Problem Set 4

CSE 599S - Lattices

Winter 2023

Exercise 1.9 (10pts)

Let $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$ with $m \le n$ where A has full row rank. Show that in polynomial time one can compute a vector $x \in \mathbb{Z}^n$ with Ax = b (or decide that no such vector exists). **Remark:** Use the HNF.

Exercise 1.11 (10pts)

We want to consider a relaxed version of a KZ-reduced basis. We say that a basis $\boldsymbol{B} = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n) \in \mathbb{R}^{n \times n}$ for a lattice Λ is α -*KZ*-reduced for $\alpha \geq 1$ if \boldsymbol{B} is coefficient reduced and $\|\boldsymbol{b}_i^*\|_2 \leq \alpha \cdot \lambda_1(\pi_{U_i}(\Lambda))$ for all $i = 1, \dots, n$. Here π_{U_i} is again the projection into $U_i := \text{span}\{\boldsymbol{b}_1, \dots, \boldsymbol{b}_{i-1}\}^{\perp}$. Show that the orthogonality defect of such a basis is $\gamma(\boldsymbol{B}) \leq (\alpha n)^n$.