Problem Set 3

CSE 599S - Lattices

Winter 2023

Exercise 1.5 (10pts)

Let $\Lambda \subseteq \mathbb{R}^n$ be a full rank lattice. Show that $\lambda_1(\Lambda) \cdot \lambda_n(\Lambda^*) \geq 1$, where Λ^* is the dual lattice.

Exercise 1.6 (10pts)

Prove that for any lattice $\Lambda \subseteq \mathbb{R}^n$, one has $\lambda_1(\Lambda) \cdot \lambda_1(\Lambda^*) \leq n$.

Remark 1: You will need a fact that we will see in the Monday, Jan 23 lecture.

Remark 2: A stronger theorem of Banaszczyk that we will see in Chapter 4 shows that even $\lambda_1(\Lambda) \cdot \lambda_n(\Lambda^*) \leq n$. This has an important consequence. Consider the following computational problem: Given a lattice Λ and a parameter K, distinguish the cases $\lambda_1(\Lambda) \leq L$ and $\lambda_1(\Lambda) > n \cdot L$. The consequence of this exercise is that this problem is in **NP** \cap **coNP** in the sense that one can give an efficiently checkable proof for $\lambda_1(\Lambda) \leq L$ (simply give me a short vector) and one can also certify is $\lambda_1(\Lambda) > n \cdot L$ (give me the short dual basis). The remarkable fact is that this gap problem is not known to be in **P**.

Exercise 1.12 (10pts)

Let $\Lambda \subseteq \mathbb{R}^n$ be a full rank lattice and let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be an LLL-reduced basis for Λ . Prove that for all $i \in \{1, ..., n\}$ one has $\|\mathbf{b}_i\|_2 \le 2^{(n+1)/2} \lambda_i(\Lambda)$.

Hint. You may use following observation: Consider an LLL-reduced $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ and for some index $i \in \{1, \dots, n\}$, define the subspace $U := \operatorname{span}\{\mathbf{b}_1, \dots, \mathbf{b}_{i-1}\}$ and let $\tilde{\mathbf{b}}_j := \Pi_{U^{\perp}}(\mathbf{b}_j)$ where $\Pi_{U^{\perp}}$ denotes the projection into the subspace U^{\perp} . Then $\tilde{\mathbf{b}}_i, \dots, \tilde{\mathbf{b}}_n$ is an LLL-reduced basis for the lattice $\tilde{\Lambda} := \{\sum_{j=i}^n y_j \tilde{\mathbf{b}}_j : y_j \in \mathbb{Z}\}$.