
A bicriteria PTAS for Real-time Scheduling
with fixed priorities

Thomas Rothvoß
University of Paderborn

8.01.08

This is joint work with Fritz Eisenbrand

Content of the talk

1. Preliminaries

2. Rounding the instance

3. The algorithm for “large” tasks

4. Dealing with “small” tasks

5. Open problems

1

Definition

Problem: Given periodic Tasks T1, ..., Tn with implicit deadlines such that each Ti

has running time ci and period pi.
Task Ti generates a job of running time ci each pi time units, that has to be
completed before its period ends.

Goal: Distribute tasks among as few processors as possible using preemptive schedul-
ing.

time0 ci pi pi + ci 2pi

Ti

2

Dynamic priorities

Theorem. Dynamic priorities & preemptive Scheduling: Earliest-Deadline First is
optimal

Def.: ci
pi

= utilization of Ti

Theorem. [Liu, Layland ’73] If dynamic priorities are allowed: Tasks are feasible
on a single processor ⇔

∑n
i=1

ci
pi
≤ 1

⇒ Bin Packing with item sizes ci
pi

and bin size 1.

3

Fixed priorities

Theorem. [Liu, Layland ’73] Optimal priorities: 1
pi

for Ti (Rate-monotonic Sched-
ule)

Example

time0 1

c1 = 1, p1 = 2

c2 = 2, p2 = 5

532 10

...

...

4

4

Fixed priorities

Theorem. [Liu, Layland ’73] Optimal priorities: 1
pi

for Ti (Rate-monotonic Sched-
ule)

Example

time0 1

c1 = 1, p1 = 2

c2 = 2, p2 = 5

532 10

...

...

4

5

Fixed priorities

Theorem. [Liu, Layland ’73] Optimal priorities: 1
pi

for Ti (Rate-monotonic Sched-
ule)

Example

time0 1

c1 = 1, p1 = 2

c2 = 2, p2 = 5 Job 1 Job 2

532 10

...

...

4

6

Fixed priorities

Theorem. [Liu, Layland ’73] Optimal priorities: 1
pi

for Ti (Rate-monotonic Sched-
ule)

Example

time0 1

c1 = 1, p1 = 2

c2 = 2, p2 = 5 Job 1 Job 2

532 10

...

...

Utilization
1
2

+
2
5

=
9
10

4

idle time

7

Feasibility

Lemma. [Liu, Layland ’73]
∑n

i=1
ci
pi
≤ ln(2) ≈ 0.69 ⇒ tasks feasible on a single

processor

Def.: ri = be Response Time of Ti = longest time that an instance of task Ti waits
for accomplishment

Lemma. [Lehoczky et al. ’89] If p1 ≤ ... ≤ pn then ri is the smallest value s.t.

ri = ci +
∑
j<i

⌈
ri

pj

⌉
cj

Tasks are feasible ⇔ ∀i : ri ≤ pi

8

Local feasibility

Def.: Task Ti is locally feasible if ∃ri ≤ pi

ci +
∑
j<i

⌈
ri

pj

⌉
cj ≤ ri

9

Local feasibility

Def.: Task Ti is locally feasible if ∃ri ≤ pi

ci +
∑

j<i,pj≤εpi

⌈
ri

pj

⌉
cj +

∑
j<i,pj>εpi

⌈
ri

pj

⌉
cj ≤ ri

10

Local feasibility

Def.: Task Ti is locally feasible if ∃ri ≤ pi

ci +
∑

j<i,pj≤εpi

ri

pj
cj +

∑
j<i,pj>εpi

⌈
ri

pj

⌉
cj ≤ ri

11

Local feasibility

Def.: Task Ti is locally feasible if ∃ri ≤ pi

ci + ri ·
∑

j<i,pj≤εpi

cj

pj︸︷︷︸
utilization

+
∑

j<i,pj>εpi

⌈
ri

pj

⌉
cj ≤ ri

Lemma. Tasks locally feasible w.r.t. ε > 0 ⇒ tasks feasible on a processor of
speed 1 + 2ε

Our main result

Theorem. For any ε > 0 we can schedule tasks on (1 + ε)OPT + O(1) many
processors with speed 1 + ε in polynomial time.

Recently best algorithm: 7
4-approximation [Burchard et al. ’95]

12

Rounding the instance

Assume that ci
pi
≥ ε and 1

ε ∈ Z. Round such that

• pi = (1 + ε)Z

• ci
pi
∈ {0, ε2, 2ε2, ..., 1}

• Choose k ∈ {0, ..., 1/ε − 1} randomly. Remove all tasks having their period in
an interval [1/εi, 1/εi+1[with i ≡1/ε k.

period

13

Rounding the instance

Assume that ci
pi
≥ ε and 1

ε ∈ Z. Round such that

• pi = (1 + ε)Z

• ci
pi
∈ {0, ε2, 2ε2, ..., 1}

• Choose k ∈ {0, ..., 1/ε − 1} randomly. Remove all tasks having their period in
an interval [1/εi, 1/εi+1[with i ≡1/ε k.

1 1

ε

1

ε
2

1

ε
3

1

ε
1/ε

1

ε
2/ε

1

ε
3/ε

period
.

14

Rounding the instance

Assume that ci
pi
≥ ε and 1

ε ∈ Z. Round such that

• pi = (1 + ε)Z

• ci
pi
∈ {0, ε2, 2ε2, ..., 1}

• Choose k ∈ {0, ..., 1/ε − 1} randomly. Remove all tasks having their period in
an interval [1/εi, 1/εi+1[with i ≡1/ε k.

1 1

ε

1

ε
2

1

ε
3

1

ε
1/ε

1

ε
2/ε

1

ε
3/ε

period
.

15

Rounding the instance

Assume that ci
pi
≥ ε and 1

ε ∈ Z. Round such that

• pi = (1 + ε)Z

• ci
pi
∈ {0, ε2, 2ε2, ..., 1}

• Choose k ∈ {0, ..., 1/ε − 1} randomly. Remove all tasks having their period in
an interval [1/εi, 1/εi+1[with i ≡1/ε k.

1 1

ε

1

ε
2

1

ε
3

1

ε
1/ε

1

ε
2/ε

1

ε
3/ε

period
.

16

Rounding the instance

Assume that ci
pi
≥ ε and 1

ε ∈ Z. Round such that

• pi = (1 + ε)Z

• ci
pi
∈ {0, ε2, 2ε2, ..., 1}

• Choose k ∈ {0, ..., 1/ε − 1} randomly. Remove all tasks having their period in
an interval [1/εi, 1/εi+1[with i ≡1/ε k.

block block block

ε-gap ε-gap ε-gap ε-gap

period

⇒ Blocks B1, ...,Bk

17

Dynamic programming

A(a1, ..., an, `) =

 1 if tasks in B1, ...,B` can locally feasible
distributed s.t. processor i has util. ≤ ai

0 otherwise

Compute

A(a1, ..., an, `) = 1 ⇔ ∃0 ≤ bi ≤ ai : A(b1, ..., bn, `− 1) &

tasks B` can distributed feasibly

Finally we need
min{j | A(1, ..., 1︸ ︷︷ ︸

j−times

, 0, ..., 0, k) = 1}

many processors.

18

Distribution of B`

• # of utilization values: 1
ε2 + 1 = O(1)

• # of periods in B`: 1 + log1+ε(1/ε)1/ε−1 = O(1)

• ⇒ # of different task types in B`: O(1)

• Utilization ≥ ε ⇒ ≤ 1
ε tasks per processor

• ⇒ O(1) possible packings

• Utilization on processor i can be increased from bi ∈ ε2Z to ai ∈ ε2Z ⇒ O(1)
different processor types

• nO(1) many ways to distribute tasks in B` among the processors

19

Dealing with small tasks

Partition tasks with util ≤ ε6 in R1∪̇...∪̇Rm such that

• all tasks in Ri have the same period.

• ε6 ≤ utilization of Ri ≤ 3ε6

Glue tasks in each Ri together

20

Merging theorem

Theorem. I ′ merged instance ⇒ ∃ solution for I ′ with (1 + ε)OPT + O(1)
processors of speed 1 + ε

Let S1∪̇...∪̇Sm optimal solution for I. Consider group Rj choose a task T ∈ Rj

randomly with prob utilization of T

utilization of Rj
. Put new task for Rj on T ’s processor.

proc. 1 proc. 2 proc. m. . .

tasks in Rj

21

Merging theorem

Theorem. I ′ merged instance ⇒ ∃ solution for I ′ with (1 + ε)OPT + O(1)
processors of speed 1 + ε

Let S1∪̇...∪̇Sm optimal solution for I. Consider group Rj choose a task T ∈ Rj

randomly with prob utilization of T

utilization of Rj
. Put new task for Rj on T ’s processor.

proc. 1 proc. 2 proc. m. . .

tasks in Rj

22

Merging theorem

Theorem. I ′ merged instance ⇒ ∃ solution for I ′ with (1 + ε)OPT + O(1)
processors of speed 1 + ε

Let S1∪̇...∪̇Sm optimal solution for I. Consider group Rj choose a task T ∈ Rj

randomly with prob utilization of T

utilization of Rj
. Put new task for Rj on T ’s processor.

proc. 1 proc. 2 proc. m. . .

23

Merging theorem

proc. 1 proc. 2 proc. m. . .

Ti

Task Ti still feasible on a processor of speed 1 + ε ⇔ ∃ri ≤ pi :

ci +
∑

j<i,Ti large

⌈
ri

pj

⌉
cj + ri

∑
j<i,Ti small

⌈
ri

pj

⌉
pj

ri︸ ︷︷ ︸
∈[1,2]

· cj

pj︸︷︷︸
utilization

≤ (1 + ε)ri

Via Chernoff bounds: Pr[Ti is not feasible] ≤ ε

If Ti gets infeasible ⇒ remove Ti
24

Open problems

• What about a real (asymptotic) PTAS?

• Now running time ng(ε). Is a bicriteria FPTAS possible or at least running time
f(ε) · nO(1)

• Absolutely inefficient in practice! Is there a practicable algorithm (better then
First-Fit)?

25

