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Definition

Problem: Given periodic Tasks T1, ..., Tn with implicit deadlines such that each Ti

has running time ci and period pi.
Task Ti generates a job of running time ci each pi time units, that has to be
completed before its period ends.

Goal: Distribute tasks among as few processors as possible using preemptive schedul-
ing.

time0 ci pi pi + ci 2pi

Ti
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Dynamic priorities

Theorem. Dynamic priorities & preemptive Scheduling: Earliest-Deadline First is
optimal

Def.: ci
pi

= utilization of Ti

Theorem. [Liu, Layland ’73] If dynamic priorities are allowed: Tasks are feasible
on a single processor ⇔

∑n
i=1

ci
pi
≤ 1

⇒ Bin Packing with item sizes ci
pi

and bin size 1.

3



Fixed priorities

Theorem. [Liu, Layland ’73] Optimal priorities: 1
pi

for Ti (Rate-monotonic Sched-
ule)

Example

time0 1

c1 = 1, p1 = 2

c2 = 2, p2 = 5

532 10

...

...

4
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Fixed priorities

Theorem. [Liu, Layland ’73] Optimal priorities: 1
pi

for Ti (Rate-monotonic Sched-
ule)

Example

time0 1
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532 10
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Utilization
1
2

+
2
5

=
9
10

4

idle time
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Feasibility

Lemma. [Liu, Layland ’73]
∑n

i=1
ci
pi
≤ ln(2) ≈ 0.69 ⇒ tasks feasible on a single

processor

Def.: ri = be Response Time of Ti = longest time that an instance of task Ti waits
for accomplishment

Lemma. [Lehoczky et al. ’89] If p1 ≤ ... ≤ pn then ri is the smallest value s.t.

ri = ci +
∑
j<i

⌈
ri

pj

⌉
cj

Tasks are feasible ⇔ ∀i : ri ≤ pi
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Local feasibility

Def.: Task Ti is locally feasible if ∃ri ≤ pi

ci +
∑
j<i

⌈
ri

pj

⌉
cj ≤ ri
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Local feasibility

Def.: Task Ti is locally feasible if ∃ri ≤ pi

ci +
∑

j<i,pj≤εpi

⌈
ri

pj

⌉
cj +

∑
j<i,pj>εpi

⌈
ri

pj

⌉
cj ≤ ri
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Local feasibility

Def.: Task Ti is locally feasible if ∃ri ≤ pi

ci + ri ·
∑

j<i,pj≤εpi

cj

pj︸︷︷︸
utilization

+
∑

j<i,pj>εpi

⌈
ri

pj

⌉
cj ≤ ri

Lemma. Tasks locally feasible w.r.t. ε > 0 ⇒ tasks feasible on a processor of
speed 1 + 2ε

Our main result

Theorem. For any ε > 0 we can schedule tasks on (1 + ε)OPT + O(1) many
processors with speed 1 + ε in polynomial time.

Recently best algorithm: 7
4-approximation [Burchard et al. ’95]
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Rounding the instance

Assume that ci
pi
≥ ε and 1

ε ∈ Z. Round such that

• pi = (1 + ε)Z

• ci
pi
∈ {0, ε2, 2ε2, ..., 1}

• Choose k ∈ {0, ..., 1/ε − 1} randomly. Remove all tasks having their period in
an interval [1/εi, 1/εi+1[ with i ≡1/ε k.

period
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Rounding the instance

Assume that ci
pi
≥ ε and 1

ε ∈ Z. Round such that

• pi = (1 + ε)Z

• ci
pi
∈ {0, ε2, 2ε2, ..., 1}

• Choose k ∈ {0, ..., 1/ε − 1} randomly. Remove all tasks having their period in
an interval [1/εi, 1/εi+1[ with i ≡1/ε k.

block block block

ε-gap ε-gap ε-gap ε-gap

period

⇒ Blocks B1, ...,Bk
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Dynamic programming

A(a1, ..., an, `) =

 1 if tasks in B1, ...,B` can locally feasible
distributed s.t. processor i has util. ≤ ai

0 otherwise

Compute

A(a1, ..., an, `) = 1 ⇔ ∃0 ≤ bi ≤ ai : A(b1, ..., bn, `− 1) &

tasks B` can distributed feasibly

Finally we need
min{j | A(1, ..., 1︸ ︷︷ ︸

j−times

, 0, ..., 0, k) = 1}

many processors.
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Distribution of B`

• # of utilization values: 1
ε2 + 1 = O(1)

• # of periods in B`: 1 + log1+ε(1/ε)1/ε−1 = O(1)

• ⇒ # of different task types in B`: O(1)

• Utilization ≥ ε ⇒ ≤ 1
ε tasks per processor

• ⇒ O(1) possible packings

• Utilization on processor i can be increased from bi ∈ ε2Z to ai ∈ ε2Z ⇒ O(1)
different processor types

• nO(1) many ways to distribute tasks in B` among the processors
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Dealing with small tasks

Partition tasks with util ≤ ε6 in R1∪̇...∪̇Rm such that

• all tasks in Ri have the same period.

• ε6 ≤ utilization of Ri ≤ 3ε6

Glue tasks in each Ri together
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Merging theorem

Theorem. I ′ merged instance ⇒ ∃ solution for I ′ with (1 + ε)OPT + O(1)
processors of speed 1 + ε

Let S1∪̇...∪̇Sm optimal solution for I. Consider group Rj choose a task T ∈ Rj

randomly with prob utilization of T

utilization of Rj
. Put new task for Rj on T ’s processor.

proc. 1 proc. 2 proc. m. . .

tasks in Rj
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Merging theorem

proc. 1 proc. 2 proc. m. . .

Ti

Task Ti still feasible on a processor of speed 1 + ε ⇔ ∃ri ≤ pi :

ci +
∑

j<i,Ti large

⌈
ri

pj

⌉
cj + ri

∑
j<i,Ti small

⌈
ri

pj

⌉
pj

ri︸ ︷︷ ︸
∈[1,2]

· cj

pj︸︷︷︸
utilization

≤ (1 + ε)ri

Via Chernoff bounds: Pr[Ti is not feasible] ≤ ε

If Ti gets infeasible ⇒ remove Ti
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Open problems

• What about a real (asymptotic) PTAS?

• Now running time ng(ε). Is a bicriteria FPTAS possible or at least running time
f(ε) · nO(1)

• Absolutely inefficient in practice! Is there a practicable algorithm (better then
First-Fit)?
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