in some situations it is easier to work in

with p = 1. But conveniently, the different values ℓp (K ) only differ by a constant

(depending on p) anyway.

Lemma 5.10. For any convex body K ⊆Rn with 0 ∈ int(K ) one has

c
p

p
ℓp (K ) ≤ ℓ1(K ) ≤ ℓp (K ) ∀p ≥ 1

where c > 0 is a universal constant.

The proof is not actually difficult but it requires a few additional fact from

probability theory that we do not want to fully spell out for space reasons. How-

ever we give a sketch; the book of Vershynin [Ver19] is a good source to look up

details.

Proof sketch. Let us abbreviate the random variable X := ‖x‖K where x ∼ N (0, In ).

Then the 2nd part of the claim translates to E[X ] ≤ E[X p ]1/p and this inequality

is indeed true by Jensen’s inequality and the fact that that function z → zp is con-

cave for z ≥ 0.

For the 2nd direction, we scale K so that ℓ1(K ) = 1. We claim that then 1
3

B n
2 ⊆

K . Suppose this was false. In that case there is a unit vector a ∈ Sn−1 so that

the halfspace H := {x ∈ Rn | 〈a, x〉 ≤ 1
3

} contains K . But then ℓ1(K ) ≥ ℓ1(H) =
Ex∼N(0,In )[max{0,3〈a, x〉]} = 3 · 1p

2π

∫∞
0 zd z = 3p

2π
> 1 which is a contradiction.

Hence the map x → ‖x‖K is 1
3

-Lipschitz with mean 1 for x ∼ N (0, In). Then

‖X −1‖ψ2 ≤O(1) by concentration for Lipschitz functions and so E[|X −1|p ]1/p ≤
O(

p
p) by Lemma 4.35.

We have already a version of John’s Theorem in Theorem 5.3 which some-

times is called the “Basic John’s Theorem” and merely tells us that after some lin-

ear transformation one has 1
n B n

2 ⊆ K ⊆ B n
2 . In contrast, the full version of John’s

Theorem also gives an exact characterization when B n
2 is the smallest ellipsoid

containing K :
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Theorem 5.11 (Full version of John’s Theorem). Let K ⊆Rn be a convex body with

the property that min{Voln(E ) | K ⊆ E and E is ellipsoid} is attained for E = B n
2 .

Then there are contact points u1, . . . ,um ∈Rn with the following property:

(i) One has ‖ui‖K = ‖ui‖2 = 1 for all i = 1, . . . ,m.

(ii) There are coefficientsλ∈Rm
≥0 so that

∑m
i=1λi = n,

∑m
i=1λi ui = 0 and

∑m
i=1λi ui uT

i =
In .

(iii) One has m ≤ 2n2.

0

K

B n
2

contact point
b

b

b

Here the term contact point means a point that lies on the intersection of the

boundary of K and the boundary of B n
2 . One should think of condition (i i ) as the

property that there are boundary points “in all directions” which is somewhat in-

tuitive because otherwise we could “shrink” the B n
2 and obtain a smaller ellipsoid

still containing K . We highly recommend the survey of Ball [Bal97] for details on

John’s theorem. We also remind the reader of a standard fact in probability the-

ory:

Lemma 5.12. Let u1, . . . ,um ∈Rn be a finite set of vectors. Then

E
x∼N(0,In )

[
max

i=1,...,m
| 〈ui , x〉 |

]
≤C

√
log(2m) ·max{‖ui‖2 : i = 1, . . . ,m}

where C > 0 is a universal constant.

Again, see e.g. [Ver19] for a proof.

5.3.2 Anℓℓ◦-estimate for asymmetric bodies via John’s Theorem

A key ingredient of previous proofs of the transference theorem was to apply a lin-

ear transformation to the body K so that the product ℓ(K )·ℓ(K ◦) was small which

intuitively means that neither K nor K ◦ are particularly thin. The issue is that the

proof of the so-called ℓℓ◦-estimate (Theorem 4.39) crucially relies on symmetry

and does not carry over to general convex bodies. So we prove a (quantitatively

weaker) statement that works for the non-symmetric case too:
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Lemma 5.13. Let K ⊆ Rn be a convex body with the property that min{Voln(E ) |
K ⊆ E and E is ellipsoid} is attained for E = B n

2 . Then ℓ(K ) ≤ O(n
√

log(2n)) and

ℓ(K ◦) ≤O(
p

n). In the special case that K is a polytope with N vertices one addi-

tionally has ℓ(K ◦) ≤O(
√

log(2N )).

Proof. Let u1, . . . ,um be the contact points with coefficients λ ∈ Rm
≥0 as guaran-

teed by John’s Theorem (Theorem 5.11). We can upper bound the value ‖x‖K

using those contact points:

Claim I. For each x ∈Rn one has ‖x‖K ≤ 2n ·maxi=1,...,m | 〈ui , x〉 |.
Proof of Claim. Fix x ∈ Rn . Consider P := conv{u1, . . . ,um} and note that P ⊆ K
meaning that ‖x‖K ≤ ‖x‖P .

0

P
K

B n
2

contact point
b

b

b

Next, note that the value ‖x‖P is equal to the amount of positive weight needed

to write x as a conic combination, i.e.

‖x‖P = min
{
‖t‖1 : x =

m∑

i=1

ti ui and t ∈Rm
≥0

}
(∗)

Let s ≥ 0 be a parameter that we determine later. We use the properties from

John’s Theorem to write

x =

=In︷ ︸︸ ︷( m∑

i=1

λi ui uT
i

)
x =

m∑

i=1

λi 〈ui , x〉ui

=
m∑

i=1

λi 〈ui , x〉ui − s
m∑

i=1

λi ui

︸ ︷︷ ︸
=0

=
m∑

i=1

λi ·
(
〈ui , x〉− s

)
ui

In principle this looks like we can apply (∗) in order to bound ‖x‖P but we need to

make sure that the coefficients are non-negative which means that λi · (〈ui , x〉−
s)≥ 0 for all i = 1, . . . ,m. Since λi ≥ 0 we can choose s := min{〈ui , x〉 : i = 1, . . . ,m}.

Then applying (∗) gives

‖x‖P ≤
m∑

i=1

λi · (〈ui , x〉− s) ≤
m∑

i=1

λi

︸ ︷︷ ︸
=n

·2 max
i=1,...,m

| 〈ui , x〉 | ≤ 2n · max
i=1,...,m

| 〈ui , x〉 |
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as claimed.

By Lemma 5.10, it suffices to prove upper bounds on ℓ1(K ) and ℓ1(K ◦) rather

than ℓ(K ) and ℓ(K ◦). For the first quantity we use

ℓ1(K ) = E
x∼N(0,In )

[
‖x‖K

] Claim I
≤ 2n E

x∼N(0,In )

[
max

i=1,...,m
| 〈ui , x〉 |

]
(∗∗)
≤ O

(
n

√
log(n)

)

where in (∗∗) we use Lemma 5.12 and the fact that ‖ui‖2 = 1 for all i = 1, . . . ,m.

It remains to prove the bounds on ℓ1(K ◦). First note that K ⊆ B n
2 implies that

B n
2 ⊆ K ◦ and so ℓ1(K ◦) ≤ ℓ1(B n

2 ) ≤O(
p

n).

0

K

B n
2

K ◦

b

b

b

Next, we prove the bound in terms of the number of vertices of K . Let K =
conv{a1, . . . , aN } be the description of K as a convex hull of its vertices where

‖ai‖2 ≤ 1 for all i = 1, . . . , N . Then K ◦ = {x ∈Rn | 〈ai , x〉 ≤ 1 ∀i = 1, . . . , N }. Hence

ℓ1(K ◦) = E
x∼N(0,In )

[
max{〈ai , x〉 : i = 1, . . . , N }

]
≤O

(√
log(2N )

)

again by Lemma 5.12.

Corollary 5.14. For any convex body K ⊆ Rn , there exists an affine linear map

T : Rn →Rn so that ℓ(T (K )) ·ℓ((T (K ))◦) ≤O(n3/2
√

log(n)).

Proof. Choose T as an affine linear map so that the minimum volume ellipsoid

containing T (K ) happens to be B n
2 . Then Lemma 5.13 gives ℓ(K ) ≤O(n

√
log(2n))

and ℓ(K ◦) ≤O(
p

n).

Furthermore, we can recover the ℓℓ◦-estimate of ℓ(K ) ·ℓ(K ◦) ≤O(n log(n)) at

least for polytopes where the number of vertices is bounded by a polynomial in

n.

Corollary 5.15. For any polytope K ⊆ Rn with N vertices, there exists an affine

linear map T : Rn →Rn so that ℓ(T (K )) ·ℓ((T (K ))◦) ≤O(n
√

log(n) · log(N )).

The proof uses an identical argument to Cor 5.14.
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5.3.3 The improved asymmetric transference theorem

We need to generalize another fact from earlier:

Lemma 5.16. For any lattice Λ⊆Rn , any convex body K ⊆Rn with 0 ∈ int(K ) and

any symmetric convex body Q ⊆Rn one has

µ(Λ,K ) ·λ1(Λ∗,Q) ≤C1 ·ℓ(K ) ·ℓ(Q)

where C1 is a universal constant.

Proof. First we prove the statement for the case that both bodies K and Q are

symmetric. Scale K and Q so that ℓ(K ) = δ = ℓ(Q) where δ is the constant from

Theorem 4.41 to achieve that β(K ),β(Q) ≤ ε = 1
4

. Then by Lemma 4.33 we have

µ(Λ,K ) ·λ1(Λ∗,Q) ≤ 1 ≤C0 ·ℓ(K ) ·ℓ(Q) if we choose C0 := 1
δ2 . That concludes the

argument for the case that K is symmetric.

Next, we consider the case that K is potentially asymmetric and we want to

reduce it to the symmetric case. For that we consider the “symmetrizer” P :=
K ∩ (−K ). Trivially P is a symmetric convex body with P ⊆ K .

K
P 0

While in terms of inclusion, P might be drastically smaller that K , the ℓ-value of

P is close to the one of K :

Claim I. One has ℓ(P ) ≤ 2ℓ(K ).
Proof of Claim I. For each x one has ‖x‖P = max{‖x‖K ,‖x‖−K } = max{‖x‖K ,‖−
x‖K }. Then by symmetry of the Gaussian distribution for at least half the out-

comes of x ∼ N (0, In ) the values of ‖x‖K and ‖x‖P will coincide and so Ex∼N(0,In )[‖x‖2
K ]1/2 ≥

1
2 Ex∼N(0,In )[‖x‖2

P ]1/2.

Now we conclude that

µ(Λ,K ) ·λ1(Λ∗,Q)
P⊆K
≤ µ(Λ,P ) ·λ1(Λ∗,Q)

sym. case
≤ C0ℓ(P )ℓ(Q)

Claim I
≤ 2C0ℓ(K )ℓ(Q)

Combining Cor 5.14 and Lemma 5.16 gives:

Theorem 5.17. For any convex body K ⊆Rn and any latticeΛ⊆Rn one hasµ(Λ,K )·
λ1(Λ∗, (K −K )◦) ≤O(n3/2

√
logn).
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Combining Cor 5.15 and Lemma 5.16 gives:

Theorem 5.18. For any full-dimensional polytope K ⊆ Rn with N vertices and

any lattice Λ⊆Rn one has µ(Λ,K ) ·λ1(Λ∗, (K −K )◦) ≤O(n
√

log(n) · log(N )).

5.3.4 The Flatness Constant

We want to summarize some of the bounds that we have discussed and put them

into context. The flatness constant in dimension n is the maximum integer width

of a lattice point free convex body, i.e.

flatness(n) := sup
K⊆Rn convex
with K∩Zn=;

{
intwidth(K )

}

The best known bounds are

Theorem 5.19. One has (2−o(1))n ≤ flatness(n) ≤Θ(n4/3 logO(1)(n)).

We will see a lower bound of flatness(n) ≥ n in an exercise. The bound of

flatness(n) ≥ (2−o(1))n is due to [MSW21]. The upper bound follows from the

work of Rudelson [Rud98]. In fact, Rudelson showed that the O(n3/2
√

log(n))

upper bound on the ℓℓ◦-value of a convex body that we have seen in Cor 5.14

can be improved:

Lemma 5.20 (Rudelson [Rud98]). For any convex body K ⊆ Rn , there exists an

affine linear map T : Rn →Rn so that ℓ(T (K )) ·ℓ((T (K ))◦) ≤O(n4/3 logO(1)(n)).

Then with Lemma 5.16 this immediately implies the improved upper bound

on the flatness constant. We also summarize the improved bounds for special

cases:

Corollary 5.21. Let K ⊆Rn be a convex body with K ∩Zn =;. Then the following

holds:

(a) One has intwidth(K ) ≤Θ(n4/3 logO(1)(n)).

(b) If K is symmetric with respect to some center u ∈ K , then intwidth(K ) ≤
O(n logn).

(c) If K is a polytope with N vertices then intwidth(K ) ≤O(n
√

log(n) · log(N )).

(d) If K is a polytope with N facets then intwidth(K ) ≤O(n
√

log(n) · log(N )).

Note that (d) follows immediately from Cor 5.15 by switching the roles of K
and K ◦.
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Exercises

Exercise 5.1.

Prove that for any convex body K ⊆ Rn and any lattice Λ ⊆ Rn one has 1
2λn(Λ,K −K ) ≤

µ(Λ,K )≤ 2nλn(Λ,K −K ).

Exercise 5.2.

We want to prove that flatness(n) ≥n. For this sake consider the simplex K := conv{0,ne1, . . . ,nen} ⊆
Rn .

1. Prove that int(K )∩Zn =;.

2. Prove that for any c ∈Zn \ {0} one has widthc (K ) ≥ n.

Exercise 5.3.

Let K ⊆ Rn be a convex body with Voln(K ) ≤ ( c
n )n for a small enough universal constant

c > 0. Prove that there is an a ∈Zn and β ∈Z so that K ∩Zn ⊆ {x ∈Rn : 〈a, x〉 =β}.

Hint. You may use the following results from convex geometry without a proof:

1. Fact 1. For any convex body P ⊆Rn one has Voln(P −P) ≤ 2nVoln(P).

2. Fact 2. For any symmetric convex body Q ⊆ Rn one has C n
1 ≤ Voln (Q)·Voln (Q◦)

Voln (B n
2 )2 ≤ 1 for

some universal constant C1 > 0.



Chapter 6

Lattice problems in NP∩coNP

The result that we discuss in this chapter will be more of a complexity-theoretic

nature and is due to Aharonov and Regev [AR05]. However in terms of techniques

we will make additional use of Fourier analysis for lattices that we learned in

Chapter 4.

Recall that the LLL algorithm from Chapter 1.5 is a polynomial time algorithm

that finds a 2n/2-approximation to the shortest vector λ1(Λ) in a given lattice Λ.

In the other hand, assuming NP 6⊆ BPTIME(2poly(log(n))), there is no polynomial

time algorithm to approximate the shortest vector within a factor of 2(logn)1/2−ε

(which is still less than nδ for any constant δ > 0). For most practically relevant

problems one is used to the outcome that either the problem is NP-hard or it is

solvable in polynomial time. Oddly, there is evidence that finding, say a polyno-

mial factor approximation to the shortest vector is neither NP-hard nor in P.

In complexity theory one usually formulates problems as decision problems
where the answer to be computed is either yes or no. For β ≥ 1 consider the

following problem:

GAPSVPβ

Input: A lattice Λ :=Λ(B )

Goal: Distinguish the following cases:

• YES. One has λ1(Λ) ≤ 1

• NO. One has λ1(Λ)≥β

One may imagine that instances with 1 <λ1(Λ)<β will not appear as input. This

is also called a promise problem. Note that the larger β is, the easier is the prob-

lem where GAPSVP2n/2 is solvable in polynomial time.

111
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6.1 GapSVP4n is in NP∩coNP

To warm up we describe a result that is already implicitly included in what we

have proven earlier — we can certify that λ1(Λ) is large by certifying that λn(Λ∗)

is small.

Theorem 6.1. The problem GAPSVP4n is in NP∩coNP.

Proof. The part GAPSVP4n ∈ NP is trivial — the certificate that we are in the YES

case is any lattice vector x ∈ Λ \ {0} with ‖x‖2 ≤ 1. Note that given a vector x

we can indeed decide in polynomial time whether x ∈ Λ. We use the following

verifier to show that GAPSVP4n ∈ coNP:

Input: Lattice Λ(B )

Certificate: Vectors w1, . . . , wn ∈Rn

Verifier: Accept if all of the following holds:

(i) w1, . . . , wn ∈Λ
∗

(ii) w1, . . . , wn are linearly independent

(iii) ‖wi‖2 ≤ 1
2

for all i = 1, . . . ,n.

Now we show correctness of the verifier.

Claim I. If λ1(Λ) ≤ 1 then the verifier rejects any certificate.
Proof of Claim I. Suppose for the sake of contradiction that the verifier accepts

while there is a vector x ∈Λ \ {0} with ‖x‖2 ≤ 1. There must be at least one i with

〈wi , x〉 6= 0 and so by definition of dual lattice one has 1≤ |〈wi , x〉 | ≤ ‖wi‖2‖x‖2 ≤
1
2
‖x‖2. Then ‖x‖2 ≥ 2 which gives a contradiction.

Claim II. If λ1(Λ) ≥ 4n then there exists a certificate that the verifier accepts.
Proof of Claim II. Choose w1, . . . , wn ∈ Λ

∗ as the successive minima of the dual

lattice with ‖wi‖2 =λi (Λ∗). By Cor 4.2 we haveλ1(Λ)·λn(Λ∗) ≤ 2n and soλn(Λ∗) ≤
1
2

. Then the verifier would accept.

6.2 GAPCVP with gap O(
p

n) is in NP∩coNP

Now we will come to the main result of this chapter, namely that we can decrease

the gap to O(
p

n) even for the more general Closest Vector problem. Recall that

d(t ,Λ) := min{‖t − x‖2 : x ∈ Λ} denotes the distance of t to the lattice. We will

consider the following problem:
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GAPCVPα,β

Input: A lattice Λ :=Λ(B ) and a target vector t ∈Rn

Goal: Distinguish the following cases:

• YES. One has d(t ,Λ) ≤α

• NO. One has d(t ,Λ) >β

We will work towards the following claim:

Theorem 6.2. For a small enough constant c > 0, GAPCVPc,
p

n ∈ NP∩coNP.

Of course one can scale the lattice and both parameters without changing the

complexity, but the particular parameters of α= c and β=
p

n will be convenient

for the Fourier view that we will use.

6.2.1 The shifted discrete Gaussian

Given a full rank lattice Λ⊆Rn , we define the function F : Rn →R with

F (x) :=
ρ1(x +Λ)

ρ1(Λ)
∀x ∈Rn ,

where ρ1(x) = e−π‖x‖2
2 is the discrete Gaussian from Section 4.2. Note that F is

Λ-periodic with 0 < F (x) ≤ 1 for all x ∈ Rn (see Lemma 4.22). Intuitively it is not

hard to imagine that for points x that are close to the lattice, F (x) is large and

for points that are far from the lattice, F (x) is tiny. A visualization for F in a 2-

dimensional lattice can be found below.

b b b b b b b

b b b b b b b

b b b b b b

0

We want to formalize the intuition that F can be used to distinguish points

that are close to the lattice from points that are far from the lattice:

Lemma 6.3. Let Λ⊆Rn be a full rank lattice. For x ∈Rn , the following holds:
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(i) If d(x ,Λ) >
p

n then F (x) ≤ 2−n .

(ii) One has F (x) ≥ e−πd(x ,Λ)2
.

Proof. Claim (i) follows from Lemma 4.24 because

ρ1(Λ+x)
(Λ+x)\

p
nBn

2 =;= ρ1

(
(Λ+x) \

p
nB n

2

) Lem 4.24
≤ 2−nρ1(Λ)

Next, consider (ii). Since F is Λ-periodic we may assume that the closest lattice

point to x is the origin and so ‖x‖2 = d(x ,Λ). Then it suffices to prove:

Claim. For any full rank lattice Λ ⊆ Rn and any x ∈ Rn one has ρ1(Λ+ x) ≥
e−π‖x‖2

2ρ1(Λ).

Proof of Claim. The proof uses a trick that appears elsewhere when dealing with

Gaussian densities. Naively one might be tempted to show that pointwise for ev-

ery y one has ρ1(x + y) ≥ e−π‖x‖2
2ρ1(y). However, this is false for 〈x , y〉 ≫ 0! But

one can argue that this is true if we average over the two choices of ±y . Formally,

we write

∑

y∈Λ
ρ1(x + y) =

1

2

∑

y∈Λ

(
e−π‖x−y‖2

2 +e−π‖x+y‖2
2
)

= e−π‖x‖2
2

∑

y∈Λ
e−π‖y‖2

2 ·
1

2

(
e−2π〈x ,y〉 +e2π〈x ,y〉)

︸ ︷︷ ︸
≥1

≥ e−π‖x‖2
2 ·ρ1(Λ)

Here we use that 1
2

(z + 1
z ) ≥ 1 for all z > 0.

6.2.2 Approximating the function F

Algorithmically we have the problem how to compactly represent the function

F . For that purpose we consider the Fourier series representation of the func-

tion F . Recall that given a Λ-periodic function f and w ∈Λ
∗ we defined f̃ (w ) =

Ex∼P(B )[ f (x) ·e−2πi 〈w ,x〉], see Section 4.1.2.

Lemma 6.4. For any full-rank lattice Λ ⊆ Rn , the function F (x) := ρ1(x+Λ)

ρ1(Λ)
has

Fourier series coefficients

F̃ (w ) =
ρ1(w )

ρ1(Λ∗)
∀w ∈Λ

∗



6.2. GAPCVP WITH GAP O(
p

N ) IS IN NP∩CONP 115

Proof. Let us abbreviate G(x) := ρ1(x +Λ) so that F (x) = G(x)
G(0)

. In Lemma 4.15 we

have proven that for w ∈Λ
∗ one has

G̃(w )
Lem 4.15= det(Λ∗) · ρ̂1(w )

Lem 4.18= det(Λ∗) ·ρ1(w ) (∗)

Note that indeed G̃(w ) is a Fourier series coefficient and ρ̂1(w ) is a Fourier coeffi-
cient where ρ̂1(w ) = ρ1(w ) by Lemma 4.18. Next, the Fourier series representa-

tion (Lemma 4.6) of the function G gives

G(0) =
∑

w∈Λ∗
G̃(w ) ·e2πi 〈w ,0〉

︸ ︷︷ ︸
=1

(∗)= det(Λ∗) ·ρ1(Λ∗) (∗∗)

Then by linearity of the Fourier series coefficient we have

F̃ (w ) =
G̃(w )

G(0)

(∗)+(∗∗)=
det(Λ∗) ·ρ1(w )

det(Λ∗) ·ρ1(Λ∗)
=

ρ1(w )

ρ1(Λ∗)

as claimed.

It is worth noting that F̃ (w )∈R≥0 for all w ∈Λ
∗ and

∑
w∈Λ∗ F̃ (w ) = 1. In other

words the coefficients F̃ (w ) define a probability distribution on the dual lattice

Λ
∗ and that distribution is precisely the discrete Gaussian on the dual lattice, i.e.

D1(Λ∗) as defined in Section 4.4.2. Then the Fourier series representation of F is

F (x) =
∑

w∈Λ∗
F̃ (w ) ·e2πi 〈w ,x〉 (6.1)

=
∑

w∈Λ∗
F̃ (w ) ·cos(2π〈w , x〉)

= E
w∼D1(Λ∗)

[
cos(2π〈w , x〉)

]

for all x ∈ Rn . Here we used in the 2nd step that F (x) and F̃ (w ) are real, so the

imaginary parts must cancel out and Re(e2πi 〈w ,x〉) = cos(2π〈w , x〉) ∈ [−1,1]1. The

representation of F in Eq 6.1 gives rise to a natural idea to represent F in a com-

pact way: simply sample a polynomial number of dual vectors w ∼D1(Λ∗) and

use a “sparse Fourier series representation”.

We will also use the following standard fact:

Theorem 6.5 (Chernov-Hoeffding). Let X1, . . . , XN ∈ [a,b] be independent ran-

dom variables. Then for any ε> 0, the sum Y := X1 + . . .+XN satisfies

Pr
[
|Y −E[Y ]| ≥ Nε

]
≤ 2 exp

(
−

Nε2

(b −a)2

)

1One can also see explicitly where the cancellation occurs: observe that F̃ (−w ) = F̃ (w ) and

Eσ∼{−1,1}[e2πi〈σw ,x〉]= cos(2π〈w , x〉).
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Recall that from Lemma 4.24 we already know that for every lattice Λ one

has Prx∼D1(Λ)[‖x‖2 >
p

n] ≤ 2−n . We can also cover a more general regime (note

that the following inequality is only non-trivial if λ≥Θ(
p

n) with a large enough

implicit constant):

Lemma 6.6. There is a universal constant c > 0 so that for any full rank lattice

Λ⊆Rn and any λ≥ 0 one has Prx∼D1(Λ)[‖x‖2 ≥λ
p

n] ≤ 8n exp(−cλ2n).

Proof. Take an ε-net S ⊆ Sn−1 of size2 |S | ≤ ( 4
ε )n . Note that for each x ∈ Rn \ {0}

there is a y ∈ S with ‖ x
‖x‖2

− y‖2 ≤ ε and so ‖x‖2 = 〈x , x
‖x‖2

〉 = 〈x , y − (y − x
‖x‖2

)〉 ≤
〈x , y〉+ ε‖x‖2. Then setting ε := 1

2
, we obtain ‖x‖2 ≤ 2 max{〈x , y〉 : y ∈ S} while

|S | ≤ 8n . Hence

Pr
x∼D1(Λ)

[‖x‖2 ≥λ
p

n] ≤ Pr
x∼D1(Λ)

[
max
y∈S

〈x , y〉 ≥
λ

2

p
n
]
≤ 8n ·exp(−cλ2n)

using the subgaussianity of the discrete Gaussian (Lemma 4.38).

Lemma 6.7 (Pointwise approximation Lemma). Let Λ=Λ(B ) ⊆Rn be a full-rank

lattice with B ∈ Rn×n and let F : Rn → R be the function with F (x) := ρ1(x+Λ)

ρ1(Λ)
.

Set N := Θ( n2

δ3 log(2+ L)) where L := max j=1,...,n ‖B j ‖2 and sample w1, . . . , wN ∼
D1(Λ∗) independently and set W := (w1, . . . , wN ). Then with probability at least

1−2−n , the function

FW (x) :=
1

N

N∑

i=1

cos(2π〈x , wi 〉)

satisfies |FW (x)−F (x)| ≤ δ for all x ∈Rn .

We first prove the statement for a single vector x :

Claim I. For a fixed point x ∈Rn one has Pr[|FW (x)−F (x)| ≥ δ
2

] ≤ 2 exp(−Nδ2

16
).

Proof of Claim I. As we draw w1, . . . , wN independently, we know that the random

variables Xi := cos(2π〈wi , x〉) are independent for i = 1, . . . , N . Moreover −1 ≤
Xi ≤ 1 and E[Xi ] = F (x) as we know from (6.1). Then by the Chernov-Hoeffding

bound (Theorem 6.5) we obtain

Pr
[∣∣∣

N∑

i=1

Xi −N ·F (x)
∣∣∣≥ N

δ

2

]
≤ 2 exp

(
−

Nδ2

16

)

Then dividing the expression inside Pr[..] by N gives the claim.

Next, as the functions F and FW are Λ-periodic, so it suffices show the claim

for all x ∈P(B ). For a parameter T ∈N that we determine later we consider the

set S := 1
T ·Λ∩P(B ) which is a fine grid inside the fundamental parallelepiped.

2Recall that an ε-net is a set S ⊆ Sn−1 so that for each x ∈ Sn−1, there is a y ∈S with ‖x−y‖2 ≤ ε.
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b b b

b b b

b b b

0

b b b b b
b b b b b
b b b b b
b b b b b
b b b b b

P(B )

S

We can see that |S | = T n . Using a loose estimate, we note that every point in

P(B ) is at distance at most nL
T to a point in S . Then with a union bound over all

points in the grid S we have

Pr
[
∀x ∈S : |FW (x)−F (x)| ≤

δ

2

]
Claim I
≥ 1−T n ·2 exp

(
−

Nδ2

16

)
(6.2)

Moreover it will be useful to have a guaranteed upper bound on the length of the

vectors wi . In fact, using Lemma 6.6 we know for example that

Pr
[
∀i ∈ [N ] : ‖wi‖2 ≤C ′

√
n log(N )

]
≥ 1−

1

2 ·2n N
(6.3)

for some constant C ′ > 0. The next step is to show that the functions F and FW

are sufficiently smooth so that controlling their value at the points in the grid S

suffices. Here it will be helpful to know that the vectors in W are not too long.

Recall that a function G : Rn →R is called s-Lipschitz, if |G(x)−G(y)| ≤ s ·‖x − y‖2

for all x , y ∈Rn .

Claim II. For any outcome of W with ‖wi‖2 ≤ R for all i ∈ [N ], the function FW is
2πR-Lipschitz.
Proof of Claim II. Let x ,d ∈Rn . We can bound

|FW (x +d )−FW (x)| ≤
1

N

N∑

i=1

∣∣cos(2π〈wi , x〉+2π〈wi ,d 〉)−cos(2π〈wi , x〉)
∣∣

≤
1

N

N∑

i=1

2π · | 〈wi ,d 〉 | ≤ 2πR · ‖d‖2

using that the derivative of cos(·) is at most 1 in absolute value.

Claim III. The function F is O(1)-Lipschitz.

Proof of Claim III. Let x ,d ∈Rn . Similar to the proof of Claim II we bound

|F (x +d )−F (x)| ≤ E
w∼D1(Λ∗)

[∣∣cos(2π〈w , x +d 〉)−cos(2π〈w , x〉)
∣∣]

≤ 2π E
w∼D1(Λ∗)

[
| 〈w ,d 〉 |

]
≤O(‖d‖2)

Here we use in the last step the fact that ‖〈w ,d 〉‖ψ2 ≤ O(‖d‖2) by Lemma 4.38.

Also for any mean-zero random variable X one has E[|X |] ≤O(‖X ‖ψ2 ) by Lemma 4.35.
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Now we can put everything together. We will need to choose N large enough

so that both events in (6.2) and (6.3) happen together with probability at least

1− 2−n. In order to determine the parameters, suppose the events in (6.2) and

(6.3) indeed are both true. Then fix any x ∈ P(B ) and let y ∈ S be the closest

point to x , which means that ‖x − y‖2 ≤ nL
T . Then we can see that

|FW (x)−F (x)| ≤ |FW (y)+F (y)|+ |FW (x)−FW (y)|+ |F (x)−F (y)|
Claim II+III

≤
δ

2
+O

(√
n log N ·

n

T
L
)

!
≤ δ

We can see that it suffices to choose T :=Θ( n2

δ

√
log N · ⌈L⌉). We also see that we

require N ≥Θ( n
δ2 log(2T )) to satisfy (6.2). A generous choice satisfying this would

be N :=Θ( n2

δ3 log(L+2)) as claimed.

6.2.3 The verifier

There is an additional technical lemma dealing with the concentration of discrete

Gaussian samples. One could have phrased the lemma in more generality and

state that for any distributionD that is O(1)-subgaussian, sampling w1, . . . , wN ∼
D independently will with high probability result in a matrix with

∑N
i=1 wi w T

i ¹
O(N ), assuming N ≥ Θ(n2). Also we should point out that there are matrix con-

centration techniques that give much finer bounds than the one we obtain here.

However, this one suffices for our purpose and we refer the reader to Vershynin’s

textbook [Ver19] for an extensive and extremely readable account on matrix con-

centration. We use the following fact:

Lemma 6.8. For any lattice Λ⊆ Rn and any y ∈ Sn−1 one has Ew∼D1(Λ)[〈w , y〉2] ≤
1

2π .

We will not give a proof of Lemma 6.8 here. However note that we do know

that ‖〈w , y〉‖ψ2 ≤ O(1) by Lemma 4.38 and so Ew∼D1(Λ)[〈w , y〉2] ≤ O(1) for some

unspecified constant by Lemma 4.35. It is also worth noting that the constant of
1

2π is tight and matches the value of the continuous Gaussian with density func-

tion ρ1. Now to the actual matrix concentration claim (which we will apply to the

dual lattice Λ
∗ but we keep it general):

Lemma 6.9. Let Λ ⊆ Rn be a full rank lattice. Sample w1, . . . , wN ∼D1(Λ) where

N ≥ C ′n2 and C ′ > 0 is large enough. Then
∑N

i=1 wi w T
i ¹ 3N In with probability

at least 1−2−2n .

Proof. Consider an ε-net S ⊆ Sn−1 of size |S | ≤ ( 4
ε )n . For any symmetric matrix
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M ∈ Rn×n , the maximum singular value is of the form ‖M‖op = max{〈M , x xT 〉 :

x ∈ Sn−1}. Suppose x ∈ Sn−1 attains that maximum and let y := x +d ∈ S with

‖d‖2 ≤ ε be the net point closest to x , then

‖M‖op = 〈M , x xT 〉 = 〈M , y y T 〉−〈M , y y T −x xT 〉
≤ 〈M , y y T 〉+2| 〈M , xd T 〉 |+ |〈M ,d d T 〉 | ≤ |〈M , y y T 〉 |+3ε‖M‖op

and so ‖M‖op ≤ 1
1−3ε

| 〈M , y y T 〉 |. Setting ε := 1
9

we know that ‖M‖op ≤ 3
2

max{| 〈M , y y T 〉 | :

y ∈S} where |S | ≤ 36n.

Next, we would like to apply the Chernov Hoeffding bound to control the er-

ror in some direction y ∈ S . However there is a problem: we do not have a guar-

anteed upper bound on ‖wi‖2 and Chernov Hoeffding requires that the random

variables to be in a bounded interval. So we imagine a 2-stage random experi-

ment: for a parameter λ≥ 0 that we choose later, we sample w1, . . . , wN ∼D1(Λ),

but we define truncated vectors

w̃i :=
{

wi if ‖wi‖2 ≤λ
p

n

0 otherwise.

By Lemma 6.6 we know that for each i ∈ [N ],

Pr
[

wi = w̃i
]
≥ 1−8n exp(−cλ2n)

Next, we prove a concentration bound for a single direction with respect to the

truncated vectors:

Claim I. For any y ∈ Sn−1 one has Pr[〈
∑N

i=1 w̃i w̃ T
i , y y T 〉 ≥ 2N ] ≤ 2 exp

(
− N

λ2n

)
.

Proof of Claim I. Consider the random variables Xi := 〈w̃i w̃ T
i , y y T 〉 with sum

X :=
∑N

i=1 Xi . The truncated random vectors w̃1, . . . , w̃N are still independent

meaning that also the random variables X1, . . . , XN are independent and more-

over 0 ≤ Xi ≤λ2n. We also note that

E[X ] = N · E
w∼D1(Λ)

[〈w̃ , y〉2] ≤ N · E
w∼D1(Λ)

[〈w , y〉2]
Lem 6.8
≤

N

2π
≤ N .

Hence by the Chernov Hoeffding bound (Theorem 6.5) we obtain

Pr[X ≥ E[X ]+N ] ≤ 2 exp
(
−

N

(λ
p

n)2

)
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Now we can finish the main argument. For M :=
∑N

i=1 wi w T
i we have

Pr
[
‖M‖op ≥ 3N

]
≤ Pr

[
∃y ∈S : | 〈M , y y T 〉 | ≥ 2N

]

≤
N∑

i=1

Pr[w̃i 6= wi ]+
∑

y∈S
Pr

[ N∑

i=1

〈w̄i w̄ T
i , y y T 〉 ≥ 2N

]

= N ·8n exp(−cλ2n)+36n ·2 exp
(
−

N

λ2n

)
≤ 2−2n

if we choose λ :=C ′ and N = (C ′)3n2 with a large enough constant C ′ > 0.

We restate and prove the main result of this chapter:

Theorem (Theorem 6.2). For a small enough constant c > 0, GAPCVPc,
p

n ∈ NP∩
coNP.

Proof. Again, it is easy to see that GAPCVPc,
p

n ∈ NP — the certificate that we are

in the YES case is the lattice vector x ∈Λ with ‖x − t‖2 ≤ c. Again we use the fact

that one can verify whether one has x ∈Λ in polynomial time.

We use the following verifier to show that GAPCVPc,
p

n ∈ coNP:

Input: Lattice Λ(B ), target vector t ∈Rn

Certificate: Vectors w1, . . . , wN ∈Rn for N :=Θ( n2

δ3 log(2+L)) where δ := 1
n

Verifier: Accept if all of the following conditions are satisfied:

(A) One has w1, . . . , wN ∈Λ
∗

(B) One has
∑N

i=1 wi w T
i ¹ 3N

(C) One has FW (t ) < 1
2

Claim I. If d(t ,Λ) ≤ c then the verifier rejects any certificate.
Proof of Claim I. Assume that (A)+(B) are satisfied; we prove that then (C) is false

and so the verifier indeed rejects. Let x ∈Λ be the lattice point with ‖t − x‖2 ≤ c.

Using that cos(z) ≥ 1− 1
2

z2 for all z ∈R, we estimate that

FW (t )
Λ-periodic= FW (t −x) =

1

N

N∑

j=1

cos(2π〈t −x , w j 〉) ≥ 1−
4π2

2N

N∑

j=1

〈t −x , w j 〉2

= 1−
4π2

2N
〈

n∑

j=1

w j w T
j , (t −x)(t −x)T 〉

︸ ︷︷ ︸
≤3N ·d(t ,Λ)2

≥ 1−60 ·d(t ,Λ)2 c small
>

9

10

Hence (C) is indeed not true.
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Claim II. If d(t ,Λ) >
p

n then there exists a certificate that the verifier accepts.
Proof of Claim II. We draw w1, . . . , wN ∼D1(Λ∗) independently at random and

consider the two events

(a)
∑N

i=1 wi w T
i ¹ 3N

(b) |FW (x)−F (x)| ≤ δ∀x ∈Rn

We know that for N := Θ( n2

δ3 log(2+L)) = Θ(n5 log(2+L)), (a) happens with over-

whelming probability by Lemma 6.9 and (b) happens with overwhelming proba-

bility by the Pointwise Approximation Lemma (Lemma 6.7). We fix any outcome

satisfying both (a) and (b). Then

FW (t ) ≤ F (t )+δ
Lem 6.3
≤ 2−n +δ

δ= 1
n≤

2

n

as d(t ,Λ) >
p

n. Then (A), (B), (C ) are clearly satisfied and the verifier accepts.
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Chapter 7

Learning With Errors

In this chapter, we want to discuss a public key crypto system that is based on

a lattice problem. Recall that the goal for public key cryptography is that two

players Alice and Bob can exchange encypted messages while all their commu-

nication may be public. In particular there will be two types of keys: the private
key, known only to say Alice and the public key known to everyone.

We may want to revisit the Section 1.6 and wonder what actually went wrong

with the Knapsack crypto system. The crypto system was based on (assumed)

hardness of a rather particular type of a very sparse random Knapsack problem —

which turned out to be solvable in polynomial time. This already show cases one

problem: presumably any crypto system will need to somehow generate random
keys — how would one ever be confident that the particular distribution is not

again easy? Another issue is that we cannot even prove NP 6= P (which is a claim

about worst case instances), so we cannot realistically hope to unconditionally
prove security of a public key crypto system. Then the next best option would be

to prove an implication of the form

(
crypto system A using

distribution D can be broken

)
=⇒




worst case instances

of presumably hard problem B
can be solved efficiently




Then security of the crypto system would be based on the worst case hardness
of problem B . In fact, such a crypto system exists and it is called Learning with
Errors. While the literature on this topic is vast, we will focus on reproducing

the seminal result of Regev [Reg09b] where we will in some details from other

sources. In particular we recommend the very readable survey of Regev [Reg].

In order to not loose the overview over the various reductions, the reader may

consult Figure 7.1.

123
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Decrypt 1-bit LWE message with prob 1
2
+ 1

poly(n)

For 1
poly(n)

fraction of s ∈Zn
p solve LWEDISTINGUISHING p,χ :

Distinguish samples from As,ψ̄α
and uniform with high prob.

Sec 7.2.2

LWEp,χ : With access to samples from As,χ,determine s

Sec 7.3

generate nc sam-

ples from Dr (Λ)

+ CVP
(p)

Λ∗,d

CVPΛ∗,d

Sec 7.6, Lem 7.18

Sec 7.19, Lem 7.18

Sec 7.7

(quantum)

GAPCVP ′
γ

GAPSVPγ

Lem 7.28, Sec 7.8

Lem 7.27, Sec 7.8

Figure 7.1: Overview over reductions.
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7.1 The LWE crypto system

We will introduce a few basics that we need to describe the crypto system.

7.1.1 Preliminaries I

We will frequently use the cyclic group Zp = {0, . . . , p − 1} with addition modulo

p, where p ≥ 1 is an integer. For a set A ⊆ R and x ∈ R, we will write d(x, A) :=
min{|x − y | : y ∈ A}. Recall that for s > 0, the discrete Gaussian is the function

ρs : Rn →R≥0 with ρs (x) := e−π‖x/s‖2
2 ∀x ∈Rn ,

as studied in Chapter 4. We abbreviate νs (x) := ρs (x)

ρs (Rd )
, where for a continuous set

A, we write ρs (A) =
∫

A ρs(x)d x . Note that νs is scaled to be a continuous proba-

bility distribution (in fact it corresponds to the Gaussian distribution N (0, s2

2π In))

and asρs(Rn) = sn , the density function of that distribution isνs(x) = s−ne−π‖x/s‖2
2 .

Gaussians modulo 1. For x ∈R, we write x mod 1 as the quantity x−⌊x⌋ ∈ [0,1).

We denote T :=R\Z as the cyclic group corresponding to [0,1) with the addition

modulo 1. For a parameter β > 0 we denote the distribution of N (0,
β2

2π
) mod 1

as ψβ. The scaling by 2π might seem odd, but it is consistent with Chapter 4. By

summing up the contribution one can easily see that the density of Ψβ is pre-

cisely

Ψβ(r ) =
∑

k∈Z

1

β
exp

(
−π

(r −k

β

)2)
∀r ∈ [0,1)

0 1
2

1

ψβ(r )

r

Discretizations. Consider a distribution with density function φ : T→ R≥0 and

let X ∼φ. Then for a parameter p, the discretization of φ is the discrete probabil-

ity distribution φ̄ corresponding to p X rounded to the nearest integer modulo p.

Formally the probabilities of φ̄ are

φ̄(i ) :=
∫(i+1/2)/p

(i−1/2)/p
φ(x mod 1)d x ∀i ∈ {0, . . . , p −1}
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φ

0 1

b

b

b

b

b

0 1 p −1

φ̄

The LWE distribution. Fix a distributionχ : Zp →R≥0 and a vector s ∈Zn
p . Then

we denote As,χ as the distribution on tuples Zn
p ×Zp that returns

(
a,〈a, s〉+e mod p

)
∼ As,χ where a ∼Zn

p , e ∼χ independently

7.1.2 The crypto system

Now we can finally describe the LWE public key cryptoscheme in which Bob wants

to send a single bit M ∈ {0,1} to Alice. The system depends on parameters m,n, p ∈
N and α for which we will make a choice later. Also note that in order to send

more than one bit, one can reuse secret and public key.

Alice Bob

unsecure

channel

A

B

A

Alice chooses a

private key s ∼Zn
p and a

public key (ai ,bi )i=1,...,m

with (ai ,bi ) ∼As,ψ̄α Bob chooses a set S ∼ 2[m]

and encrypts

his message M ∈ {0,1} to

a :=
∑

i∈S ai mod p
b := M · ⌈p

2
⌉+

∑
i∈S bi mod p

Alice chooses M̃ ∈ {0,1}

minimizing

d(b −〈a, s〉+ M̃⌈p
2
⌉, pZ)

public key (ai ,bi )i=1,...,m

encrypted message (a,b)

Before we come to the formal analysis we want to give some intuition behind

the crypto system. The public key consists of the m pairs (ai ,bi )i∈[m] with bi =
〈ai , s〉+ ei where we should think of ei ∼ ψ̄α as an error/noise term. Hence if an

adversary was intented to compute the secret key he/she would have to solve a
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system of equations

〈a1, s〉 ≈ b1 mod p
...

〈am , s〉 ≈ bm mod p

where the i th equation holds up to an additive Gaussian error. One can prove

that with high probability there will be a unique good approximate solution s ∈
Zn

p . But while one can solve systems of exact equations modulo p using Gaus-

sian elimination, this does not obviously extend to approximate equations which

gives us hope that an adversary cannot determine the secret key s.

Now consider the message (a,b) with a ≡p
∑

i∈S ai and b ≡p
∑

i∈S 〈ai , s〉 +∑
i∈S ei + M⌈p

2
⌉. Note that a ∼ Zn

p is distributed uniformly and (approximately)

one has

b ≡p (uniform from Zp )+ ψ̄p
m
2 ·α+M

⌈p

2

⌉

Of course, a and b are not chosen independently, but they are correlated. How-

ever, in order to understand the correlation it appears one needs to know the

secret key s. So without the secret key it seems impossible to isolate the term

M⌈p
2
⌉ if some uniform random choice from Zp is added.

Now, consider the situation from Alice’s point of view. Alice of course knows

the secret key s and the message (a,b) and so she knows in particular the “corre-

lation” 〈a, s〉. Hence she can compute

b −〈a, s〉 ≡p ψ̄p
m
2 ·α+M

⌈p

2

⌉

As long as the standard deviation of the noise term ψ̄p
m
2 ·α (which is of the order

p
m ·α) is ≪ p

4
, Alice will be able to isolate the value of M ∈ {0,1}.

7.2 Correctness and Security of the LWE Crypto Sys-

tem

7.2.1 Correctness of LWE

First we prove that with a suitable choice of parameters, the encryption scheme

is correct, meaning that Alice will be able to decode the bit that Bob is sending. Of

course, these won’t be the only parameters that work, but these are parameters

that also make sense from an efficiency perspective as the size of the public key

is Θ(mn log(p)) and each message has Θ(n log(p)) bits.
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Theorem 7.1 (Correctness of LWE). Set α := 1p
n log2(n)

, m := 2n log(p), p prime

with n2 ≤ p ≤ 2n2 and n large enough. Then Pr[M 6= M̃ ] ≤ n−Θ(log(n)).

Proof. Note that

b −〈a, s〉 ≡p

∑

i∈S
(〈ai , s〉+ei︸ ︷︷ ︸

=bi

−〈ai , s〉) ≡p

∑

i∈S
ei

Hence in order for Alice to not make mistake during encryption it suffices if

|
∑

i∈S ei | < ⌊p
4
⌋. Then fixing any choice of a1, . . . , am ∈ Zn

p , M ∈ {0,1} and S ⊆ [m]

and just with the randomness over the choice of ei ∼ ψ̄α we have

Pr[M 6= M̃] ≤ Pr
ei∼ψ̄α

[
d

(∑

i∈S
ei , pZ

)
≥

⌊p

4

⌋]

≤ Pr
xi ∼N(0,α

2

2π )

[
p
∣∣∣
∑

i∈S
xi

∣∣∣+|S| ≥
p

8

]

m≤ p
16≤ Pr

X∼N(0, 1
2π |S|α2)

[
|X | >

1

16

]
≤ 2 exp

(
−Θ

( 1

mα2

))
≤ exp(−Θ(log2(n)))

Basically, the proof says that as long as
p

m ·α ≪ 1, then a single choice of

(M ,S) will have a good chance to be decoded correctly.

7.2.2 Security of LWE

Next, we come to what is often called the “proof of security of LWE”, though we

will (for now) really just prove that an efficient algorithm to decrypt messages

implies an algorithm to distinguish samples from As,ψ̄α
from the uniform dis-

tribution on tuples Zn
p ×Zp . It will take a lot more effort to later derive further

consequences from the existence of such a distinguisher. We introduce a statisti-

cal tool first.

Statistical distance and the left over hash lemma

If φ1 and φ2 are two continuous distributions on Rn , then we define their statis-
tical distance as

∆(φ1,φ2) :=
∫

Rn
|φ1(x)−φ2(x)|d x

Note that 0 ≤ ∆(φ1,φ2) ≤ 2. Similarly, if φ1,φ2 are distributions over some dis-

crete set Q, then one defines ∆(φ1,φ2) :=
∑

x∈Q |φ1(x) −φ2(x)|. In either case,



7.2. CORRECTNESS AND SECURITY OF THE LWE CRYPTO SYSTEM 129

this quantity is useful for the following fact: If we think of A : Rn → {0,1} as the

output behaviour of an algorithm, then |Prx∼φ1 [A(x) = 1]−Prx∼φ2 [A(x) = 1]| ≤
1
2
∆(φ1,φ2).

We need an auxiliary result which will imply that the bit b in Bob’s message

is distributed approximately uniformly over Zp . The lemma that we are about to

prove is called the “Left over Hash Lemma” and applies in more generality. We

should point out that the Abelian group G in the lemma will simply be Zn
p ×Zp in

our application.

Lemma 7.2 (Left over Hash Lemma). Let g1, . . . , gm ∈ G elements of an Abelian

group (G ,⊕). Define the random variables

X ∼ G uniformly

Y =
⊕

i∈S
gi where S ⊆ {1, . . . ,m} uniformly

Then Eg1 ,...,gm∼G [∆(X ,Y )] ≤
p
|G |/2m .

Proof. First, let us fix any choice for g1, . . . , gm ∈G . Then

∑

g∈G
Pr[Y = g ]2 indep.= Pr

S1,S2⊆[m]

[ ⊕

i∈S1

gi =
⊕

i∈S2

gi

]
(∗)

≤ Pr
S1,S2⊆[m]

[S1 = S2]

︸ ︷︷ ︸
=(1/2)m

+ Pr
S1,S2⊆[m]:S1 6=S2

[ ⊕

i∈S1

gi =
⊕

i∈S2

gi

]

Now, taking the expectation over the choice of g1, . . . , gm we see that1 Prg1 ,...,gm∼G [
⊕

i∈S1
gi =⊕

i∈S2
gi ] = 1

|G | . Hence the expectation of (∗) will be

E
g1 ,...,gm∼G

[ ∑

g∈G
Pr[Y = g ]2

]
≤

(1

2

)m
+

1

|G |
(∗∗)

Note that this shows that the L2-norm of the distribution Y is not much bigger

than the L2-norm of the uniform distribution. The statistical distance on the

other hand is a claim on the L1-distance, hence we need the following claim:

Claim I. For any a ∈Rn
≥0 with ‖a‖1 = 1 one has ‖a − 1

n ‖1 ≤ (‖a‖2
2 −

1
n )1/2.

Proof of Claim I. We write
∥∥∥a −

1

n

∥∥∥
1
≤
p

n ·
∥∥∥a −

1

n

∥∥∥
2
=
p

n ·
(
‖a‖2

2−
2

n
〈a,1〉︸ ︷︷ ︸
=1

+
∥∥∥ 1

n

∥∥∥
2

2︸ ︷︷ ︸
=1/n︸ ︷︷ ︸

=−1/n

)1/2
=
p

n ·
(
‖a‖2

2 −
1

n

)1/2

1This is where we use that (G,⊕) is an Abelian group. To be more precise we use that in an

Abelian group, any equation a + x = b has a unique solution x ∈G.
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Then we can finally bound the statistical distance as

E
g1 ,...,gm∼G

[∆(X ,Y )]
Def ∆= E

g1,...,gm∼G

[ ∑

g∈G

∣∣∣Pr[Y = g ]−
1

|G |

∣∣∣
]

Claim I
≤

√
|G | · E

g1 ,...,gm∼G

[( ∑

g∈G
Pr[Y = g ]2 −

1

|G |

)1/2]

Jensen Ineq.
≤

√
|G | ·

(
E

g1 ,...,gm∼G

[ ∑

g∈G
Pr[Y = g ]2

]
−

1

|G |

)1/2 (∗∗)
≤

√
|G | ·

√
1

2m

In the second-to-last inequality we use Jensen’s Inequality with the concavity of

x 7→
p

x.

Security of LWE

In the following, let U denote the uniform distribution on tuples Zn
q ×Z. Our goal

is to show that if one was able to decode messages from the LWE crypto system

then one could also solve the following problem for χ= ψ̄α:

LWEDISTINGUISHING p,χ.

Input: Access to a distribution R with R ∈ {U ,As,χ} with χ : {0, . . . , p − 1}

(where the choice of s is not known to the algorithm)

Output: Determine whether R=U or R=As,χ.

The exact statement that we prove is as follows:

Theorem 7.3 (Security of LWE). Suppose there exists a polynomial time algorithm

W that without access to the secret key, can correctly decode at least a 1
2
+ 1

poly(n)

fraction of messages. Then there exists a distinguisher Z that for a 1
poly(n)

-fraction

of s ∈Zn
p , can distinguish between As,ψ̄α

and U with high probability.

Proof. For a bit M ∈ {0,1}, and a public key (ai ,bi )i∈[m], let

Bob((ai ,bi )i∈[m], M) =
(∑

i∈S
ai ,

∑

i∈S
bi +M ·

⌈p

2

⌉)

denote the message that Bob sends. The algorithm W knows the public key

(ai ,bi )i∈[m] and the message (a,b) send by Bob and W either accepts (i.e. W
believes 1 is the encrypted message) or it rejects (i.e. W believes 0 was the en-

crypted message). We abbreviate χ := ψ̄α and define the probabilities

pM (s) := Pr
(ai ,bi )∼As,χ

[
W accepts

(
(ai ,bi )i ,Bob((ai ,bi )i , M)

)]
for M ∈ {0,1}

pU (s) := Pr
(ai ,bi )∼U ,(a,b)∼U

[
W accepts

(
(ai ,bi )i , (a,b)

)]
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By assumption, there has to be a set Y ⊆ Zn
q of size |Y |

|Zn
p |

≥ 1
nc so that |p1(s) −

p0(s)| ≥ 1
nc for all s ∈ Y . Now, consider a distribution R ∈ {U ,As,χ} where s ∈

Y — our goal will be to use the distinguisher W to tell which distribution R is.

Consider the quantity

ρ := max
M∈{0,1}

∣∣∣ Pr
(ai ,bi )∼R

[
W accepts

(
(ai ,bi ),Bob((ai ,bi ), M)

)]

︸ ︷︷ ︸
(∗)

− Pr
(ai ,bi )∼R,(a,b)∼U

[
W accepts

(
(ai ,bi ), (a,b)

)]

︸ ︷︷ ︸
(∗∗)

∣∣∣

By taking a large enough number of samples from R and using our distinguisher

W , we can estimate ρ up to say 1
16nc error. Now we distinguish two cases.

• Case R = U . By the left over hash lemma we know that the statistical dis-

tance of Bob’s message to the uniform distribution is bounded by

E
(ai ,bi )∼U

[
∆

(
Bob((ai ,bi )i ,0),U

)]
≤

√
|Zn

p ×Zp |
2m =

√
pn+1

2m ≤ 2−Θ(n)

Hence the two probabilities (∗) and (∗∗) differ by at most twice that statis-

tical distance and so ρ ≤ 2 ·2−Θ(n).

• Case R=As,χ. Then

ρ = max
M∈{0,1}

∣∣pM (s)− (∗∗)
∣∣ triangle ineq

≥
1

2
|p1(s)−p0(s)| ≥

1

2nc

since the probability in (∗∗) does not depend on M .

7.3 From an LWE Distinguisher for a fraction of keys

to solving LWE for all keys

So far we have proven in Theorem 7.3 that if one could decrypt a 1
2
+ 1

poly(n)
frac-

tion of messages from the LWE crypto system, then one could distinguish the

distributionsU and As,ψ̄α
— but possibly only for a 1

poly(n)
fraction of keys s. This

does not seem particularly useful. In this section we will show that via a sequence

of two additional reductions, this translates into an algorithm that solves the fol-

lowing much more powerful problem on all inputs s (and again with the distri-

bution χ := ψ̄α):
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LWEp,χ

Input: Access to distribution As,χ where χ : {0, . . . , p −1} →R≥0, s ∈Zn
p

Output: Determine s ∈Zn
p

Intuitively, LWEp,χ corresponds to the problem of solving systems of approximate

equations modulo p that we mentioned earlier. The algorithms for LWEDISTINGUISHING p,χ

and LWEp,χ will be randomized and so they will come with some success proba-

bility. We can define that success probability to be at least say 2
3

, but one can

repeat the algorithms polynomially often and boost the success probability to

any quantity of the form 1− 2−poly(n) if desired. So we do not need to explicitly

mention the probability threshold.

Theorem 7.4 (Reduction LWEDISTINGUISHING to LWE). Let p be a prime with

p ≤ poly(n) and let χ : {0, . . . , p − 1} → R≥0 be any distribution. Assume there is

a randomized polynomial time algorithm that solves LWEDISTINGUISHING p,χ for

keys Y ⊆Zn
p with |Y | ≥

|Zn
p |

poly(n)
. Then there is a randomized polynomial time algo-

rithm that solves LWEp,χ for all s ∈Zn
p .

Proof. We show the main claim divided into two reductions that we denote as

Claim I and Claim II.

Claim I. Poly-time algo for LWEDISTINGUISHING p,χ for key Y ⊆ Zn
p with |Y |

|Zn
p |

≥
1

poly(n)
=⇒ Poly-time algo for LWEDISTINGUISHING p,χ for all s ∈Zn

p .
Proof of Claim I. Let W be the distinguisher that works for keys from Y where we

assume that |Y | ≥ n−c |Zn
p | for some constant c > 0. Let R ∈ {U ,As,χ} be the given

distribution. Our goal is to distinguish the cases R = U from R =As,χ whether

or not s is in Y . Consider the following procedure:

(1) Set ρU := Pr(a,b)∼U [W accepts (a,b)]

(2) Sample T ⊆Zn
p with |T | = n1+c

(3) Set

ρ := max
t∈T

{∣∣∣Pr
[

W accepts distr. (a,b +〈a, t〉 mod p) where (a,b) ∼R

]

︸ ︷︷ ︸
(∗)

−pU

∣∣∣
}

Note that we can estimate the probabilities in (1) and (3) up to any polynomially

small error by sampling repeatedly from U or R and feeding inputs to W . So, for

the sake of simplicity, we work with the exact value of ρ but there will be enough

slack in the argument to distinguish the cases also in the presence of sampling

error.
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Claim I.A. If R=U , then ρ = 0.
Proof of Claim I.A. In this case, for any fixed t and (a,b) ∼ U , the distribution

of (a,b +〈a, t〉) ∼ U is still uniform. Then ρ is the maximum difference between

identical probabilities and so ρ = 0.

Claim II.B. If R=As,χ for some s ∈Zn
p , then with high probability ρ ≥ 1

3
.

Proof of Claim II.B. With high probability over the choice of T , there is a t ∈ T so

that s+t ∈ Y . We condition on this event and fix t . For (a,b) = (a,〈a, s〉+e)∼As,χ

we know that (a,b + 〈a, t〉) = (a,〈a, s + t〉 + e) ∼ As+t ,χ. Then as s + t ∈ Y , the

distinguisher will be successful in the sense that (∗) ≥ 2/3 while pU ≤ 1/3 and so

ρ ≥ 1
3

.

This concludes the first reduction.

Claim II. Poly-time algo for LWEDISTINGUISHING p,χ for all s ∈ Zn
p =⇒ Poly-time

algorithm for LWEp,χ for all s ∈Zn
p .

Proof of Claim II. Let W be the LWE distinguisher and suppose we have access

to samples of distribution As,χ. The goal is determine s. Fix an index i ∈ [n] and

for q ∈ {0, . . . , p −1} define the following distribution:

Distribution Ri ,q . Return (a +ℓ ·ei ,b +ℓ ·q) where (a,b) ∼As,χ and

ℓ∼Zp uniformly.

We claim that by feedingRi ,q into the distinguisher W we can determine whether

q = si — then repeating the procedure for all indices i ∈ [n] and q ∈ Zp will pro-

vide s. We prove the following two subclaims.

Claim II.A. If q = si then Ri ,q =As,χ.
Proof of Claim II.A. Write (a,b)= (a,〈a, s〉+e) ∼As,χ. Let ei = (0, . . . ,0,1,0, . . . ,0) ∈
Zn

p be the i th unit vector. Then b +ℓ ·q ≡p 〈a, s〉+ℓsi ≡p 〈a +ℓei , s〉 and so Ri ,q

returns (a +ℓei ,〈a +ℓei , s〉+e)∼As,χ.

Claim II.B. If q 6= si then Ri ,q =U . Again write (a,b) = (a,〈a, s〉+e)∼As,e . Then

(a +ℓei ,b +ℓq) = (a +ℓei ,〈a +ℓei , s〉+ℓ(q − si ))

∼ (a,〈a, s〉+ℓ (q − si )︸ ︷︷ ︸
6=0

) ∼U

where we write ∼ for “having the same distribution”. Note that here we need that

p is a prime so that ℓ(q − si ) ∼Zp uniformly whenever ℓ∼Zp .

Combining Theorem 7.3 and Theorem 7.4 we obtain the following:

Corollary 7.5. Suppose there exists a polynomial time algorithm W that with-

out access to the secret key, can correctly decode at least a 1
2
+ 1

poly(n)
fraction of

messages. Then for all s, given samples from As,ψ̄α
one can determine s ∈ Zn

p in

polynomial time.



134 CHAPTER 7. LEARNING WITH ERRORS

7.4 Discrete Gaussian Sampling and the Smoothing

Parameter

In this section, we will build up some technical tools that will be useful for the

reductions later, but are also of general interest.

7.4.1 Sampling from a wide enough discrete Gaussian

We begin by proving a simple lemma about the change of Gaussian density:

Lemma 7.6. Let x , y ∈ Rn and s, t ,ℓ > 0 with ‖x‖2 ≤ t and ‖x − y‖2 ≤ ℓ. Then

ρs (y) ≥ (1−π( 2ℓt+ℓ2

s2 )) ·ρs (x) .

Proof. After scaling we may assume that s = 1. Then

ρ1(y)

ρ1(x)
= exp

(
−π · (‖y‖2

2 −‖x‖2
2)

)

triangle ineq.
≥ exp

(
−π((‖x‖2 −ℓ)2 −‖x‖2

2)
)
= exp

(
−π(−2ℓ‖x‖2︸ ︷︷ ︸

≤t

+ℓ2)
)

In general, generating samples from the discrete Gaussian Dr (Λ) is a hard

problem — but it becomes tractable if the parameter r is very large compared to

the length of the basis vectors.

Lemma 7.7. There is a polynomial time algorithm that for a lattice Λ ⊆ Rn and

any parameter r > 22nλn(Λ) computes a sample from a distribution D̃with∆(D̃,Dr (Λ)) ≤
2−Ω(n).

Proof. After scaling we may assume that r = 1 and λn(Λ) ≤ 2−2n . We use the

LLL algorithm to compute an LLL-reduced basis B = (b1, . . . ,bn) of the lattice. By

Lemma 1.23, the vectors satisfy ‖bi‖2 ≤ 2n ·λn(Λ) ≤ 2−n for all i = 1, . . . ,n. Then

we construct the following distribution:

Distribution D̃. Sample y ∼ ν1. Return
∑n

i=1
bi ⌊yi ⌋ ∈Λ.

Note that ν1 is our notation for the Gaussian distribution N (0, 1p
2π

In). Clearly D̃

returns only lattice vectors inΛ. Recall that by Lemma 4.24, one has Prx∼D1(Λ)[‖x‖2 >
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p
n] ≤ 2·2−n . Hence it suffices to fix a lattice point x ∈Λwith ‖x‖2 ≤

p
n and show

the one sided bound of Pr[D1(Λ) returns x]

Pr[D̃ returns x]
≤ 1+2−Ω(n). First we estimate

Pr[D1(Λ) returns x] =
ρ1(x)

ρ1(Λ)

Poisson summation
formula,Cor 4.19=

ρ1(x)

det(Λ∗)ρ1(Λ∗)

ρ1(Λ∗)≥1,
det(Λ∗)det(Λ)=1

≤ ρ1(x)·det(Λ)

Next, let us abbreviate R := diam(P(B )) ≤
∑n

i=1 ‖bi‖2 ≤ n2nλn(Λ) ≤ n2−n . Then

using the estimate from Lemma 7.6 we obtain

Pr[D̃ returns x] =
∫

x+P(B )
ν1(y)d y

Lem 7.6
≥ (1−6(

p
nR +R2)︸ ︷︷ ︸
≤2−Ω(n)

) ·ν1(x)︸ ︷︷ ︸
=ρ1(x)

·Voln(P(B ))︸ ︷︷ ︸
=det(Λ)

≥ (1−2−Ω(n)) ·ρ1(x) ·det(Λ)

7.4.2 The Smoothing Parameter

We introduce the following definition:

Definition 7.8. Let Λ ⊆ Rn be a lattice and let ε > 0. The smallest s > 0 with

ρ1/s (Λ∗ \ {0}) ≤ ε is called the smoothing parameter ηε(Λ).

That means ηε(Λ) gives the threshold beyond which the dual lattice has al-

most all the Gaussian weight on the origin. But admittedly it takes a while to

understand why this quantity is so important for handling Gaussians on lattices.

For example, beyond the smoothing threshold, shifting a lattice does not affect

the value ρr (Λ+ c) by much. Note that this is closely related to Lemma 4.24

where we show essentially the same claim for r = 1 under the assumption that

λ1(Λ∗) >
p

n.

Lemma 7.9. For any lattice Λ⊆Rn , c ∈Rn , ε> 0 and r ≥ ηε(Λ) one has

ρr (Λ+c)∈ (1±ε) · r n det(Λ∗)

Proof. By assumption ρ1/r (Λ∗ \ {0}) ≤ ε. Then by Lemma 4.20 we have

ρr (Λ+c)
Lem 4.20= det(Λ∗) · r n

∑

y∈Λ∗
ρ1/r (y) ·e2πi〈y ,c〉

= det(Λ∗) · r n ·
(
e0 ·ρ1/r (0)︸ ︷︷ ︸

=1

+
∑

y∈Λ∗\{0}

ρ1/r (y) ·e2πi〈y ,c〉

︸ ︷︷ ︸
|·|≤ε

)

= det(Λ∗) · r n · (1±ε)
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Next, we want to relate the value of ηε(Λ) to known lattice parameters. For ex-

ample one can prove that for ε= 1
poly(n)

, one has Θ(
√

log(n)/n) ·λn(Λ) ≤ ηε(Λ) ≤
Θ(

√
log(n)) ·λn(Λ) meaning that up to a factor of n, the smoothing parameter is

proportional to λn(Λ).

Parts of the following argument are taken from Regev and Micciancio [MR07a].

Lemma 7.10. For a lattice Λ⊆Rn and 0 < ε≤ 1
2

one has

1

n

√
1

π
ln

(1

ε

)
·λn(Λ) ≤ ηε(Λ) ≤

√
1

π
ln

(4n

ε

)
·λn(Λ)

Moreover ηε(Λ) ≥
√

1
π ln

(
1
ε

)
· 1
λ1(Λ∗)

.

Proof. For the sake of a simpler exposition we will ignore the exact constants and

rescale the lattice as convinient. We split the bounds into two main claims.

Claim I. If ηε(Λ) = 1, then λ1(Λ∗) ≥Θ(
√

ln( 1
ε )) and λn(Λ) ≤Θ(n/

√
ln( 1

ε )).
Proof of Claim I. Let y ∈ Λ

∗ be a vector with ‖y‖2 = λ1(Λ∗). Then ε = ρ1(Λ∗ \

{0}) ≥ exp(−π‖y‖2
2) and so ‖y‖2 ≥ Θ(

√
ln( 1

ε )). The 2nd part of the claim follows

from the fact that λ1(Λ∗) ·λn (Λ) ≤ 2n by Banaszczyk’s Theorem (Cor 4.2).

This gives the “moreover” part as well as the lower bound. It remains to prove the

upper bound of ηε(Λ) ≤O(
√

log( 4n
ε )) ·λn(Λ) which we do as follows:

Claim II. If ηε(Λ) = 1, then λn(Λ) ≥Θ( 1√
ln( 4n

ε )
).

Proof of Claim II. By assumption ρ1(Λ∗ \ {0}) = ε. Let v1, . . . , vn ∈ Λ be linearly

independent vectors of length ‖vi‖2 ≤ λn(Λ). Consider the sets of lattice points

Si := {y ∈Λ
∗ | 〈y , vi 〉 6= 0}. As v1, . . . , vn are linearly independent, we haveΛ

∗\{0} =⋃n
i=1

Si . By the pigeonhole principle we can fix an index i ∈ [n] so that ρ1(Si ) ≥ ε
n .

Set u := vi

‖vi ‖2
2

and note that ‖u‖2 = 1
‖vi‖2

≥ 1
λn (Λ)

; hence it suffices to prove that

‖u‖2 ≤Θ(
√

ln( 4n
ε

)). We consider the (n −1)-dimensional subspace U := {y ∈Rn |
y ⊥ u}. Consider the “slices”

T j :=
{

y ∈Λ
∗ | 〈y , vi 〉 = j

}
=Λ

∗∩ ( j u +U )

for j ∈Z.
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U

u +U

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

0

vi

u

T1

T0

Then ρ1(T j ) = e−π‖ j u‖2
2ρ1(T j − j u) ≤ e−π‖ j u‖2

2ρ1(T0) using first orthogonality and

then the fact from Lemma 4.21 that shifts through the origin maximize the Gaus-

sian weight. Hence

ε

n
≤

∑

j 6=0

ρ1(T j ) ≤ ρ1(T0)︸ ︷︷ ︸
≤1+ε≤2

∑

j 6=0

e−π‖ j u‖2
2 ≤ 2

∑

j≥1

(
e−π‖u‖2

2

)j
=

2

eπ‖u‖2
2 −1

Rearranging gives ‖u‖2 ≤
√

1
π

ln(1+ 2n
ε

) which is of the desired form.

A simple variant is the following:

Lemma 7.11. Let Λ⊆Rn be a lattice. Then η2−n (Λ)≤
p

n
λ1(Λ∗)

.

Proof. For convinience we prove an upper bound on η2·2−n (Λ) instead. After scal-

ing assume λ1(Λ∗) =
p

n. Then by Lemma 4.26 we have ρ1(Λ∗\{0}) ≤ 2·2−n which

gives the claim.

7.4.3 Statistical distance of Gaussian to Discrete Gaussian

Another property of the smoothing parameter is that it gives us a threshold so

that the sum of discrete Gaussian and continuous Gaussian is statistically close

to a “wider” Gaussian.

Lemma 7.12. For any lattice Λ ⊆ Rn , u ∈ Rn , 0 < ε ≤ 1
2

and r, s > 0 with r sp
r 2+s2

≥
ηε(Λ) one has

∆
(
Dr (u +Λ)+νs ,νpr 2+s2

)
≤ 4ε

Proof. In order to keep the exposition simple, we only consider the case r = s =
1. We ensure the reader that conceptially nothing is being hidden — but the

calculations simplify. Then the claim reads that for a lattice with ηε(Λ) ≤ 1p
2

one

has ∆(D1(u+Λ)+ν1,νp2) ≤ 4ε for any u ∈Rn . Let us consider a random variable

Y ∼
(
D1(u +Λ)+ν1

)
. Note that due to the added Gaussian, Y is a continuous
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random variable. For convinience we denote the density at a point x ∈ Rn as

Y (x). First we determine an explicit expression for that density; note that we

hope that this density is close to νp2(x) = 2−n/2e−π
2 ‖x‖2

2 . We have

Y (x) =
∑

y∈u+Λ

ρ1(y)

ρ1(u +Λ)
·
ρ1(x − y)

ρ1(Rn)

ρ1(Rn )=1
=

1

ρ1(u +Λ)

∑

y∈u+Λ
exp

(
−π

(
‖y‖2

2 +‖x − y‖2
2

))

=
exp(−π

2
‖x‖2

2)

ρ1(u +Λ)

∑

y∈u+Λ
exp

(
−2π

∥∥∥y −
1

2
x
∥∥∥

2

2

)

= ρp
2(x) ·

ρ1/
p

2(Λ+u − x
2

)

ρ1(u +Λ)

Lem 7.9 twice= ρp
2(x) ·

(1±ε) · (1/
p

2)n det(Λ∗)

(1±ε) ·det(Λ∗)
= (1±4ε) ·2−n/2ρp

2(x)

The claim follows as the densities are within a 1±4ε factor.

7.5 Overview over reduction

So the remaining question for this chapter is what would be the implication of a

polynomial time algorithm for LWEp,ψ̄α
. Recall that Dr (Λ) is the distribution that

samples each lattice point x ∈ Λ with probability
ρr (x)

ρr (Λ)
. We can formulate this

sampling as a computational problem called Discrete Gaussian Sampler (DGS):

DGS f

Input: Lattice Λ⊆Rn and parameter r with r > f (Λ).

Output: Compute a sample x ∼Dr (Λ)

Here we think of f as a threshold that gives a lower bound on the admissible

values of r . We allow that f is a function depending on the lattice, for example f
could be in terms of the smoothing radius ηε(Λ) or in terms of the shortest vector

in the dual lattice λ1(Λ∗). Also note that the larger the threshold f is, the easier is

the problem of sampling from Dr (Λ). For example we have already proven that

the problem DGS22nλn (Λ) is solvable in polynomial time2.

The 2nd problem that we use in the reductions is as follows:

2Technically speaking there is an exponentially small statistical error — we will ignore that

issue for the sake of a cleaner representation.
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CVPΛ,d

Input: Point x ∈Rn .

Output: Compute y ∈Λ with ‖x − y‖2 ≤ d (if there is any)

In our application we will always choose the distance as d < 1
2
λ1(Λ) so that the

choice of y will be unique (if there is any). We also denote κΛ(x) := argmin{‖x −
y‖2 : y ∈Λ} as the closest lattice point.

b b b b b

b b b b

b b b b b

b b b b

0

x

d

y

We assume that we can solve LWEp,ψ̄α
in polynomial time and the goal is to con-

struct a DGS sampling algorithm with a parameter r that is so tight that it also

implies an algorithm for GAPSVP with only a polynomial gap.

Roughly speaking, we will start with a large parameter R := 22nλn(Λ) and gen-

erate nc many samples from DR (Λ). Then we can use the LWE oracle to solve

the Closest vector problem in the dual lattice (to be precise we solve CVPΛ∗,αp/R ).

Then assuming to be able to solve CVPΛ∗,αp/R we can design a quantum algo-
rithm that generates nc samples from D

R·
p

n
αp

(Λ). So if αp <
p

n, then this means

we are able to sample from a narrower discrete Gaussian. We can iterate this

argument until it breaks down when the parameter reaches
p

2n ·ηε(Λ)/α. In

other words, the argument stops working when we are just polynomially above

the smoothing threshold.

We reproduce a helpful figure from Regev depicting the sequence of reduc-

tions.
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nc samples

from D22nλn (Λ)(Λ)

nc samples

from Dr (Λ)

nc samples

from Dr /(
p

n/αp)(Λ)

nc samples

from Dr /(
p

n/αp)2 (Λ)

nc samples

from Dp
2n·ηε(Λ)(Λ)

solve

CVPΛ∗,αp/r

solve

CVP
Λ∗,

αpp
n
·(αp/r )

classical, uses LWE

quantum

classical, uses LWE

quantum

...

...

Each iterative step can be broken down into two disjoint parts:

• Part I: Use samples from Dr (Λ) and the LWE oracle to solve CVP
Λ∗αp/(

p
2r )

• Part II: Use CVP
Λ∗,αp/(

p
2r ) to sample from Dr ·

p
n/(αp)(Λ)

We state both parts formally here and will defer their proof to a later section.

Lemma 7.13 (Part I of iterative step). Let ε ≤ n−ω(1) and p ∈ Z≥2, 0 < α < 1 and

assume that there is a polynomial time algorithm for LWEp,ψ̄α
. Then there is a

constant c > 0 so that there is an efficient algorithm that has the following behav-

ior:

• Input: Λ⊆Rn , r >
p

2p ·ηε(Λ) and nc samples from Dr (Λ)

• Output: Solves the problem CVP
Λ∗,αp/(

p
2r ).

Lemma 7.14 (Part II of iterative step). There is an efficient quantum algorithm

that has the following behaviour:

• Input: Lattice Λ⊆Rn , parameter d < 1
2
λ1(Λ∗), oracle to CVPΛ∗,d

• Output: A sample to Dp
n/(2d)(Λ).
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Combining both parts gives us a full iterative step:

Lemma 7.15 (Iterative Step). Let ε ≤ n−ω(1), p ∈ Z≥1, 0 < α < 1 and assume that

we can solve LWEp,ψ̄α
in polynomial time. Then for some constant c > 0, there is

an efficient quantum algorithm that has the following behavior:

• Input: Λ ∈Rn , r >
p

2p ·ηε(Λ), nc samples from Dr (Λ)

• Output: A sample from Dr
p

n/(αp)(Λ)

Proof. Combine Lemma 7.13 and Lemma 7.13. Also use
αpp

2r
≤ 1

ηε(Λ)
≤ 1

2
λ1(Λ∗).

We can now conclude the main theorem of Regev, proving that if we could

solve LWEp,ψ̄α
in polynomial time, then there would be a polynomial time quan-

tum algorithm that could sample from the discrete Gaussian just polynomially

above the smoothing threshold:

Theorem 7.16 (Main Theorem I). Let ε ≤ n−ω(1), p ∈ Z≥2, 0 < α < 1 so that αp >
2
p

n and assume LWEp,ψ̄α
can be solved in polynomial time. Then there is an

efficient quantum algorithm for DGSp2n·ηε(Λ)/α.

Proof. Fix a lattice Λ⊆Rn and parameter r >
p

2n ·ηε(Λ). The goal is to generate

a sample from Dr (Λ). We set ri := r · (αp/
p

n)i . Note that
αpp

n
≥ 2 and so ri ≥ 2i r .

Then r3n ≥ 23nr ≥ 22nλn(Λ). In other words, r3n is so large that we can efficiently

generate samples from Dr3n (Λ). Then for i = 3n,3n − 1, . . . ,0 we may assume

that we are able to generate nc samples from Dri (Λ). Then feeding the same nc

samples into Lemma 7.15 we can generate nc samples of ri−1. The samples from

Dr0 (Λ) satisfy the claim.

We can also relate the hardness of LWE to the more standard problem of

Shortest Vector. We state the main conclusion and defer the details to Section 7.8.

Theorem 7.17 (Main Theorem II). Assume that for some 0<α< 1 and p ∈N with

αp ≥ 2
p

n we can solve LWEp,ψ̄α
in polynomial time. Then there is an efficient

quantum algorithm for GAPSVPΘ(n3/2 log(n)/α).

Proof. Set ε := n− log(n). Under the assumption of the claim we can conclude from

Theorem 7.16 that there is an efficient quantum algorithm for DGSp2n·ηε(Λ)/α.

Then by Lemma 7.10 and Cor 4.2 we haveηε(Λ) ≤Θ(
√

ln( 4n
ε

))λn(Λ) ≤Θ(n ln(n))/λ1(Λ∗).

Hence we also have an efficient quantum algorithm for DGSΘ(n3/2 log(n))/α. Then
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applying Theorem 7.29, this implies an efficient quantum algorithm also for GAPSVPΘ(n3/2 log(n))/α.

7.6 Using samples and LWE to solve CVP

In this section we will show the part of the reduction in which we use samples

for Dr (Λ) and an oracle for LWEp,ψα to solve the CVP problem. We break this part

of the reduction into two steps; in the first step we show how to solve a variant

of CVP where instead of the closest lattice vector κΛ(x) ∈Λ we only need to com-

pute a vector in κΛ(x)+pΛ. The reason is that an LWEp,ψα oracle naturally only

finds answers in Zn
p . Formally, we will first solve the following problem:

CVP
(p)

Λ,d
Input: Point x ∈Rn .

Output: Return any vector in κΛ(x)+pΛ.

Equivalently one could also fix a basis B of the lattice Λ and then ask for the

coefficient vector B−1κΛ(x) mod p. Since this part of the reduction is the key

ingredient to the hardness of LWE, we want to give an informal overview first. So,

suppose we can generate samples fromDr (Λ) and we can solve LWEp,ψα . Now we

are given a target vector x as input for CVP
(p)

Λ∗,αp/(
p

2r )
, meaning that we are sup-

posed to find a dual lattice vector close to x (modulo p). Consider the following

distribution

Sample v ∼Dr (Λ) and return (a,b) := (B−1v mod p,〈x , v〉 mod p) ∈
Zn

p ×Zp .

Since r is larger than the smoothing radius of pΛ we will be able to argue that a is

approximately uniform from Zn
p . Next, we fix a and consider the conditional dis-

tribution of b ≡p 〈x , v〉 = 〈x −κΛ∗(x), v〉+ 〈κΛ∗(x), v〉. By assumption, the vector

x −κΛ∗(x) is short and even fixing a = B−1v mod p, the vector v still behaves

enough like a Gaussian so that 〈x −κΛ∗(x), v〉 is approximately Gaussian with

small standard deviation. For the 2nd term we write 〈κΛ∗(x), v〉 = 〈(B∗)−1κΛ∗(v),B−1v〉 ≡p

〈s, a〉 where we set s := (B∗)−1κΛ∗(x) mod p ∈Zn
p . We realize that this vector s is

exactly the target coefficient vector that we’d like to find as B∗s ∈ κΛ∗(x)+ pΛ.

And we have concluded that the distribution of (a,b) is indeed approximately of

the form (a,Gaussian +〈s, a)〉 with a ∼Zn
p approximately uniform. Then we can

use an LWE oracle to extract s. We will now work to make this formal; for example

we will need to add some extra Gaussian noise to b.
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Lemma 7.18. Let ε ≤ n−ω(1), p ∈ Z≥2 and 0 < α ≤ 1
2

. Suppose we have a polyno-

mial time algorithm for LWEp,ψα and access to samples from Dr (Λ). Then there

is a polynomial time algorithm for CVP
(p)

Λ∗,αp/(
p

2r )
for any r >

p
2p ·ηε(Λ).

Proof. Let x ∈Rn be the input to CVP
(p)

Λ∗,αp/(
p

2r )
. Let B∗ := (B−1)T be the basis of

Λ
∗. We define a vector s ∈Zn

p by s := (B∗)−1κΛ∗(x) mod p. Note that s is exactly

the vector that we want to find (since B∗s ∈κΛ∗(x)+pΛ∗). Consider the following

probability distribution (that we can efficiently sample from by assumption):

Distribution D∗. Sample v ∼Dr (Λ) and e ∼ αp
2

N (0, 1
2π ). Return

(a,b) :=
(
B−1v mod p,

〈x , v〉
p

+e mod 1
)
∈Z

n
p × [0,1).

Intuitively, a is the coefficient vector modulo p of a random lattice point and b
is a sum of the correlation of that random lattice vector plus a random Gaussian

noise modulo 1. We claim that the pair (a,b) is indistinguishably close to the

LWE distribution for the target vector s:

Claim I. For some 0<β≤α one has ∆((a,b),As,ψβ
) ≤ n−ω(1) where (a,b) ∼D∗.

Proof of Claim I. First we discuss the distribution of a alone when (a,β) ∼ D∗.

Indeed, note that the probability for an individual outcome of a is

Pr[a] =
ρr (pΛ+B a)

ρr (Λ)

Lem 7.9=
(1±ε)r n det((pΛ)∗)

r n det(Λ∗)
= (1±ε) ·p−n

Here we use Lemma 7.9 and the fact that ηε(pΛ) = p ·ηε(Λ) < r by assumption.

Next, fix an outcome of a ∈ Zn
p and consider the conditional distribution of b.

The goal will be to show that this conditional distribution of b is (approximately)

of the form 〈s, a〉 +β · N (0, 1
2π ) mod 1. We abbreviating x ′ := 1

p (x −κΛ∗(x)) and

note that by assumption x ′ is short with length ‖x ′‖2 ≤ αp/(
p

2r )

p = αp
2r

. Then we

can write

b ≡1
〈x , v〉

p
+e ≡1 〈

x −κΛ∗(x)

p
, v〉+e +

1

p
〈κΛ∗(x), v〉

(B∗)T B=In≡1 〈x ′, v〉+e +
1

p
〈(B∗)−1κΛ∗(x)︸ ︷︷ ︸

≡p s

,B−1v︸ ︷︷ ︸
≡p a

〉

≡1 〈x ′, v〉+e +
1

p
〈s, a〉

Note that as we fixed a, the distribution of v isDr (pΛ+B a). Then by Lemma 7.12

we know that 〈x ′,Dr (pΛ+B a)〉+ αp
2

N (0, 1
2π ) mod 1 is (up to a statistical error of
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n−ω(1)) distributed like ψβ where β :=
√

(r‖x ′‖2)2 + ( αp
2

)2 ≤ α. Here we have to

verify that indeed3 1/

√
1

r 2 + (
p

2‖x ′‖2

α
)2 ≥ rp

2
> ηε(Λ). The claim follows.

Next, we would like to feed samples from (a,b) into our oracle for LWEp,ψα

and extract s. There is a small issue since (a,b) is approximately distributed as

As,ψβ
for some (unknown) parameter 0 < β ≤ α and our oracle comes with pa-

rameter α and not β. But there is a simple solution. We guess the value of β to

enough accuracy and add some Gaussian noise so that we indeed have samples

from As,ψα . Then our oracle can find s. We leave it as an exercise we can verify

which of the computed candidates for s is the correct one (which is necessary as

we had to try out all guesses for β).

Next, we show that an efficient algorithm for CVP
(p)

Λ,d indeed implies an effi-

cient algorithm for CVPΛ,d .

Lemma 7.19. Let p ∈ Z≥2 and let Λ ⊆ Rn be a lattice and let d < λ1(Λ)
2

. If there is

an efficient algorithm for CVP
(p)

Λ,d then there is an efficient algorithm for CVPΛ,d .

Proof. Let κ
(p)

Λ
(x) denote the point in κΛ(x)+pΛ that is returned by the CVP

(d)
Λ,d

oracle on input x . We initialize x0 := x and iterate

xi+1 :=
xi −κ

(p)

Λ
(xi )

p

Note that xi −κ
(p)

Λ
(xi ) ∈ pΛ and so xi+1 ∈Λ. Let yi := κΛ(xi ) be the closest vector

to xi . Note that the closest lattice vector to xi −κ
(p)

Λ
(xi ) must be yi −κ

(p)

Λ
(xi ) ∈ pΛ.

Then dividing by p gives that the closest lattice vector to xi+1 is

yi+1 =
yi −κ

(p)

Λ
(xi )

p
(∗)

Hence

‖xi+1 − yi+1‖2 =
∥∥∥

xi −κ
(p)

Λ
(xi )

p
−

yi −κ
(p)

Λ
(xi )

p

∥∥∥
2
=

1

p
‖xi − yi‖2

Then iterating gives ‖xi−yi‖2 ≤ d
p i (in particular the points xi remain close enough

to the lattice so that the CVPΛ,d oracle applies). For some polynomially bounded

3To be more precise, we can use Lemma 7.12 to first bound the statistical distance of the n-

dimensional distribution Dr (pΛ+B a)+ αp
2

1
‖x ′‖2

N (0, 1
2π In ) to an n-dimensional Gaussian. Then

applying the map 〈x ′, ·〉 mod 1 to both sides cannot increase the statistical distance.
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k, it will be that xk is so close to the lattice that we can apply Lemma 2.8 and deter-

mine yk in polynomial time. Then we can backtrack and compute yk , yk−1, . . . , y0.

To see this, note that if we know yi+1 and κ(p)(xi ) in (∗), then we can recover

yi .

7.7 A quantum algorithm to generate samples with a

CVP oracle

In this section, we will sketch the proof of Lemma 7.14 and explain why with an

oracle for CVPΛ∗,d one can construct an efficient quantum algorithm that gener-

ates a sample from the discrete GaussianDp
n/(

p
2d)(Λ) (assuming that d < λ1(Λ∗)

2
).

Note that this reduction does not even use an LWE oracle and we only describe it

for the sake of completeness.

7.7.1 A brief intro to quantum computing

We will give a brief introduction to quantum computing. We refer to the popular

textbook of Nielsen and Chuang [NC00] for details. For a complex number z ∈ C

we can write z = a+bi with a,b ∈Rwhere a is the real part and b is the imaginary
part. Its absolute value is |z| =

p
a2 +b2 and the complex conjugate is z̄ = a −bi .

A (normalized) n-bit quantum state is of the form
∑

x∈{0,1}n
αx · |x〉

where |x〉 denotes a vector of Euclidean length 1 in the 2n-dimensional vector

space C2n
, vectors |x〉 and |y〉 with x 6= y are orthogonal, one has αx ∈C for all x ∈

{0,1}n and ‖α‖2
2 =

∑
x∈{0,1}n |αx |2 = 1. Moreover, |x〉 is equal to the tensor product

|x1〉 ⊗ . . .⊗ |xn〉 where each |xi 〉 is a 2-dimensional vector. The vectors |x〉 (with

x ∈ {0,1}n) are also called computational basis states, the complex number αx is

called amplitude and the linear combination
∑

x∈{0,1}n αx · |x〉 of those states is

called a superposition.

Recall that for a matrix U ∈ C2n×2n
, the conjugate transpose is the matrix U∗

with entries (U∗)i j = Ū j i . In the physics literature one may also find the notation

U † instead of U∗. A matrix U ∈ C2n×2n
is unitary if U∗U = I where I is the iden-

tity in C2n
. A quantum algorithm is a sequence of unitary matrices that are itera-

tively applied to the current quantum state. More precisely for some initial n-bit

quantum state ψ=
∑

x∈{0,1}n αx · |x〉 and unitary matrices U1, . . . ,UT the quantum

algorithm computes the state

UT · · ·U2U1 ψ
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Each such unitary matrix Ut is also called a quantum gate. In principle, there

is no restriction to which unitary matrices may be used as quantum gates. But

an arbitrary unitary matrix could have description length of the order 2n , so for

efficiency reasons we need to ask that quantum gates only operate on few coor-

dinates and act as the identity elsewhere.

For example, the NOT gate for coordinate 1 is the unique unitary matrix X so

that X |x1, x2, . . . , xn〉 = |(1− x1), x2, . . . , xn〉 for all x = (x1, . . . , xn) ∈ {0,1}n . We will

say that a quantum algorithm is polynomial time if T is bounded by a polynomial

in the input length and each intermediate quantum gate has bounded descrip-

tion length (such as the NOT gate). Note that a unitary matrix U corresponds to

an invertible linear map that is length preserving and in particular a normalized

quantum state is always mapped to another normalized quantum state.

At the end of its computation, a quantum algorithm can perform a measure-
ment4. If the algorithm is in the quantum state

∑
x∈{0,1}n αx · |x〉 then the mea-

surement will produce a random variable that returns x ∈ {0,1}n with probability

|αx |2.

Note that any quantum computer could in principle be implemented on a

classical computer. But the intermediate quantum states would require descrip-

tion length 2n . In contrast a quantum computer5 would only require n quantum

bits and could perform the task efficiently. Not surprisingly, a quantum com-

puter can also perform computations of a “classical” Turing machine, though

stating that precisely takes some care. By replacing AND, OR, NOT gates with

corresponding matrix operations (that can be made unitary by adding extra bits)

one can obtain:

Theorem 7.20 (Quantum Simulation of Classical Circuit). Let f : {0,1}n → {0,1}m

be a function that can be computed with a classical circuit of size t . Then there is

a quantum algorithm with poly(n,m, t ) iterations that for all x ∈ {0,1}n maps the

state |x ,0m+s〉 to |x , f (x),0s〉 (here s is also bounded by a polynomial in n,m, t ).

We also need an operation that has the somewhat mystical name of “uncom-

puting”. Behind it is the simple observation that Theorem 7.20 produces a uni-

tary matrix U and its inverse U−1 is again unitary and corresponds again to a

quantum algorithm (with the same number of quantum gates, just in reverse or-

der).

Theorem 7.21 (Uncomputing). Let f : {0,1}n → {0,1}m be a function that can be

4Actually the quantum computing model allows to sample some quantum bits in the middle

of its run but this simplest of measurements will suffice for us.
5If it were to would exist..
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computed with a classical circuit of size t . Then there is a quantum algorithm

with poly(n,m, t ) iterations that for all x ∈ {0,1}n maps the state |x , f (x),0s〉 to

|x ,0m+s〉 (here s is also bounded by a polynomial in n,m, t ).

7.7.2 Lattices and Quantum Computing

The quantum states that we will construct for our lattice problem will be in the

form

ψ=
∑

x∈Λ
αx · |x〉 (7.1)

with αx ∈C. Note that in principle one could replace each number xi ∈Q by poly-

nomially many bits to go back to the bit model. But this would be a notational

nightmare and we will rather use the “lattice quantum state” notation. The ‖ ·‖2-

length of such a quantum state is ‖ψ‖2 =
√∑

x∈Λ |αx |2. Also it will be notationally

convinient to not require the states to be normalized. We will rather keep in mind

that any state of the form (7.1) corresponds to the normalized quantum state

ψ

‖ψ‖2
=

1
√∑

x∈{0,1}n |αx |2

∑

x∈Λ
αx · |x〉

We will use the following well known algorithm:

Theorem 7.22 (Quantum Fourier Transform). Let R ∈N and letΛ⊆Rn be a lattice.

Then there is a polynomial time quantum algorithm that maps a quantum state

ψ=
∑

s∈Zn
R

αs · |s〉

to

QFT(ψ) =
1

(
p

R)n

∑

t∈Zn
R

βt · |t〉 where βt =
∑

s∈Zn
R

αs ·exp
(
2πi

〈s, t〉
R

)

7.7.3 From CVP to sampling from the discrete Gaussian

We will need the following statement which says that we can compute a quantum

state that is close to the continuous Gaussian.

Lemma 7.23. There is a polynomial time quantum algorithm that takes as input

a lattice Λ := Λ(B ) and r > 22n ·Λn(Λ) and generates a quantum state ψ that is

within ‖ ·‖2 distance at most 2−Ω(n) to the state
∑

x∈Λ
ρp

2r (x) · |x〉
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We will skip the proof as it is very similar to Lemma 7.7 and refer to [Reg09b]

for details. As a sanity check, suppose we would perform a quantum measure-

ment on the state
∑

x∈Λρp
2r (x) · |x〉 produced by Lemma 7.23. This would pro-

duce a lattice vector x ∈Λ with probability proportional to

ρp
2r (x)2 = exp(−π‖x/(

p
2r )‖2

2)2 = exp(−π‖x/r‖2
2) = ρr (x). (7.2)

Hence we recover the statement from Lemma 7.7.

Recall that for a matrix B ∈Rn×n , P(B ) = {B y | y ∈ [0,1)n} denotes the funda-
mental parallelepiped of the lattice Λ(B ). Also recall that for any vector x = B y ,

we write x mod P(B ) =
∑n

i=1 bi (yi −⌊yi ⌋) ∈P(B ) as the translate by a lattice vec-

tor that lies in the parallelepiped P(B ).

Lemma 7.24. Let Λ⊆Rn be a full rank lattice with λ1(Λ) > 2
p

n where Λ :=Λ(B ).

Consider the quantum states

ψ1 =
∑

x∈Λ

R :‖x‖2<
p

n

ρ1(x) · |x mod P(B )〉 and ψ2 =
∑

x∈Λ

R ∩P(B )

ρ1(x −Λ) · |x〉

Then ‖ ψ1

‖ψ1‖2
− ψ2

‖ψ2‖2
‖2 ≤ 2−Ω(n).

b b b b b

b b b b b

b b b b b

b b b

b b b

points Λ

R ∩
p

nB n
2

0

p
nB n

2

0
b b b

b b b

b b

b b

b b

b

b b b

b b

b b

b

P(B )

points
(
Λ

R ∩
p

nB n
2

)
mod P(B )

Proof. First it will be useful to note that indeed

ψ2 =
∑

x∈Λ

R ∩P(B )

∑

y∈Λ
ρ1(x − y) · |x〉 =

∑

x∈Λ

R

ρ1(x) · |x mod P(B )〉 (7.3)

which uses that R ∈N.

Next, we argue that each ket |x mod P(B )〉 appears only once in the defini-

tion of ψ1.

Claim I. For x , y ∈ Λ

R with ‖x‖2,‖y‖2 <
p

n one has x mod P(B ) 6= y mod P(B ).
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Proof of Claim. Suppose for the sake of contradiction that x mod P(B ) = y mod P(B ).

Then x − y ∈Λ and so ‖x − y‖2 ≥λ1(Λ) > 2
p

n which is a contradiction.

Note that ρ1(x)2 = ρ1/
p

2(x) (see Eq (7.2)) which we can use to estimate

‖ψ1‖2 =
∑

x∈Λ

R :‖x‖2<
p

n

ρ1(x)2 = ρ1/
p

2

(
Λ

R
∩
p

n · int(B n
2 )

)
Cor 4.25

≥ (1−2−n) ·ρ1/
p

2

(
Λ

R

)

(7.4)

where we Cor 4.25 says that ρr (Λ \
p

nB n
2 ) ≤ 2−nρr (Λ) for any r ≤ 1. Then the

difference between the states is

‖ψ1 −ψ2‖2 ≤ ‖ψ1 −ψ2‖1

Claim I+(7.3)=
∑

x∈Λ

R :‖x‖2≥
p

n

ρ1(x)

Cor 4.25
≤ 2−n ·ρ1

(
Λ

R

)
Cor 4.23

≤ 2−n ·2n/2 ·ρ1/
p

2

(
Λ

R

)
(7.4)
≤ 2−Ω(n) · ‖ψ1‖2

Recall that Cor 4.23 states that for r ≥ 1 and any s > 0 one has ρr s(Λ) ≤ r nρs (Λ).

Lemma 7.25. For any lattice Λ and R ∈N, the quantum fourier transform maps

the state

ψ=
∑

x∈Λ∗
R ∩P(B∗)

ρ1(x −Λ
∗) · |x〉

to

QFT(ψ) = Rn/2 det(Λ)
∑

x∈P(RB )∩Λ
ρ1(RΛ−x) · |x〉

where B is a basis for Λ and B∗ = (B−1)T the corresponding basis for Λ∗.

We will apply Lemma 7.25 with R →∞, but as a sanity check one might want

to verify that for R = 1 we obtain that ψ = ρ1(Λ∗) · |0〉 is mapped to QFT(ψ) =
det(Λ) ·ρ1(Λ) · |0〉. The norm needs to be preserved, i.e. ρ1(Λ∗) = det(Λ) ·ρ1(Λ),

but this is indeed true by Cor 4.19.

Proof of Lemma 7.25. We will apply the quantum fourier transform in the “coeffi-

cient space” rather than the “lattice point space” (i.e. instead of x = B∗y we work

with y) and so changing the basis we can rewrite ψ to

ψ′ =
∑

s∈Zn
R

∑

r∈Zn
ρ1

(B∗s

R
−B∗r

)

︸ ︷︷ ︸
αs

·|s〉
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Then QFT(ψ′) = R−n/2 ∑
t∈Zn

R
βt · |t〉 where by Theorem 7.22 for t ∈Zn

R one has

βt =
∑

s∈Zn
R

αs︷ ︸︸ ︷
∑

r∈Zn
ρ1

(B∗s

R
−B∗r

)
·exp

(
2πi

〈s, t〉
R

)

cancellation=
∑

y∈Zn
ρ1

(B∗y

R

)
·exp

(
2πi

〈y , t〉
R

)

x=B∗y/R
=

∑

x∈Λ∗/R
ρ1(x) ·exp

(
2πi 〈(B∗)−1x , t〉︸ ︷︷ ︸

=〈x ,B t〉

)

=
∑

x∈Λ∗/R
ρ1(x) ·exp(2πi 〈x ,B t〉)

Cor 4.17,ρ̂1(x)=ρ1(x)
= det(RΛ) ·ρ1(RΛ−B t )

Going back the lattice space, QFT(ψ′) corresponds to the state

Rn/2 det(Λ)
∑

x∈P(RB )∩Λ
ρ1(RΛ−x) · |x〉

as claimed.

Finally we proof Lemma 7.14 which describes part II of the iterative step. We

may scale the lattice and the parameters so that d =
p

n. Then the claim simpli-

fies to:

Lemma 7.26 (Part II of iterative step — restated). There is an efficient quantum

algorithm that has the following behaviour:

• Input: Lattice Λ⊆Rn with λ1(Λ∗) > 2
p

n, oracle to CVP
Λ∗,

p
n

• Output: A sample to D1/2(Λ).

Proof. Let B be a basis of Λ and let B∗ be a basis for Λ∗. For two (not necessarily

normalized) quantum states we write ψ1 ≈ ψ2 if the Euclidean distance of the

corresponding normalized states is less than 2−Ω(n). Then the claim is satisfied

by the following quantum algorithm:

(1) Choose an integer R with R ≥ 23nλn(Λ∗).

(2) Use Lemma 7.23 to compute the quantum state

∑

x∈Λ∗
R

ρ1(x) · |x〉 ≈
∑

x∈Λ∗
R :‖x‖2<

p
n

ρ1(x) · |x〉
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(3) We use that the map x 7→ x mod P(B∗) is computable in polynomial time

and so by Theorem 7.20 we can add a new register to (2) and obtain the

state ∑

x∈Λ∗
R :‖x‖2<

p
n

ρ1(x) · |x , x mod P(B∗)〉

(4) Since the CVP
Λ∗,

p
n oracle gives a polynomial time map (x mod P(B∗)) →

x , we can use Theorem 7.21 uncompute the first register in (3) and obtain

the state

∑

x∈Λ∗
R :‖x‖2<

p
n

ρ1(x) · |x mod P(B∗)〉 Lem 7.24≈
∑

x∈Λ∗
R ∩P(B∗)

ρ1(x −∆
∗) · |x〉

(5) We apply the quantum fourier transform from Lemma 7.25 and obtain a

state proportional to

∑

x∈P(RB )∩Λ
ρ1(R∆−x) · |x〉 ≈

∑

x∈Λ:‖x‖2<
p

n

ρ1(x) · |x mod P(RB )〉

(6) Measure the state in (5) and with probability proportional toρ1(x)2 = ρ1/
p

2(x)

we draw the vector x − y ∈ P(RB ) where y ∈ RΛ. Then d(x − y ,RΛ) ≤
‖(x − y)− (−y)‖2 = ‖x‖2 ≤

p
n and λ1(RΛ) ≥ 23n , hence we can use Babai’s

algorithm (see Lemma 2.8) to compute x in polynomial time.

7.8 Reduction from GAPSVP to DGS

So far we managed to reduce the hardness of LWE to assumed hardness of sam-

pling from the discrete Gaussian polynomially above the smoothing threshold.

But we can actually continue the reduction to the better known problem of GAPSVP

that we have seen earlier in Chapter 6. For convinience we restate the prob-

lem (with an additional parameter d — but by a scaling argument this does not

change the problem).

GAPSVPγ

Input: Lattice Λ⊆Rn and a parameter d > 0.

Goal: Distinguish the cases

• Yes. One has λ1(Λ) ≤ d .

• No. One has λ1(Λ) > γ ·d
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Recall that d(t ,Λ) := min{‖x − t‖2 : x ∈ Λ} denotes the Euclidean distance of a

point t to the lattice. Our reduction will go via an intermediate problem which is

as follows

GAPCVP ′
γ

Input: Lattice Λ⊆Rn , a target t ∈Rn and a parameter d > 0.

Goal: Distinguish the cases

• Yes. One has d(t ,Λ) ≤ d
• No. One has d(t ,Λ) > γ ·d and λ1(Λ) > γ ·d

Note that the NO case of GAPCVP′
γ has an additional condition of λ1(Λ) > γ·d

which potentially might make it easier to distinguish the YES case and the NO

case. Still an oracle for GAPCVP ′
γ can be used to solve GAPSVPγ as was shown by

Micciancio and Regev [MR07b].

Lemma 7.27 ([MR07b]). For any γ≥ 1, there is a polynomial time reduction from

GAPSVPγ to GAPCVP ′
γ.

Proof. Let (Λ,d) be the input for GAPSVPγ. Our reduction returns the following

answer:

A :=
∨n

i=1
GAPCVP ′

γ

(
(b1, . . . ,bi−1,2bi ,bi+1, . . . ,bn),bi ,d

)
.

For convinience we abbreviate Λi :=Λ(b1, . . . ,bi−1,2bi ,bi+1, . . . ,bn). Note that Λi

is a strict sublattice of Λ with exactly half the density. Also note that it may be

the case that for some indices i , we call GAPCVP ′
γ(Λi ,bi ,d) while the instance

(Λi ,bi ,d) neither satisfies the YES condition nor the NO condition. In that case

the oracle may return either answer. Our reduction will still work. We prove two

directions.

Claim I. λ1(Λ) ≤ d =⇒ A equals YES.
Proof of Claim I. Let x ∈Λ\{0} be the shortest vector. Then one can write x = B y

with coefficient vector y ∈ Zn . We can now fix a coordinate i so that yi is odd

— this coordinate has to exist since otherwise x
2
∈ Λ would have been a shorter

vector. We claim that for this coordinate i , GAPCVP ′
γ(Λi ,bi ,d) is true. And in fact,

we know that x +bi ∈Λi and so d(bi ,Λi ) ≤ ‖(x +bi )−bi )‖2 ≤ d .

Claim II. λ1(Λ) > γd =⇒ A equals NO.
Proof of Claim II. We need to verify that for every index i ∈ [n], GAPCVP ′

γ(Λi ,bi ,d)

is in the NO case. First, we have λ1(Λi ) ≥ λ1(Λ) > γd . So it remains to verify that

d(bi ,Λi ) > γd . Suppose this is not true and d(bi ,Λi ) ≤ γd . Then ‖bi − x‖2 ≤ γd
for some x ∈ Λi . But (bi − x) ∈ Λ \ {0} (as bi ∉ Λi ) which is a contradiction to

λ1(Λ) > γd .
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Now we come to the reduction from DGS to GAPCVP ′. The good news is that

essentially we have already proven this reduction in Chapter 6. While at that time

we focused on the NP∩coNP aspect, the proof really shows the following: if for a

given lattice Λ we can sample from the dual lattice Λ
∗, then we can approximate

the function F : Rn →R≥0 defined as

F (x) :=
ρ1(x +Λ)

ρ1(Λ)
= E

w∼D1(Λ∗)

[
cos(2π〈w , x〉)

]

up to a small error and then use this function to distinguish whether a given point

t is very close to the lattice or rather far. It remains to verify that we can make the

argument work with our specific parameters.

Lemma 7.28. For anyγ≥ 1, there is a polynomial time reduction from GAPCVP′
100

p
nγ

to DGSpnγ/λ1(Λ∗).

Proof. Let (Λ, t ,d) be an input instance for GAPCVP ′
100

p
nγ

. We rescale the in-

stance so that d = 1
100

. Then we have to distinguish the cases

• YES. One has d(t ,Λ) ≤ 1
100

.

• NO. One has d(t ,Λ) >
p

nγ and λ1(Λ) >
p

nγ.

We will use the following decision algorithm for that distinction:

(1) Draw w1, . . . , wN ∼D1(Λ∗) using the DGS oracle where N is a large enough

polynomial (see Lemma 6.7).

(2) IF
∑N

i=1 wi w T
i 6¹ 3N · In THEN return YES

(3) Define the function

FW (x) :=
1

N

N∑

i=1

cos
(
2π〈x , wi 〉

)

(4) IF FW (t ) ≤ 2
n THEN return NO ELSE return YES

We will prove that this algorithm correctly decides whether we are in the YES

or NO case. First assume that we are in the NO case; we want to discuss what

the algorithm returns. Note that the property λ1(Λ) >
p

nγ is equivalent to 1 >p
nγ/λ1(Λ). Hence parameter r = 1 that we use in (1) is above the guaranteed

threshold where we know that our DGS oracle works (note that we apply DGS
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to the dual lattice and use that (Λ∗)∗ = Λ). Then the vectors w1, . . . , wN are in-

deed independent samples from D1(Λ∗). Then by Lemma 6.9 and Lemma 6.7

we know that for a suitable choice of N , with overwhelming probability the fol-

lowing events are both true:

(I)
∑N

i=1 wi w T
i ¹ 3N · In .

(II) |FW (x)−F (x)| ≤ 1
n for all x ∈Rn .

Since we are in the NO case, we know that d(t ,Λ) >
p

nγ and hence FW (t ) ≤ 2
n as

we have shown in Claim II of the proof of Theorem 6.2. So the algorithm correctly

returns NO.

Next, assume that the instance (Λ, t ,d = 1
100

) is in the YES case. Then we we

have no control over the vectors sampled in (1). But if the algorithm terminates

in (2) then then it correctly returns YES, so assume that the algorithm did not

terminate then and instead
∑N

i=1 wi w T
i ¹ 3N · In holds (still this does not mean

that (II) has to be satisfied). Then as d(t ,Λ) ≤ 1
100

we know from Claim I of the

proof of Theorem 6.2 that FW (t ) > 9
10

and so the algorithm correctly returns YES

in (4).

Combining Lemma 7.27 and Lemma 7.28 we obtain the following:

Theorem 7.29. For anyβ≥
p

n, there is a polynomial time reduction from GAPSVP100β

to DGSβ/λ1(Λ∗).

7.9 Exercises

Exercise 7.1.

Prove (without using Lemma 7.10) that for all ε ≥ 2−n , one has ηε(Λ) ≤ O(
p

n
λ1(Λ∗) ). You

may use the fact proven in Exercise 3.3 on page 69: For any lattice Λ⊆ Rn and any t > 0

one has |Λ∩ tλ1(Λ)B n
2 | ≤ (2t +1)n .

Exercise 7.2.

Let r, t ≥ 1. Consider a lattice Λ⊆Rn with λ1(Λ) ·λn(Λ∗) ≤ t (we know that always t ≤ 2n

but t can be a lot smaller). Prove that |Λ∩ rλ1(Λ)B n
2 | ≤ 1+nO(t 2r 2).

Hint. Use Lemma 7.10.

Comment. For a general lattice Λ one always has the bound |Λ∩O(1) ·λ1(Λ)B n
2 | ≤ 2O(n).

But for those lattices where the product λ1(Λ)·λn(Λ∗) is a lot smaller than the worst case,

this bound improves. In particular if λ1(Λ) ·λn (Λ∗) ≤ O(1), then |Λ∩O(1) ·λ1(Λ)B n
2 | ≤

nO(1).



Chapter 8

The Reverse Minkowski Theorem and

an Approximation to the Covering

Radius

In this chapter, we will be discussing a recent result by Regev and Stephens-Davidowitz [RS17].

Suppose we have a latticeΛ that does not contain any dense sublattice, say det(Λ′) ≥
1 for all sublattices Λ

′ ⊆ Λ. Then Λ still may contain non-zero vectors of length

Θ(1). For example this is the case for the standard lattice Zn . But remarkably,

one can prove that any such lattice contains very few short vectors. Formally the

statement is as follows:

Theorem 8.1 (Reverse Minkowski Theorem). Let Λ⊆Rn be a lattice that satisfies

det(Λ′) ≥ 1 for all sublattices Λ′ ⊆Λ. Then for t =C logn with C > 0 large enough

one has ρ1/t (Λ) ≤ 3
2

.

Note that the condition ρ1/t (Λ) ≤ 3
2

implies that |Λ∩ r B n
2 | ≤ nO(logn)·r 2

for all

r ≥ 1.

A consequence of the Reverse Minkowski Theorem is a surprisingly tight char-

acterization of the covering radius. First, note that for any full rank lattice Λ⊆Rn

we have a simple determinant-based lower bound of

µ(Λ) ≥
p

n

6
·det(Λ)1/n ,

which we have already proven in Lemma 1.43. For the proof we noted that a

ball of radius r :=
p

n
6

· det(Λ)1/n has a volume of Voln(r B n
2 ) < det(Λ) and so a

random translate of r B n
2 will in expectation intersect less than one lattice point.

But this determinant lower bound can be arbitrarily loose — for example for the

155
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2-dimensional lattice Λ=Λ(B ) with B =
(

M 0

0 1/M

)
where det(Λ) = 1 and µ(Λ) ≈

M
2

for M large. On the other hand, one can take a subspace W ⊆Rn and certainly

hasµ(Λ) ≥µ(ΠW (Λ)) since the projection of a covering is again a covering. Hence

one can consider the best determinant lower bound that can be obtained for any

projections:

µdet(Λ) := max
W ⊆Rn subspace

√
dim(W ) ·det(ΠW (Λ))1/dim(W )

Then one can prove that this approximates the covering radius astonishingly

well:

Theorem 8.2 (Covering radius approximation). For any lattice Λ⊆Rn one has

Θ(1) ·µdet(Λ)≤µ(Λ) ≤O(log3/2 n) ·µdet(Λ)

The result of Regev and Stephens-Davidowitz [RS17] is rather involved and

requires a substantial amount of tools. We will take the liberty of skipping some

proofs that take too much of a detour. We recommend Chapter 2 in the thesis of

Stephens-Davidowitz [Ste17] for the omitted details.

8.1 Sublattices and quotient lattices

For most of these notes, we have only studied full rank lattices. That will be dif-

ferent for this chapter, where we will need to talk about sublattices that naturally

do not have full rank. For a matrix B = (b1, . . . ,bk ) ∈ Rn×k with k linearly inde-

pendent columns, we also write Λ(B ) := {
∑k

i=1λi bi : λ1, . . . ,bk ∈ Z}. We define

rank(Λ(B )) = dim(span(Λ(B ))) = k. The definition of the determinant can be ex-

tended to det(Λ(B )) =
√

detk (B T B ) = Volk (P(B )). A sublattice Λ
′ ⊆Λ is called a

primitive sublattice of Λ if there is a subspace W ⊆ Rn so that Λ′ = Λ∩W . For

example Λ(e1, . . . ,ek) is a primitive sublattice of Zn while 2Zn is a non-primitive

sublattice. A subspace W ⊆Rn with span(Λ∩W ) =W is called a lattice subspace
(w.r.t. lattice Λ). So far we have only considered the dual lattice of a full rank

lattice. For a (not necessarily full rank) lattice Λ⊆Rn we extend the definition to

Λ
∗ = {x ∈ span(Λ) | 〈x , y〉 ∈Z ∀y ∈Λ}

Note that by construction span(Λ) = span(Λ∗). For any primitive sublattice Λ
′ ⊆

Λ with corresponding subspace W := span(Λ′), we define the quotient lattice as

Λ/Λ′ :=ΠW ⊥(Λ).
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We prove a few useful properties:

Lemma 8.3 (Properties of Lattice Subspaces). Let Λ⊆Rn be a lattice and let W ⊆
Rn be a lattice subspace. Then

(a) (ΠW (Λ))∗ =Λ
∗∩W .

(b) det(Λ) = det(Λ∩W ) ·det(ΠW ⊥(Λ)).

(c) det(Λ∗∩W ) = det(Λ∩W ⊥) ·det(Λ∗).

Proof. (a) Clear becauseΛ
∗∩W = {x ∈W : 〈x , y〉 ∈Z ∀y ∈Λ}= {x ∈W | 〈x , y〉 ∈

Z ∀y ∈ΠW (Λ)} =ΠW (Λ)∗.

(b) Follows from the fact that shearing does not change the volume of the fun-

damental parallelepiped.

(c) We have

det(Λ∗∩W )
(b)=

det(Λ∗)

det(ΠW ⊥(Λ∗))

det(Λ̃)·det(Λ̃∗)=1= det(Λ∗) ·det((ΠW ⊥(Λ∗))∗)
(a)= det(Λ∗) ·det(Λ∩W ⊥)

So far we have only considered the covering radius for full rank lattices. Again,

for an arbitrary lattice Λ⊆Rn we extend the definition to

µ(Λ)= max
x∈span(Λ)

min
y∈Λ

‖x − y‖2 = min
{
r ≥ 0 |Λ+ r B n

2 ⊇ span(Λ)
}

Recall that the standard Gaussian distribution γn is the distribution with density

function γn(x) = (2π)−n/2 · e−‖x‖2
2/2 for all x ∈ Rn . We denote the Voronoi cell of a
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lattice Λ⊆Rn as

V(Λ) =
{

x ∈Rn | ‖x‖2 ≤ ‖y −x‖2 ∀y ∈Λ
}
=

{
x ∈Rn | 〈y , x〉 ≤

‖y‖2
2

2
∀y ∈Λ

}

Note that now, Λ might not have full rank, in which case V(Λ) is unbounded in

directions orthogonal to span(Λ).

b
b

b
b

b

V(Λ)

∈Λ

0

For lattices Λ1,Λ2 that are orthogonal (i.e. 〈x , y〉 = 0 for all x ∈ Λ1, y ∈ Λ2) we

define the direct sum as Λ1 ⊕Λ2 = {x + y | x ∈ Λ1, y ∈ Λ2}. In fact, whenever we

write Λ1 ⊕Λ2 we have the implicit assumption that Λ1 and Λ2 are orthogonal.

Lemma 8.4. For lattices Λ1,Λ2 ⊆ Rn and s > 0 one has ρs (Λ1 ⊕Λ2) = ρs (Λ1) ·
ρs (Λ2).

Proof. We haveρs(Λ1⊕Λ2) =
∑

x∈Λ1,y∈Λ2
e−π‖(x+y )/s‖2

2 =
∑

x∈Λ1

∑
y∈Λ2

e−π‖x/s‖2
2 e−π‖y/s‖2

2 =
ρs (Λ1) ·ρs (Λ2) using the orthogonality of Λ1 and Λ2.

Lemma 8.5 (Properties of quotient lattices). Let Λ⊆Rn be a lattice and let Λ′ ⊆Λ

be a primitive sublattice. Then

(a) One has det(Λ) = det(Λ/Λ′) ·det(Λ′).

(b) One has (Λ/Λ′)∗ =Λ
∗∩ span(Λ′)⊥.

(c) For any s > 0, ρs (Λ)≤ ρs (Λ′) ·ρs (Λ/Λ′).

(d) One has µ(Λ)2 =µ(Λ/Λ′)2 +µ(Λ′)2.

(e) One has γn(V(Λ)) ≥ γn(V(Λ/Λ′)) ·γn(V(Λ′)).

Proof. We prove the items in order where we set W := span(Λ′):

(a) This is equivalent to Lemma 8.3.(b).

(b) We have Λ
∗∩W ⊥ =ΠW ⊥(Λ)∗ = (Λ/Λ′)∗ using Lemma 8.3.(a) and the defi-

nition of quotient lattice.
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(c) We claim that

ρs (Λ)
(∗)
≤ ρs (Λ′⊕ (Λ/Λ′))

Lem 8.4= ρs (Λ′) ·ρs (Λ/Λ′)

To see (∗), let v ∈Λ. Then the contributions of points in the the slice v +U
to the LHS of (∗) is ρs(v+Λ′) ≤ ρs (ΠW ⊥(v))·ρs (Λ′) which is the contribution

to the RHS. Here we use that discrete Gaussian weight is maximized for the

central slice, see Lemma 4.21.

(d) Consider any x ∈ span(Λ). Let y ∈ Λ so that the difference vector a :=
ΠW ⊥(y)−ΠW ⊥(x) has length ‖a‖2 ≤ µ(ΠW ⊥(Λ)). Then there is a vector b

so that x + a +b ∈ y +Λ
′ ⊆ Λ where ‖(x + a +b)− y‖2 ≤ µ(Λ′) and a ⊥ b.

Eventually ‖a +b‖2
2 = ‖a‖2

2 +‖b‖2
2 ≤µ(Λ′)2 +µ(Λ/Λ′)2.

W

b b b b

b b b b

b b b b b

b b b b b

x

0
W

W ⊥

b b b b

b b b b

b b b b b

b b b b b

ΠW (x)

ΠW ⊥(x) xy
ΠW ⊥(y)

a

b

(e) We skip the proof here; see [Ste17] for details.

It is a useful fact that the determinant has a submodular behavior. For lattices

this implies the following:

Lemma 8.6 (Submodularity of lattice determinants). Let Λ ⊆ Rn be a lattice and

letΛ1,Λ2 ⊆Λbe primitive sublattices. Then rank(Λ1)+rank(Λ2) = rank(Λ1∩Λ2)+
rank(Λ1 +Λ2) and moreover det(Λ1 ∩Λ2) ·det(Λ1 +Λ2) ≤ det(Λ1)det(Λ2).

Proof. We only show the notationally easier case of Λ1 ∩Λ2 = {0} (see [Ste17]

for the full argument). As both lattices are primitive, we also have span(Λ1)∩
span(Λ2) = {0}. Then the claim on the rank is clear. For the moreover part we use

that det(Λ1+Λ2) = det(Λ1)·det(Πspan(Λ1)⊥(Λ2)) ≤ det(Λ1)det(Λ2) since (dimension-

preserving) projection can only decrease the determinant.
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8.2 Stable lattices

We come to a crucial definition:

Definition 8.7. A lattice Λ ⊆ Rn is stable if det(Λ) = 1 and det(Λ′) ≥ 1 for all sub-

lattices Λ′ ⊆Λ.

Intuitively, a stable lattice is a lattice that does not contain a sublattice that is

denser than Λ itself. We say that Λ is a scaling of a stable lattice if there is some s >
0 so that s ·Λ is stable. It is not hard to see that one must have s = det(Λ)−1/rank(Λ).

Lemma 8.8. If Λ⊆Rn is a stable lattice, then also Λ
∗ is stable.

Proof. We have det(Λ∗) = 1
det(Λ)

= 1. Consider a lattice subspace W ⊆Rn .

det(Λ∗∩W )
Lem 8.3.(c)= det(Λ∩W ⊥)︸ ︷︷ ︸

≥1

·det(Λ∗)︸ ︷︷ ︸
=1

≥ 1

Direct sums of (orthogonal) stable lattices are also stable

Lemma 8.9. If Λ1,Λ2 are stable lattices, then Λ1 ⊕Λ2 is stable.

We skip the proof here.

Lemma 8.10. For any stable latticeΛ⊆Rn , there exists a basis B = (b1, . . . ,bk ), k =
rank(Λ) with Λ =Λ(B ) so that ‖bi‖2 ≤ 2k1.5 for all i = 1, . . . ,k. Moreover ‖B‖F ≤
2n2.5.

Proof. It suffices to consider the case whereΛhas full rank, i.e. k = n. By Lemma 8.8,

alsoΛ
∗ is stable. Thenλ1(Λ∗) ≥ 1. By Banaszczyk’s Transference Theorem (Cor 4.2)

this means λn(Λ) ≤ 2n. Then a KZ-reduced basis B has ‖bi‖2 ≤
p

n ·λi (Λ) ≤ 2n3/2

for all i (see Lemma 1.40).

Lemma 8.11. LetΛ⊆Rn be a stable lattice and letΛ′ ⊆Λ be a primitive sublattice

with det(Λ′) = 1. Then both Λ
′ and Λ/Λ′ are stable.

Proof. Let W := span(Λ′) be the lattice subspace corresponding to Λ
′. It is clear

thatΛ′ is stable. Now consider a sublattice ofΛ/Λ′ which we may write asΠW ⊥(Λ̃)

where Λ̃ ⊆ Λ is a primitive sublattice. In fact we may assume that Λ′ ⊆ Λ̃ since
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ΠW ⊥(Λ′) = {0} anyway. Then

det(ΠW ⊥(Λ̃))
Lem 8.3.(b)=

det(Λ̃)

det(Λ̃∩W︸ ︷︷ ︸
=Λ′

)
≥ 1

as det(Λ̃) ≥ 1 by stability of Λ and det(Λ′) = 1 by assumption.

8.3 The canonical filtration of a lattice

Fix any lattice Λ⊆Rn . Consider the 2-dimensional point set

Q :=
{(

rank(Λ′), ln(det(Λ′))
)
| sublattice Λ

′ ⊆Λ
}

which is called the canonical plot of Λ. Here we include the trivial sublattice {0}

which has det({0}) = 1. The lower envelope of conv(Q) is called the canonical
polygon of Λ. We will prove that each vertex in the canonical polygon belongs

to a unique sublattice. Suppose we label the vertices with 0, . . . ,k starting with

the vertex (0,0) and for the i th vertex, we write Λi as the corresponding lattice.

Then we will also prove that indeed {0} = Λ0 ⊂Λ1 ⊂ . . . ⊂Λk = Λ. This sequence

is called the canonical filtration of Λ. In particular, every vertex corresponds to a

densest sublattice Λ
′ subject to fixing the rank.

rank(Λ′)
b

b

b

b

b

b

ln(det(Λ′))

Λ0 = {0}

Λ1

Λ2

. . .

Λk =Λ

We begin by proving uniqueness:

Lemma 8.12. Each vertex of the canonical polygon corresponds to a unique sub-

lattice Λ
′ ⊆Λ.
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Proof. Suppose for the sake of contradiction that there are two different sublat-

tices Λ1,Λ2 ⊆Λ with r := rank(Λ1) = rank(Λ2) and D := det(Λ1) = det(Λ2). Then

by Lemma 8.6 we have 1
2

rank(Λ1 ∩Λ2)+ 1
2

rank(Λ1 +Λ2) = r and

1

2
ln(det(Λ1 ∩Λ2))+

1

2
ln(det(Λ1 +Λ2)) ≤ ln(D),

which means that the line segment connecting the points of Λ1∩Λ2 and Λ1+Λ2

goes below (or through) the point of Λ1,Λ2. This is a contradiction to the points

of Λ1 and Λ2 being extreme points of the canonical polygon.

b

b

b
Λ1 ∩Λ2

Λ1 +Λ2

Λ1,Λ2

Next we prove that the vertices correspond to a chain of sublattices:

Lemma 8.13. LetΛ⊆Rn be a lattice and letΛ0, . . . ,Λk be the unique lattices corre-

sponding to vertices of the canonical polygon (in order of increasing rank). Then

{0} =Λ0 ⊂Λ1 ⊂ . . . ⊂Λk =Λ.

Proof. Suppose for the sake of contradiction that Λi 6⊂ Λi+1 for some index i .

Consider the 3 distinct points in the canonical plot belonging toΛi∩Λi+1,Λi ,Λi+
Λi+1. These 3 points form a parallelogram together with a 4th point whose coor-

dinates we write as (r, ln(D)). Then by Lemma 8.6 we have r = rank(Λi+1) and

D ≤ det(Λi+1). That is a contradiction to Λi+1 being a vertex of the canonical

plot.

b

b

b
b

b

Λi ∩Λi+1

Λi +Λi+1

Λi

Λi+1

(r, ln(D))

Theorem 8.14 (Properties of the canonical filtration). Let Λ⊆Rn be a lattice and

let {0} =Λ0 ⊂Λ1 ⊂ . . . ⊂Λk =Λ be the canonical filtration. Then

(A) Setting ri := det(Λi /Λi−1)1/rank(Λi \Λi−1), one has r1 < r2 < . . . < rk .
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(B) For any sublattice Λ̃⊆Λ and any i ∈ {1, . . . ,k}, det(Λ̃) ≥ det(Λi )·r rank(Λ̃)−rank(Λi )
i .

(C) For any sublattice Λ̃⊆Λ and any i ∈ {1, . . . ,k}, det(Λ̃) ≥ det(Λi−1)·r rank(Λ̃)−rank(Λi−1)
i .

(D) Each quotient lattice Λi /Λi−1 is a scaling of a stable lattice.

Proof. For (A). Using that rank(Λi /Λi−1) = rank(Λi )−rank(Λi−1) and det(Λi /Λi−1) =
det(Λi )/det(Λi−1) we know that

ln(ri ) =
ln(det(Λi ))− ln(det(Λi−1))

rank(Λi )− rank(Λi−1)

That means the quantity ln(ri ) is exactly the slope of the canonical polygon be-

tween the vertices Λi−1 and Λi and that slope must be increasing by convexity!

For (B). By convexity, the point (rank(Λ̃), ln(det(Λ̃))) has to lie above the line with

slope ln(ri ) that goes through the point (rank(Λi ), ln(det(Λi ))). That means

ln(det(Λ̃)) ≥ ln(ri ) · (rank(Λ̃)− rank(Λi ))+ ln(det(Λi ))

⇔ det(Λ̃) ≥ r rank(Λ̃)−rank(Λi )
i ·det(Λi )

For (C). Same argument as (B) with the preceeding point (rank(Λi−1), ln(det(Λi−1))).

For (D). We fix an index i . The claim is invariant under scaling Λ, so we as-

sume that det(Λi /Λi−1) = 1 and so ri = 1. Now consider a primitive sublattice of

the quotient lattice Λi /Λi−1; such a sublattice can be written as Πspan(Λi−1)⊥(Λ′)
where Λ

′ ⊆Λi . Then

det
(
Πspan(Λi−1)⊥(Λ′)

) Lem 8.5.(a)=
det(Λ′)

det(Λi−1)

(C )
≥ r rank(Λ′)−rank(Λi−1)

i = 1

8.4 The Gaussian isotropic position

In this section, we discuss how to put an arbitrary symmetric convex body in a

suitable normal position. Recall from earlier that the standard Gaussian distri-
bution γn is the distribution with density function γn(x) = (2π)−n/2 · e−‖x‖2

2/2 for

all x ∈ Rn . It will be convenient to also define a distribution γn,s with density

function γn,s (x) = s−ne−π‖x/s‖2
2 for x ∈ Rn where s > 0. In this notation one has

γn = γn,
p

2π which seems slightly odd; but this way γn,1 has the same density

function as the discrete Gaussian ρ1 that we have frequently used while γn is the

“standard” distribution studied in convex geometry. For later reference, note that

γn,s (U ) =
∫

U /s
ρ1(x) d x = γn

(p2π

s
U

)
(8.1)
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for any measurable set U ⊆ Rn . By a slight abuse of notation we will consider a

matrix A ∈ Rn×n also as the linear map A : Rn → Rn with A(x) = Ax (we omit the

bold font when we refer to the map). Note that for any measurable set K and any

matrix A with |det(A)| = 1 one has Voln(A(K )) = |det(A)| ·Voln(K ) = Voln(K ). In

other words, determinant-one matrices correspond to volume preserving linear

transformations. On the other hand, the Gaussian density γn(x) is a lot higher if

‖x‖2 is small and γn(A(K )) is not invariant under determinant-one maps. Intu-

itively, a matrix A ∈ Rn×n with |det(A)| = 1 that maximizes γn(A(K )) is one that

makes K “well-rounded”.

0

K

0

A(K )

A powerful result that is closely related to the techniques mentioned in Sec-

tion 4.4.3 is the following:

Theorem 8.15. For any symmetric convex body K ⊆ Rn with Voln(K ) = 1 there is

a matrix A ∈ Rn×n with |det(A)| = 1 so that γn,1/t (A(K )) ≥ 2
3

where t = C log(n)

with C > 0 large enough.

Proof. For a convex body Q we define the width as w(Q) = maxθ∼Sn−1{| 〈θ, x − y〉 | :

x , y ∈ Q}, which is a standard quantity studied in convex geometry. It is known

that among convex bodies with a fixed volume, Euclidean balls minimize the

width, see e.g. [AAGM15]:

Fact I (Urysohn’s Inequality). For any convex body Q one has w(Q)≥ 2(
Voln (Q)
Voln (B2)

)1/n .
As ‖ · ‖K ◦ is the dual norm of ‖ · ‖K (i.e. ‖x‖K ◦ = max{〈x , y〉 : y ∈ K }), we have

w(K ) = 2Ex∼Sn−1 [‖x‖K ◦]. By going from Sn−1 to γn and using concentration it is

not hard to show that w(K ) = Θ( 1p
n

)ℓK ◦. Then Theorem 4.39 can be rephrased

as:

Fact II (ℓℓ◦-estimate). For any symmetric convex body Q ⊆ Rn there is an invert-
ible linear map A : Rn →Rn so that w(A(K )) ·w(A(K )◦) ≤O(logn).
We use Fact II to find a linear map A : Rn →Rn with w(A(K ))·w(A(K )◦) ≤O(logn).

By scaling we may assume that |det(A)| = 1 and so Voln(A(K )) = 1. Then Fact I

gives that

w(A(K )) ≥ 2 ·
(

Voln(A(K ))

Voln(B n
2 )

)1/n

≥
2

Voln(B n
2 )1/n

≥Θ(
p

n).
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This implies that w(A(K )◦) ≤O(
lognp

n
). Hence

E
x∼γn

[‖x‖A(K )] =Θ(
p

n) ·w(A(K )◦) ≤C log(n)

for some constant C > 0. Setting t := 3C log(n) one has that Prx∼γn [‖x‖A(K ) ≤ t ] ≥
2
3

by Markov’s Inequality. Then then implies that γn,1/t (A(K )) = γn(
p

2πt A(K )) ≥
γn(t A(K )) ≥ 2

3
using (8.1).

We would like to mention that it is a central open question in convex geom-

etry whether the O(logn) term from Fact II can be improved to O(
√

logn); the

Θ(
√

logn) factor would be tight even for the cube K = [−1
2

, 1
2

]n .

We say that a measurable set U ⊆Rn is in isotropic t-Gaussian position if

∫

U
ρt (x) ·x xT d x =αIn

for some α > 0. We will only consider this notion for symmetric convex bodies

K . Intuitively, being isotropic t-Gaussian means that the body K has all its mass

(if weighted by ρt (x)) equally spread in all directions. We will require a result of

Bobkov which says that a body in isotropic t-Gaussian position maximizes the

Gaussian measure:

Theorem 8.16 (Bobkov [Bob11]). Let K ⊆ Rn be a symmetric convex body and

let s > 0. If K is in isotropic s-Gaussian position then γs (K ) ≥ γs(A(K )) for all

A ∈Rn×n with |det(A)| = 1.

This is a highly non-trivial fact and it can be derived from the (B) conjec-
ture, posed by Banaszczyk and proven by Cordero-Erausquin, Fradelizi and Mau-

rey [CEFM04]. The original conjecture says that for any symmetric convex body

K ⊆Rn , the map F : R→R≥0 with F (t ) = γn(e t ·K ) is log-concave. In fact, [CEFM04]

prove the more general statement that also the function G : Rn →R≥0 with G(t ) :=
γn({(e t1 x1, . . . ,e tn xn) : x ∈ K }) is log-concave. This more general statement can be

used to derive Theorem 8.16. Bobkob’s Theorem then quickly implies that any

body in isotropic Gaussian position must have large Gaussian measure:

Theorem 8.17. Let t ≥ C log(n) with C > 0 large enough and let K be a symmet-

ric convex body with Voln(K ) ≥ 1 that is in isotropic 1
t -Gaussian position. Then

γn,1/t (K ) ≥ 2
3

.

Proof. We use Theorem 8.15 and fix a matrix A ∈ Rn×n with |det(A)| = 1 so that

γn,1/t (A(K )) ≥ 2
3

. Then as K is in isotropic 1
t -Gaussian position we know by Bobkov’s

Theorem (Theorem 8.16) that γn,1/t (K ) ≥ γn,1/t (A(K )) ≥ 2
3

.
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We can make use of a strong concentration of measure effect for Gaussians:

Lemma 8.18 (Boosting). Let K be a symmetric convex body with r B n
2 ⊆ K and

γn,1/t (K ) ≥ 1
2

. Then γn, 1
(1+λ)t

(K ) ≥ 1−exp(−Θ(r 2t 2λ2)) for any λ> 0.

Proof. As we may absorb the
p

2π into the unspecified constant, the claim is

equivalent to: For any symmetric convex K with r B n
2 ⊆ K and γn(tK ) ≥ 1

2
one has

γn((1+λ)tK ) ≥ 1−exp(−Θ(r 2t 2λ2)). A function f : Rn → R is called L-Lipschitz,

if | f (x)− f (y)| ≤ L · ‖x − y‖2 for all x , y ∈ Rn . We use the following standard fact

(see e.g. [AAGM15]):

Fact. Let f : Rn → R be an L-Lipschitz function and let λ≥ 0. Then Prx∼γn [ f (x) ≥
median( f )+λL] ≤ 2 exp(−λ2/4).
Here the median is the value with Prx∼γn [ f (x) ≥ median( f )] = 1

2
. The function

that we consider is f (x) := ‖x‖tK . As γn(tK ) ≥ 1
2

we know that median( f ) ≤ 1.

Moreover, as tr B n
2 ⊆ tK , the function f is 1

tr -Lipschitz. Then Prx∼γn [ f (x) ≥ 1+
λ] ≤ 2 exp(−(r t )2λ2/4) as claimed.

8.5 Gaussian measure of the Voronoi cell

In this section, we revisit the Voronoi cell V(Λ) = {x ∈Rn | 〈y , x〉 ≤ ‖y‖2
2

2
∀y ∈Λ} of

a lattice Λ.

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

∈Λ

V(Λ)

Ultimately it will be our goal to prove an upper bound on ρs (Λ) — we will now

justify that this is the same as proving a lower bound on γn,s (V(Λ)).

Lemma 8.19. For any lattice Λ⊆Rn and any s > 0 one has ρs (Λ) ·γn,s (V(Λ)) ≤ 1.

Proof. After scaling we may assume s = 1. We recall that the translates y +V(Λ)
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with y ∈Λ form a tiling of Rn . We use this to estimate:

1
tiling
=

∑

y∈Λ

∫

V (Λ)
e−π‖y+t‖2

2 d t

symmetry
=

∑

y∈Λ
e−π‖y‖2

2

∫

V (Λ)
e−π‖t‖2

2 ·
(1

2
e2π〈y ,t〉 +

1

2
e2π〈y ,−t〉

)

︸ ︷︷ ︸
≥1

d t

≥ ρ1(Λ) ·γn,1(V(Λ))

We will need to understand how local optima of γn,1/t (V(Λ(B ))) look like, sub-

ject to fixing the determinant of B . This is the part where we will skip details in

order to keep the exposition short. For those details, we recommend the 2022

Arxiv update of [RS17] which contains a streamlined proof. First, we verify this

for an arbitrary set U :

Lemma 8.20. Let f : R≥0 → R continuously differentiable and let U ⊂ Rn be a

bounded measurable set. Consider the functions h : Rn×n →R defined by

h(A) :=
1

|det(A)|

∫

A(U )
f (‖x‖2

2)d x

Then h is differentiable at A = In with

∇Ah(A)|A=In = 2

∫

U
f ′(‖x‖2

2)x xT d x

Proof. By a change of variables we obtain h(A) =
∫

U f (‖Ax‖2
2) d x . Then differen-

tiating gives

∇h(A) =
∫

U

(
∇A f (‖Ax‖2

2)
)
d x = 2

∫

U
f ′(‖Ax‖2

2)Ax xT d x

Then setting A := In gives the claim,

Hence we may conclude what the derivative is for the Voronoi cell:

Lemma 8.21. Let f : R≥0 → R continuously differentiable and let Λ ⊆ Rn be a

lattice. Consider the function g : Rn×n →R defined by

g (A) :=
1

|det(A)|

∫

V (A(Λ))
f (‖x‖2

2)d x

Then g is differentiable at A = In with

∇A g (A)|A=In = 2

∫

V (Λ)
f ′(‖x‖2

2)x xT d x
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Proof sketch. We have

g (A) =
1

|det(A)|

∫

V (A(Λ))
f (‖x‖2

2) d x

(∗)=
1

|det(A)|

∫

V (A(Λ))
f (d(x , A(Λ))2) d x

(∗∗)=
1

|det(A)|

∫

A(V (Λ))
f (d(x , A(Λ))2) d x

(∗∗∗)=
1

|det(A)|

∫

A(V (Λ))
f (‖x‖2

2)d x ±C0(Λ) · ‖A − In‖2
op

Here we use in (∗) that for any x ∈ V(A(Λ)), 0 is the closest lattice point and so

‖x‖2 = d(x ,V(A(Λ))). For (∗∗) note that the function x 7→ f (d(x , A(Λ))2) is peri-

odic over the lattice A(Λ) and hence the integral is the same for any fundamental

body (which is a body K so that K + A(Λ) is a tiling of Rn); we use that with the

fact that A(V(Λ)) is a fundamental body for the lattice A(Λ) (even if it might not

be the Voronoi cell). We skip the estimates that justify (∗∗∗) and rather refer to

[RS17]. Applying Lemma 8.20 then gives the claim.

8.6 Proof of the Reverse Minkowski Theorem

The crucial part of the proof is arguing that any stable lattice has a large Voronoi

cell. Here we could have picked any polynomially small probability by adjusting

the constant C .

Lemma 8.22. Let Λ⊆Rn be a stable lattice. Then γn,1/t (V(Λ)) ≥ exp(− rank(Λ)
4n2 ) ≥ 2

3

for t :=C log(n) where C > 0 is a large enough constant.

Proof. It suffices to prove the following statement where C > 0 is a large enough

constant:

Claim. For all 1 ≤ n ≤ N and any full rank stable latticeΛ⊆Rn one hasγn,1/t (2V(Λ)) ≥
exp(− n

4N2 ) where t =C ln(N ).
The proof works by induction over n. The induction hypothesis is chosen

so that we gain some slack as the rank of the considered lattices increases. The

claim is clear for n = 1 where 2tV(Λ) is a symmetric interval of length Θ(logn),

hence let n ≥ 2. We consider the function F (B ) := γn,1/t (V(Λ(B ))). We define two

domains

X := {B ∈Rn×n | det(B ) = 1}

Xstable := {B ∈Rn×n |Λ(B ) is stable and ‖B‖F ≤ 3n2.5}
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Here, X is a (n2 − 1)-dimensional unbounded manifold while the set Xstable is

closed and bounded, hence it is compact. The function F is continuous and

hence there is a minimizer B ∈ Xstable. We set Λ := Λ(B ). By Lemma 8.10, we

may assume that ‖B‖F ≤ 2n2.5 (otherwise replace B with such a basis). Then B is

either in the interior of Xstable or if it is on the boundary then there is a sublattice

Λ
′ ⊆Λ(B ) with det(Λ′) = 1. We try a schematic picture:

X

Xstable B in case I
B in case II

Hence we may distinguish two cases:

• Case I. There is a sublattice {0}⊂Λ
′ ⊂Λwith det(Λ′) = 1. Fix that sublattice

Λ
′ with det(Λ′) = 1. Then by Lemma 8.11, both Λ

′ as well as the quotient

lattice Λ/Λ′ are stable. By induction we have

γn,1/t (2V(Λ))
Lem 8.5.(e)

≥ γn,1/t (2V(Λ′)) ·γn,1/t (2V(Λ/Λ′))

induction
≥ exp

(
−

rank(Λ′)

4N 2

)
·exp

(
−

rank(Λ/Λ′)

4N 2

)
= exp

(
−

n

4N 2

)

using that rank(Λ′)+ rank(Λ′/Λ)= n.

• Case II. For all sublattices {0}⊂Λ
′ ⊂Λone has det(Λ′) > 1. Then the matrix

B does not lies on the boundary of Xstable. In particular, B is also a local
minimum of the extended function F : X → R. Now consider the function

G : Rn×n →R with

G(A) :=
1

|det(A)|
F (AB ) =

1

|det(A)|
γn,1/t (V(A(Λ))).

Then the restriction G|X has a local minimum at A = In . Since X is a man-

ifold defined by the single equation det(A) = 1 and the gradient of A 7→
det(A) at the identity is (∇A det(A))|A=In = In , we may conclude that (∇AG(A))|A=In =
βIn for some scalar β ∈R.

X

A = In

In

·
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Next, we want to rewrite the gradient of G using Lemma 8.21. Recall that

ρ1/t (x) = e−πt2‖x‖2
2 and ρ1/t (Rn) = t−n . So the right choice will be to set

f (y) := t n ·e−πt2 y so that f (‖x‖2
2) = ρ1/t (x)

ρ1/t (Rn)
and consequently we have

G(A) =
1

|det(A)|
γn,1/t (V(A(Λ))) =

1

|det(A)|

∫

V (A(Λ))
f (‖x‖2

2)d x

We verify that f ′(y) =−πt n+2e−πt2 y and so f ′(‖x‖2
2) =−πt 2 · ρ1/t (x)

ρ1/t (Rn )
. Then

βIn = (∇AG(A))|A=In

Lem 8.21= 2

∫

V (Λ)
f ′(‖x‖2

2)x xT d x =−
2πt 2

ρ1/t (Rn)

∫

V (Λ)
ρ1/t (x)·x xT d x

Hence V(Λ) is in isotropic 1
t -Gaussian position. Moreover Voln(V(Λ)) =

det(Λ) = 1. Then by Theorem 8.17 one has γ1/t (V(Λ)) ≥ 2
3

. Since Λ is stable,

the shortest vector must have length λ1(Λ) ≥ 1 and consequently 1
2

B n
2 ⊆

V(Λ). Then applying the boosting from Lemma 8.18 with r = 1
2

gives that

γn,1/t (2V(Λ)) ≥ exp(− 1
4N2 ).

We restate and prove the first main theorem of this chapter:

Theorem (Reverse Minkowski Theorem (Theorem 8.1)). Let Λ ⊆ Rn be a lattice

that satisfies det(Λ′) ≥ 1 for all sublattices Λ′ ⊆Λ. Then for t =C logn with C > 0

large enough one has ρ1/t (Λ) ≤ 3
2

.

Proof. First consider a stable lattice Λ⊆Rn . Then

ρ1/t (Λ) ·exp
(
−

rank(Λ)

4n2

)
Lem 8.22

≤ ρ1/t (Λ) ·γn,1/t (V(Λ))
Lem 8.19

≤ 1.

and hence ρ1/t (Λ) ≤ exp( rank(Λ)
4n2 ).

Now let Λ be an arbitrary lattice Λ that satisfies the assumption. Consider the

canonical filtration {0}=Λ0 ⊂Λ1 ⊂ . . . ⊂Λk =Λ and abbreviate ri := det(Λi /Λi−1)1/rank(Λi /Λi−1).

Note that r1 < r2 < . . . < rk by Theorem 8.14 and r1 = det(Λ1/Λ0) = det(Λ1) ≥ 1.

Hence ri ≥ 1 for all i = 1, . . . ,k. Also we know by Theorem 8.14 that the scaled
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quotient lattice 1
ri
·Λi /Λi−1 is stable. Then

ρ1/t (Λ)
Lem 8.5.(c)

≤
k∏

i=1

ρ1/t (Λi /Λi−1)

ri≥1
≤

k∏

i=1

ρ1/t

( 1

ri
Λi /Λi−1

︸ ︷︷ ︸
stable lattice

)

≤
k∏

i=1

exp
(rank(Λi /Λi−1)

4n2

)
= exp

( 1

4n

)
≤

3

2

8.7 The covering radius

In this section, we will prove that the covering radius µ(Λ) has a surprisingly tight

characterization in terms of density of sublattices. We restate an earlier defini-

tion and give two equivalent formulations:

Lemma 8.23. For any lattice Λ⊆Rn one has

µdet(Λ) := max
W ⊆Rn subspace

√
dim(W ) ·det(ΠW (Λ))1/dim(W ) (8.2)

= max
Λ′⊆Λ primitive

√
rank(Λ/Λ′) ·det(Λ/Λ′)1/rank(Λ/Λ′) (8.3)

= max
Λ′⊆Λ∗

√
rank(Λ′) ·det(Λ′)−1/rank(Λ′) (8.4)

Proof. The equivalence of (8.2) and (8.3) follows via W = span(Λ′)⊥. The equiv-

alence of (8.2) and (8.4) follows from considering ΠW (Λ)∗ = Λ
∗∩W =: Λ′ (see

Lemma 8.3).

Note that ΠW (Λ) is a lattice obtained by projecting into a subspace W and

ΠW (Λ) might be arbitrarily dense. Butµdet(Λ) is searching for the least dense pro-

jected sublattice; equivalently it searches for the densest sublattice of the dual,

see (8.4). It might be worth noting that for the lattice Λ = Zn one has λi (Λ) = 1

for all i = 1, . . . ,n while µ(Zn) =
p

n
2

. Hence the lower bound of µ(Λ) ≥ λn (Λ)
2

from Lemma 1.44 is rather poor in this case. On the other hand, we have indeed

µdet(Z
n) =

p
n by choosing W =Rn .

First, we prove two auxiliary results: Recall that ηε(Λ) is the smoothing radius,

which is the number s so that ρ1/s (Λ∗) = 1+ε.
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Lemma 8.24. For any lattice Λ⊆Rn one has µ(Λ) ≤
p

n ·η1/2(Λ).

Proof. We assume n ≥ 2. The claim is invariant under scaling, hence let us as-

sume that η1/2(Λ) = 1 which means that ρ1(Λ∗ \ {0}) ≤ 1
2

. Suppose for the sake

of contradiction that µ(Λ) >
p

n and so for some shift u ∈ Rn one has (u +Λ)∩p
nB n

2 =;. Then

1

3
ρ1(Λ) =

1−1/2

1+1/2
·ρ1(Λ)

Cor 4.28
≤ ρ1(u+Λ)

(u+Λ)∩
p

nBn
2 =;= ρ1((u+Λ)\

p
nB n

2 )
Lem 4.24

≤ 2−nρ1(Λ)

This is a contradiction for n ≥ 2.

Lemma 8.25. If Λ⊆Rn is the scaling of a stable lattice, then µ(Λ) ≤O(
p

n log(n)) ·
det(Λ)1/n .

Proof. By scaling it suffices to show that for any stable lattice Λ one has µ(Λ) ≤
O(

p
n log(n)). Let t :=C log(n). By the Reverse Minkowski Theorem (Theorem 8.1)

we haveρ1/t (Λ∗\{0}) ≤ 1
2

and so η1/2(Λ)≤ t . Thenµ(Λ)≤
p

n·η1/2(Λ)≤O(
p

n log(n))

by Lemma 8.24.

Recall that the AMGM inequality says that the arithmetic mean is at least the

geometric mean. Mathematically, for any a1, . . . , ak > 0 and d1, . . . ,dk > 0 one has

∑k
i=1

di ai
∑k

i=1 di
≥

( k∏

i=1

adi
i

)1/
∑k

i=1
di

One can prove that the reverse inequality is true up to some logarithmic term. To

be precise, we will require a slight variant which is as follows:

Lemma 8.26 (Reverse AMGM). Let 0 < a1 < . . . < ak and d1, . . . ,dk ∈N and define

m j :=
∑k

i= j di . Then

k∑

i=1

di ai ≤O(log(m1)) · max
j=1,...,k

{
m j

∏

i≥ j
(adi

i )1/m j
}

Proof. We may group indices i so that the ai ’s are within a factor of 2 together

and drop any indices i with ai ≤ ak
2m1

without decreasing the LHS by more than a

constant factor. After that change we may assume k ≤ O(logn). We fix an index

i∗ ∈ {1, . . . ,k} so that di∗ai∗ ≥ 1
k

∑k
i=1 di ai . Then

1

k

k∑

i=1

di ai
choice of i∗

≤ di∗ai∗ ≤ mi∗ai∗
ai∗≤ai ∀i≥i∗

≤ mi∗ ·
( ∏

i≥i∗
adi

i

)1/mi∗
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Now we are ready for the 2nd main result which again we restate:

Theorem (Covering radius approximation – Theorem 8.2). For any lattice Λ⊆Rn

one has

Θ(1) ·µdet(Λ)≤µ(Λ) ≤O(log3/2 n) ·µdet(Λ)

Proof. First we prove the lower bound. Let W be the subspace with k := dim(W )

attaining the minimum. Then

µ(Λ)
(∗)
≥ µ(ΠW (Λ))

Lem 1.43
≥

p
k

6
·det(ΠW (Λ))1/k

where (∗) follows from the fact that the projection preserves a covering, i.e. if

Λ+ r B n
2 = Rn then certainly also ΠW (Λ)+ rΠW (B n

2 ) = W . We have also used the

determinant-based lower bound from Lemma 1.43.

Now we come to the upper bound. Let {0} = Λ0 ⊂ Λ1 ⊂ . . . ⊂ Λk = Λ be the

canonical filtration, following Theorem 8.14. Let di = rank(Λi /Λi−1). In wise

foresight, we define ri := det(Λi /Λi−1)1/di and recall that r1 < r2 < . . . < rk . Note

that each quotient lattice Λi /Λi−1 is the scaling of a di -dimensional stable lattice

and so by Lemma 8.25 we have

µ(Λi /Λi−1) ≤O(
√

di log(di )) · ri

Then

µ(Λ)2 Lem 8.5.(d)
≤

k∑

i=1

O(di log2 di ) · r 2
i

≤ O(log2 n) ·
k∑

i=1

di · r 2
i

Reverse AMGM
≤ O(log3 n) · max

i=1,...,k

{( ∑

j≥i
di

)( ∏

j≥i
(r 2

j )d j
)1/

∑
j≥i d j

}

= O(log3 n) · max
i=1,...,k

{
rank(Λ/Λi−1) ·

(
det(Λ/Λi−1)1/rank(Λ/Λi−1)

)2

︸ ︷︷ ︸
≤µdet(Λ)2

}

≤ O(log3 n) ·µdet(Λ)2

Here we use rank(Λ/Λi−1) =
∑

j≥i d j and
∏

j≥i det(Λ j /Λ j−1) = det(Λ/Λi−1). Then

taking the square root gives the claim.

The proof hides a bit the subspace that certifies an upper bound on µ(Λ).

Again, consider the canonical filtration {0} = Λ0 ⊂ Λ1 ⊂ . . . ⊂ Λk = Λ of an arbi-

trary lattice Λ, say with n := rank(Λ). We have no control over the number of
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lattices in this filtration other than k ∈ {1, . . . ,n}. We may form groups of all quo-

tient lattices Λi /Λi−1 where ri is within a constant factor. This way we can select

indices ℓ(1) < ℓ(2) < . . . < ℓ(K ) that give us a “coarser” filtration {0} =Λℓ(1) ⊂ . . . ⊂
Λℓ(K ) =Λ so that Di := rank(Λℓ(i )/Λℓ(i−1)) and Ri := rank(Λℓ(i )/Λℓ(i−1))

1/Di satis-

fies not only R1 < R2 < . . . < RK but also Ri ≤ 1
2

Ri+1. Now we can pick an index i∗

that maximizes Di R2
i . Then

µ(Λ) ≤ Θ(log3/2 n) ·
√

Di∗ ·Ri∗

≤ Θ(log3/2 n) ·
√

rank(Λ/Λℓ(i∗−1)) ·det(Λ/Λℓ(i∗−1))
1/rank(Λ/Λℓ(i∗−1))

= Θ(log3/2 n) ·
√

dim(W ) ·det(ΠW (Λ))1/dim(W )

Here W := span(Λℓ(i∗−1))
⊥ with dim(W ) = rank(Λ/Λℓ(i∗−1)) = n − rank(Λℓ(i∗−1)).

8.7.1 The Kannan-Lovasz Conjecture

Dadush [Dad12] conjectured that the covering radius of any lattice with respect

to any convex body is approximated well by a volume/determinant ratio and at-

tributes this to Kannan and Lovász [KL88].

Conjecture 1 ([KL88]). Let Λ⊆Rn be a full rank lattice and let K ⊆Rn be a convex
body with int(K )∩Λ=;. Then there is a subspace W ⊆Rn so that for k := dim(W )

one has
Volk (ΠW (K ))

det(ΠW (Λ))
≤ (O(logn))k

We would like to point out that Theorem 8.2 implies the Kannan-Lovász Con-

jecture (Conjecture 1) for ellipsoids (with a slightly worse bound).

Corollary 8.27 (Kannan-Lovász Conjecture for Ellipsoids). Let Λ ⊆ Rn be a full

rank lattice and let K = u+E ⊆Rn be a shifted ellipsoid with int(K )∩Λ=;. Then

there is a subspace W ⊆Rn so that for k := dim(W ) one has

Volk (ΠW (K ))

det(ΠW (Λ))
≤

(
O(log3/2 n)

)k

Proof. The claim is invariant under applying a linear transformation, hence we

may assume that K = u +B n
2 . Then

1
(u+Bn

2 )∩Λ=;
≤ µ(Λ)

Thm 8.2
≤ O(log3/2 n) ·µdet(Λ) =Θ(log3/2 n) ·

p
k det(ΠW (Λ))1/k
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where we let W ⊆ Rn be the subspace attaining µdet(Λ) with k := dim(W ). Note

that Volk (ΠW (K )) = Volk(B k
2 ) ≤ ( 6p

k
)k . Then

Volk (ΠW (K ))

det(ΠW (Λ))
≤

(
Θ(log3/2 n) ·

p
k
)k ·

( 6
p

k

)k =Θ(log3/2 n)k

as claimed.

Remark 1. After conclusion of this course Conj 1was proven with a slightly weaker

term of
(
O(log3 n)

)k
by Reis and the author of this text, see [RR23].
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