Problem Set 5

CSE 599S - Lattices

Winter 2023

Exercise 2.1 (20pts)

Let $\Lambda \subseteq \mathbb{R}^{n}$ be a full-rank lattice with LLL-reduced basis $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ and Gram Schmidt orthogonalization $\boldsymbol{b}_{1}^{*}, \ldots, \boldsymbol{b}_{n}^{*}$. We abbreviate $\mu_{i, j}=\frac{\left\langle\boldsymbol{b}_{j}, \boldsymbol{b}_{i}^{*}\right\rangle}{\left\|\boldsymbol{b}_{i}^{*}\right\|_{2}^{2}}$. First, we fix an arbitrary $\boldsymbol{x}=\boldsymbol{B} \boldsymbol{y}$ with $\boldsymbol{y} \in \mathbb{R}^{n}$.
(i) Prove that $\|\boldsymbol{x}\|_{2}^{2}=\sum_{k=1}^{n}\left\|\boldsymbol{b}_{k}^{*}\right\|_{2}^{2} \cdot\left(y_{k}+\sum_{j>k} \mu_{k, j} y_{j}\right)^{2}$
(ii) Prove that for all $k \in\{1, \ldots, n\}$ one has $\|\boldsymbol{x}\|_{2}^{2} \geq 2^{-k}\left\|\boldsymbol{b}_{k}\right\|_{2}^{2} \cdot \max \left\{\left|y_{k}\right|-\frac{1}{2} \sum_{j>k}\left|y_{j}\right|, 0\right\}^{2}$.

Now fix a $\boldsymbol{x} \in \Lambda \backslash\{\boldsymbol{0}\}$ with $\|\boldsymbol{x}\|_{2}=\lambda_{1}(\Lambda)$ and let $\boldsymbol{y} \in \mathbb{Z}^{n}$ be so that $\boldsymbol{x}=\boldsymbol{B} \boldsymbol{y}$.
(iii) Prove that for all $k \in\{1, \ldots, n\}$ one has $\left|y_{k}\right| \leq \max \left\{2^{(k+2) / 2}, \Sigma_{j>k}\left|y_{j}\right|\right\}$.
(iv) Prove that for all $k \in\{1, \ldots, n\}$ one has $\left|y_{k}\right| \leq 2^{3 n-k}$.

Remark. This exercise proves that all shortest vectors in a lattice $\Lambda \subseteq \mathbb{R}^{n}$ are contained in the set $S=\left\{\boldsymbol{B} \boldsymbol{y} \mid \boldsymbol{y} \in \mathbb{Z}^{n}\right.$ and $\left.\|\boldsymbol{y}\|_{\infty} \leq 2^{3 n}\right\}$ if \boldsymbol{B} is an LLL-reduced basis.

