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Definition

Problem: Given periodic Tasks 17, ..., T}, with implicit deadlines such that each T;
has running time ¢; and period p;.
Task T; generates a job of running time ¢; each p; time units, that has to be
completed before its period ends.

Goal: Distribute tasks among as few processors as possible using preemptive schedul-
Ing.
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Dynamic priorities

Theorem. Dynamic priorities & preemptive Scheduling: Earliest-Deadline First is
optimal

Def.: ]% = utilization of T;

Theorem. [Liu, Layland '73] If dynamic priorities are allowed: Tasks are feasible
. n C;

on a single processor < » ;_ 1 7t <1

= Bin Packing with item sizes % and bin size 1.



Fixed priorities

Theorem. [Liu, Layland 73] Optimal priorities: % for T; (Rate-monotonic Sched-

ule)
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Fixed priorities

Theorem. [Liu, Layland '73] Optimal priorities: % for T; (Rate-monotonic Sched-

ule)
Example
cp=1 p; =2
co=2, pr=>5 ob ob
01 23 4 5 10 time
. : 1 2 9 -’
Utilization 5+5=10 idle time



Feasibility

Lemma. [Liu, Layland '73] >0, -+ < In(2) ~ 0.69 = tasks feasible on a single
processor

Def.: r; = be Response Time of T; = longest time that an instance of task 7} waits
for accomplishment

Lemma. [Lehoczky et al. '89] If p1 < ... < py, then r; is the smallest value s.t.

TZ:CZ+Z|VQ—‘ Cj

j<i Pj

Tasks are feasible < Vi : r; < p;



Local feasibility

Def.: Task Tj is locally feasible it r; < p;
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Local feasibility

Def.: Task Tj is locally feasible it r; < p;

ci + Z T—i_cj—l- Z [Q—‘ngri

J<i,pj>EDp; P
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Local feasibility

Def.: Task Tj is locally feasible it r; < p;

Cj r;
Ci—I-TZ” E — —|— E — CjS’I“Z'
= Dj i <y | PJ

J<1,pjSEDP; N~ J<t,pj>Ep;

utilization

Lemma. Tasks locally feasible w.rit. € > 0 = tasks feasible on a processor of
speed 1 + 2¢

Our main result

Theorem. For any € > 0 we can schedule tasks on (1 4+ &)OPT + O(1) many
processors with speed 1 4+ € in polynomial time.

Recently best algorithm: %—approximation [Burchard et al. "95]
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Rounding the instance

Assume that ]% > ¢ and % € 7. Round such that
e pi=(1+¢)"

o L€ {0,6%,2¢2,...,1}

e Choose k € {0,...,1/e — 1} randomly. Remove all tasks having their period in
an interval [1/e,1/e" ™[ with i =, k.

period
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Rounding the instance

Assume that &£ > ¢ and % € 7. Round such that

o pi=(1+¢)"
° ;—i € {0,e2,2¢%, ..., 1}

e Choose k € {0,...,1/e — 1} randomly. Remove all tasks having their period in
an interval [1/e,1/e" ™[ with i =, k.

e-gap e-gap e-gap e-gap

= Blocks By, ..., B
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Dynamic programming

1 if tasks in By, ..., By can locally feasible
A(ay, ..., an, b) = distributed s.t. processor 7 has util. < a;
0 otherwise

Compute

A(al, ...,an,ﬁ) =1 & J0<b;<aq;: A(bl, ...,bn,€ — 1) &
tasks By can distributed feasibly

Finally we need

min{j | A(1,...,1,0,...,0,k) =1}

J—times
Mmany Processors.
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Distribution of 5y

# of utilization values: 8% +1=0(1)

# of periods in By: 1+ log;,.(1/)Y/5~1 = O(1)
= # of different task types in By: O(1)

Utilization > ¢ = < % tasks per processor

= O(1) possible packings

Utilization on processor ¢ can be increased from b; € £2Z to a; € €°Z = O(1)
different processor types

nP) many ways to distribute tasks in By among the processors
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Dealing with small tasks

Partition tasks with util < &% in R;U...UR,,, such that

e all tasks in R; have the same period.

o 0 < utilization of R; < 3¢9

Glue tasks in each R; together
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Merging theorem

Theorem. Z' merged instance = 3 solution for ' with (1 + &)OPT + O(1)
processors of speed 1 + ¢

Let S1U...US,,, optimal solution for Z. Consider group R; choose a task T € R;

randomly with prob utilization of T p ;¢ pevy task for R; on T"s processor.

utilization of R; J
—— mmmm osks in Rj
proc. 1 proc. 2 .- - proc. m
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Merging theorem

1;
| —
proc. 1 proc. 2 - proc. m

Task Tj still feasible on a processor of speed 1 + ¢ < dr; < p; :

C; + Z [1%—‘ Cj + T Z [ﬁ—‘ % : S

J Dj Dj
j<4,T; large j<i,T; small~~—~~—— =~

€[1,2]  utilization
Via Chernoff bounds: Pr[T; is not feasible] < ¢

It T; gets infeasible = remove T; y

< (1—'—8)7“@



Open problems

e \What about a real (asymptotic) PTAS?

e Now running time n9(). |s a bicriteria FPTAS possible or at least running time

f(e) - nOW

e Absolutely inefficient in practice! |Is there a practicable algorithm (better then
First-Fit)?
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