
Chapter 1

Affine algebraic geometry

We shall restrict our attention to affine algebraic geometry, meaning that the
algebraic varieties we consider are precisely the closed subvarieties of affine n-
space defined in section one.

1.1 The Zariski topology on An

Affine n-space, denoted by An, is the vector space kn. We impose coordinate
functions x1, . . . , xn on it and study An through the lens of the polynomial ring
k[x1, . . . , xn] viewed as functions An → k.

First we impose topologies on An and k such that the polynomial functions
An → k are continuous. We will require each point on k to be closed, and
this forces the fibers f−1(λ)An to be closed for each f ∈ k[x1, . . . , xn] and each
λ ∈ k. The set f−1(λ) = {p | f(p) = λ} is the zero locus of the polynomial
f − λ; since every polynomial can be written in the form f − λ, the zero locus
of every polynomial must be closed. Since a finite union of closed sets is closed,
the common zero locus

{p ∈ kn | f1(p) = · · · = fr(p) = 0}

of every finite collection of polynomials f1, . . . , fr is closed. This is the definition
of the Zariski topology on An.

And the closed subsets of An are called affine algebraic varieties.
A lot of important geometric objects are affine algebraic varieties. The conic

sections are the most ancient examples: the parabola is the zero locus of y−x2,
the hyperbolas are the zero loci of equations like x2/a2−y2/b2−1, or more simply
xy − 1, the circles centered at the origin are the zero loci of the polynomials
x2+y2−r2, and so on. Higher-dimensional spheres and ellipsoids provide further
examples. Another example is the union in R4 of the xy-plane and wz-plane:
it is the simultaneous zero locus of xw, xz, yw, and yz (or, more cleverly, of
xw, yz, and xz+yw). Fermat’s last theorem can be restated as asking whether,
when n ≥ 3, the zero locus of the equation xn + yn − zn has any points with
rational coordinates other than those in which one of the coordinates is zero.
Another family of examples is provided by the n×n matrices over R having rank
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at most some fixed number d; these matrices can be thought of as the points
in the n2-dimensional vector space Mn(R) where all (d + 1) × (d + 1) minors
vanish, these minors being given by (homogeneous degree d+1) polynomials in
the variables xij , where xij simply takes the ij-entry of the matrix.

We will write Ank for kn and call it affine n-space over k. For example, A1

is called the affine line and A2 is called the affine plane. We will only discuss
affine algebraic geometry in this course. Projective algebraic geometry is a much
prettier subject.

Definition 1.1 The zero locus of a collection f1, . . . , fr of elements in k[x1, . . . , xn]
is called an affine algebraic variety or a closed subvariety of An. We denote it by
V (f1, . . . , fr). Briefly,

V (f1, . . . , fr) := {p ∈ Ank | f1(p) = · · · = fr(p) = 0}.

More generally, if J is any ideal in k[x1, . . . , xn] we define

V (J) := {p ∈ An | f(p) = 0 for all f ∈ J}.

♦

It is easy to show that if J = (f1, . . . , fr), then V (J) = V (f1, . . . , fr). Con-
versely, since every ideal of the polynomial ring is finitely generated, the subva-
rieties of An are the zero loci of ideals.

Of course we can define V (S) for any set S of polynomials. If J denotes the
ideal generated by S, then V (S) = V (J).

Example 1.2 (Plane curves) Let f ∈ k[x, y] be a non-constant polynomial.
We call C := V (f) ⊂ A2 a plane curve. If we place no restrictions on the field
k, C may not look much like curve at all. For example, when k = R the curve
x2 + y2 + 1 = 0 is empty. So, let’s suppose that k is algebraically closed.

Claim: C is infinite. Proof: First suppose that f ∈ k[x]. Let α ∈ k be a zero
of f . Then C = {(α, β) | β ∈ k}. Since k is algebraically closed it is infinite, so C
is also infinite. Now suppose that f /∈ k[x] and write f = a0 + a1y + · · ·+ any

n

where each ai ∈ k[x], n ≥ 1, and an 6= 0. There are infinitely many α ∈ k
such that an(α) 6= 0. Evaluating all the coefficients at such a point α gives a
polynomial f(α, y) ∈ k[y] of degree n ≥ 1. Now f(α, y) has a zero so C contains
(α, β) for some β. As α varies this provides infinitely many points in C. ♦

Proposition 1.3 Let I, J , and Ij, j ∈ Λ, be ideals in the polynomial ring
A = k[x1, . . . , xn]. Then

1. I ⊂ J implies V (J) ⊂ V (I);

2. V (0) = An;

3. V (A) = φ;
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4.
⋂
j∈Λ V (Ij) = V (

∑
j∈Λ Ij);

5. V (I) ∪ V (J) = V (IJ) = V (I ∩ J).

Proof. The first four statements are clear, so we only prove the fifth.
Since IJ ⊂ I ∩ J and I ∩ J is contained in both I and J , (1) imples that

V (I) ∪ V (J) ⊂ V (I ∩ J) ⊂ V (IJ).

On the other hand, if p /∈ V (I)∪V (J), there are functions f ∈ I and g ∈ J such
that f(p) 6= 0 and g(p) 6= 0. Hence (fg)(p) 6= 0. But fg ∈ IJ , so p /∈ V (IJ).
Hence V (IJ) ⊂ V (I) ∪ V (J). The equalities in (5) follow. �

Contrast parts (4) and (5) of the proposition. Part (5) extends to finite
unions: if Λ is finite, then ∪j∈ΛV (Ij) = V (

∏
j∈Λ Ij) = V (∩j∈ΛIj). To see that

part (5) does not extend to infinite unions, consider the ideals (x− j) in R[x].

Definition 1.4 The Zariski topology on An is defined by declaring the closed sets
to be the subvarieties. ♦

Proposition 1.3 shows that this is a topology. Parts (2) and (3) show that
An and the empty set are closed. Part (4) shows that the intersection of a
collection of closed sets is closed. Part (5) shows that a finite union of closed
sets is closed.

Proposition 1.5 Let k = A1 have the Zariski topology.

1. The closed subsets of A1 are its finite subsets and k itself.

2. If f ∈ k[x1, . . . , xn], then f : An → k is continuous.

Proof. (1) Of course k = V (0) and ∅ = V (1) are closed. A non-empty finite
subset {α1, . . . , αm} of k is the zero locus of the polynomial (x−α1) · · · (x−αn),
so is closed. Conversely, if I is an ideal in k[x], then I = (f) for some f , so its
zero locus is the finite subset of k consisting of the zeroes of f .

(2) To show f is continuous, we must show that the inverse image of every
closed subset of k is closed. The inverse image of k is An, which is closed. And
f−1(φ) = φ is closed. Since the only other closed subsets k are the non-empty
finite subsets, it suffices to check that f−1(λ) is closed for each λ ∈ k. But
f−1(λ) is precisely the zero locus of f − λ, and that is closed by definition. �

If X is any subset of An, we define

I(X) := {f ∈ k[x1, . . . , xn] | f(p) = 0 for all p ∈ X}.

This is an ideal of k[x1, . . . , xn]. It consists of the functions vanishing at all the
points of X.

The following basic properties of I(−) are analogues of the properties of
V (−) established in Proposition 1.3.
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Proposition 1.6 Let X, Y , and Xj, j ∈ Λ, be subsets of An. Let A =
k[x1, . . . , xn] be the polynomial ring generated by the coordinate functions xi
on An. Then

1. X ⊂ Y implies I(X) ⊃ I(Y );

2. I(An) = 0;

3. I(φ) = A;

4. I(∩j∈ΛXj) ⊃
∑
j∈Λ I(Xj);

5. I(∪j∈ΛXj) = ∩j∈ΛI(Xj).

Proof. Exercise. �

The containment in (4) can not be replaced by an equality: for example,
in A2, if X1 = V (x1) and X2 = V (x2

1 − x2
2), then I(X1) = (x1) and I(X2) =

(x2
1 − x2

2), so I(X1) + I(X2) = (x1, x
2
1 − x2

2) = (x1, x
2
2) which is strictly smaller

than (x1, x2) = I({(0, 0)}) = I(X1 ∩X2).

The obvious question. To what extent are the maps V (−) and I(−)

{ideals in k[x1, . . . , xn]} ←→ {subvarieties of An} (1-1)

inverses of one another? It is easy to see that J ⊂ I(V (J)) and X ⊂ V (I(X)),
but they are not inverse to each other. There are two reasons they fail to be
mutually inverse. Each is important. They can fail to be mutually inverse
because the field is not algebraically closed (e.g., over R, V (x2 + 1) = φ) and
also because V (f) = V (f2). We now examine this matter in more detail.

Lemma 1.7 Let X be a subset of An. Then

1. V (I(X)) = X̄, the closure of X;

2. if X is closed, then V (I(X)) = X.

Proof. It is clear that (2) follows from (1), so we shall prove (1).
Certainly, V (I(X)) contains X and is closed. On the other hand, any closed

set containing X is of the form V (J) for some ideal J consisting of functions
that vanish on X; that is, J ⊂ I(X), whence V (J) ⊃ V (I(X)). Thus V (I(X))
is the smallest closed set containing X. �

Definition 1.8 Let J be an ideal in a commutative ring R. The radical of J is
the ideal √

J := {a ∈ R | an ∈ J for some n}.

If J =
√
J we call J a radical ideal. ♦

Obviously J ⊂
√
J . Thus,

√
J is obtained from J by throwing in all the

roots of the elements in J .
A prime ideal p is radical because if xn belongs to p, so does x.
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Lemma 1.9 If J is an ideal, so is
√
J .

Proof. It is clear that if a ∈
√
J , so is ra for every r ∈ R because if an ∈ J

so is (ar)n. If a and b are in
√
J , so is their sum. To see this, suppose that

an, bm ∈ J and that n ≥ m. Then

(a+ b)2n =
2n∑
i=0

(
2n
i

)
aib2n−i,

and for every i, either i ≥ n, or 2n − i ≥ n ≥ m, so aib2n−i ∈ J , whence
(a+ b)2n ∈ J . Thus a+ b ∈

√
J . �

The next lemma and theorem explain the importance of radical ideals in
algebraic geometry.

Lemma 1.10 If J is an ideal in k[x1, . . . , xn], then

V (J) = V (
√
J).

Proof. Since J ⊂
√
J , V (

√
J) ⊂ V (J). On the other hand, if p ∈ V (J) and

f ∈
√
J , then fd ∈ J for some d, so 0 = fd(p) = (f(p))d. But f(p) is in the field

k, so f(p) = 0. Hence p ∈ V (
√
J). �

Theorem 1.11 (Hilbert’s Nullstellensatz, strong form) Let k be an alge-
braically closed field and set A = k[x1, . . . , xn].

1. If J 6= A is an ideal, then V (J) 6= φ.

2. For any ideal J , I(V (J)) =
√
J .

3. there is a bijection

{radical ideals in A} ←→ {closed subvarieties of An}

given by

J 7→ {p ∈ An | f(p) = 0 for all f ∈ J}
X 7→ {f ∈ A | f(p) = 0 for all p ∈ X}

Proof. (1) This follows from the weak nullstellensatz because J is contained
in some maximal ideal, and all functions in that maximal ideal vanish at some
point of An.

(2) It is clear that
√
J ⊂ I(V (

√
J)), and we have seen that V (

√
J) = V (J),

so it remains to show that if f vanishes at all points of V (J), then some power
of f is in J . If f = 0, there is nothing to do, so suppose that f 6= 0.

The proof involves a sneaky trick.
Let y be a new indeterminate and consider the ideal (J, fy − 1) in A[y].

Now V (J, fy − 1) ⊂ kn+1 and (λ1, . . . , λn, α) ∈ V (J, fy − 1) if and only if
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g(λ1, . . . , λn) = 0 for all g ∈ J and f(λ1, . . . , λn)α = 1; that is, if and only if
(λ1, . . . , λn) is in V (J) and α = f(λ1, . . . , λn)−1. But f(p) = 0 for all p ∈ V (J),
so V (J, fy − 1) = φ.

Applying (1) to the ideal (J, fy−1) in A[y], it follows that (J, fy−1) = A[y].
Hence

1 = (fy − 1)h0 +
m∑
i=1

gihi

for some h0, . . . , hm ∈ A[y] and g1, . . . , gm ∈ J .
Now define ψ : A[y] → k(x1, . . . , xn) by ψ|A = idA and ψ(y) = f−1. The

image of ψ is k[x1, . . . , xn][f−1]. Every element in it is of the form af−d for
some a ∈ A and d ≥ 0. Now

1 = ψ(1) =
m∑
i=1

giψ(hi) =
m∑
i=1

giaif
−di ,

so multiplying through by fd with d ≥ di for all i gives fd ∈ J .
(3) This follows from (2). �

1.2 Closed subvarieties of An

From now on we shall work over an algebraically closed base field k.

Let X be a subvariety of An. The polynomials in k[x1, . . . , xn] are functions
An → k, so their restrictions to X produce functions X → k. The restriction of
a polynomial in I(X) is zero, so we are led to the next definition.

Definition 2.1 Suppose that X is an algebraic subvariety of An. The ring of
regular functions on X, or the coordinate ring of X, is

O(X) := k[x1, . . . , xn]/I(X).

♦

The Zariski topology on a variety. The closed subvarieties of An inherit
a topology from that on An. We declare the closed subsets of X to be the
subsets of the form X ∩Z where Z is a closed subset of An. Of course, X ∩Z is
a closed subset of An, so the subsets of X of the form X∩Z can be characterzed
as the closed subsets of An that belong to X. We call this the Zariski topology
on X.

Whenever we speak of a subvariety X ⊂ An as a topological space we mean
with respect to the Zariski topology.

The next result shows that the closed subsets of X are the zero loci for the
ideals of the ring O(X).

Proposition 2.2 Let X be a subvariety of An. Then
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1. O(X) is a ring of functions X → k,

2. the closed subsets of X are those of the form V (J) := {p ∈ X | f(p) =
0 for all f ∈ J}, where J is an ideal of O(X);

3. the functions f : X → k, f ∈ O(X), are continuous if k and X are given
their Zariski topologies.

Proof. (1) Let C(X, k) denote the ring of all k-valued functions on X. We
may restrict each f ∈ k[x1, . . . , xn] to X. This gives a ring homomorphism
Ψ : k[x1, . . . , xn] → C(X, k). The kernel of Ψ is I(X), so the image of Ψ is
isomorphic to k[x1, . . . , xn]/I(X).

(2) The ideals of O(X) = k[x1, . . . , xn]/I(X) are in bijection with the ideals
of k[x1, . . . , xn] that contain I(X). If K is an ideal of k[x1, . . . , xn] containing
I(X) and J = K/I(X) is the corresponding ideal of O(X), then V (K) = V (J).
Warning: V (K) is defined as the subset of An where all the functions in K
vanish, and V (J) is defined to be the subset of X where all the functions in J
vanish.

The closed sets of X are by definition the subsets of the form Z ∩X where
Z is a closed subset of An. But Z ∩ X is then a closed subset of An, so the
closed subsets of X are precisely the closed subsets of An that are contained in
X. But these are the subsets of An that are of the form V (K) for some ideal
K containing I(X).

(3) This is a special case of Proposition 7.7 below. �

The pair (X,O(X)) is analogous to the pair (An, k[x1, . . . , xn]). We have
a space and a ring of k-valued functions on it. For each ideal in the ring we
have its zero locus, and these form the closed sets for a topology, the Zariski
topology, on the space.

The weak and strong forms of Hilbert’s Nullstellensatz for An yield the
following results for X.

Proposition 2.3 Let k be an algebraically closed field and X a closed subvariety
of Ank . Then

1. the functions V (−) and I(−) are mutually inverse bijections between the
radicaol ideals in O(X) and the closed subsets of X;

2. there is a bijection between the points of X and the maximal ideals in
O(X).

Proof. Exercise. �

Remarks. 1. Let X be an affine algebraic variety and f ∈ O(X). If f
is not a unit in O(X) then the ideal it generates is not equal to O(X) so is
contained in some maximal ideal of O(X), whence f vanishes at some point of
X. In other words, f ∈ O(X) is a unit if and only if f(x) 6= 0 for all x ∈ X.

2. It is useful to observe that points x and y in X are equal if and only if
f(x) = f(y) for all f ∈ O(X). To see this suppose that f(x) = f(y) for all f ;
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then a function vanishes at x if and only if it vanishes at y, so mx = my; it now
follows from the bijection between points and ideals that x = y.

Lemma 2.4 Let Z1 and Z2 be disjoint closed subsets of an affine algberaic
variety X. There exists an f ∈ O(X) such that f(Z1) = 0 and f(Z2) = 1.

Proof. Write Ij = I(Zj). Then Zj = V (Ij) because Zj is closed. Now
V (I1 + I2) = V (I1) ∩ V (I2) = Z1 ∩ Z2 = φ, so I1 + I2 = O(X). Hence we can
write 1 = f1 + f2 with fj ∈ Ij . Thus f1 is the desired function. �

Finite varieties. If X is any subvariety of An there are generally many
functions X → k that are not regular. (Give an example of a function A1 → k
that is not regular.) However, if X is finite O(X) is exactly the ring of k-valued
functions on X.

A single point in An is a closed subvariety, hence any finite subset X ⊂ An is
a closed subvariety. Suppose X = {p1, . . . , pt}. By Lemma 2.4, O(X) contains
the characteristic functions χi : X → k defined by χi(pj) = δij . It is clear that
these functions provide a basis for the ring kX of all k-valued functions X → k.
By definition the only element of O(X) that is identically zero on X is the zero
element, so O(X) is equal to kX .

The next proposition is an elementary illustration of how the geometric
properties of X are related to the algebraic properties of O(X).

First we need a result that is useful in a wide variety of situations. It
was known to the ancients in the following form: if m1, . . . ,mn are pairwise
relatively prime integers, and a1, . . . , an are any integers, then there is an integer
d such that d ≡ ai(mod)mi for all i. This statement appears in the manuscript
Mathematical Treatise in Nine Sections written by Chin Chiu Shao in 1247
(search on the web if you want to know more).

Lemma 2.5 (The Chinese Remainder Theorem) Let I1, . . . , In be ideals
in a ring R such that Ii + Ij = R for all i 6= j. Then there is an isomorphism
of rings

R

I1 ∩ · · · ∩ In
∼=
R

I1
⊕ · · · ⊕ R

In
. (2-2)

Proof. We proved this when n = 2 on page ??.
Consider the two ideals I1 ∩ · · · ∩ In−1 and In. For each j = 1, . . . , n− 1, we

can write 1 = aj + bj with aj ∈ In and bj ∈ Ij . Then

1 = (a1 + b1) · · · (an−1 + bn−1) = a+ b1b2 · · · bn−2bn−1,

where a is a sum of elements in In. Thus In+(I1 ∩ · · · ∩ In−1) = R, and we can
apply the n = 2 case of the result to see that

R

I1 ∩ · · · ∩ In
∼= R/I1 ∩ · · · ∩ In−1 ⊕ R/In.

Induction completes the proof.
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Explictly, the isomorphism in (2-2) is induced by the ring homomorphism
ψ : R→ R/I1 ⊕ · · · ⊕R/In defined by

ψ(a) = ([a+ I1], · · · , [a+ In]).

The kernel is obviously I1 ∩ · · · ∩ In. �

Proposition 2.6 A closed subvariety X ⊂ An is finite if and only if O(X) is
a finite dimensional vector space. In particular, dimkO(X) = |X|.

Proof. (⇒) Suppose that X = {p1, . . . , pd} are the distinct points of X. Let
mi be the maximal ideal of A = k[x1, . . . , xn] vanishing at pi. It is clear that
I(X) = m1 ∩ · · · ∩md, so

O(X) = A/m1 ∩ · · · ∩md.

The map

A→ A/m1 ⊕ · · · ⊕A/md, a 7→ ([a+ m1], · · · , [a+ md]),

is surjective with kernel m1 ∩ · · · ∩md, so

O(X) ∼= A/m1 ⊕ · · · ⊕A/md
∼= k ⊕ · · · ⊕ k = kd.

Hence dimkO(X) = d.
(⇐) The Nullstellensatz for X says that the points of X are in bijection with

the maximal ideals of O(X). We must therefore show that a finite dimensional
k-algebra has only a finite number of maximal ideals.

Suppose that R is a finite dimensional k-algebra and that m1, . . . ,md are
distinct maximal ideals of R. We will show that the intersections

m1 ⊃ m1 ∩m2 ⊃ m1 ∩m2 ∩m3 ⊃ · · · ⊃ m1 ∩ · · · ∩md

are all distinct from one another. If this were not the case we would have
m1∩· · ·∩mn ⊂ mn+1 for some n, whence m1m2 · · ·mn ⊂ mn+1. But interpreting
this product in the field R/mn+1, such an inclusion implies that mi ⊂ mn+1 for
some i ∈ {1, . . . , n}. This can’t happen since the maximal ideals are distinct.
Hence the intersections are distinct as claimed.

Since these ideals are vector subspaces of R, it follows that dimk R ≥ d.
Hence the number of distinct maximal ideals of R is at most dimk R. �

Remark. The Zariski topology on A2 is not the same as the product topol-
ogy for A1 × A1. The closed sets for the product topology on A1 × A1 are A2

itself, all the finite subsets of A2, and finite unions of lines that are parallel to
one of the axes, and all finite unions of the preceeding sets. In particular, the
diagonal ∆ is not closed in the product topology; but it is closed in the Zariski
topology on A2 because it is the zero locus of x− y.
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1.3 Prime ideals

Definition 3.1 An ideal p in a commutative ring R is prime if the quotient R/p
is a domain. ♦

We do not count the zero ring as a domain, so R itself is not a prime ideal.
It is an easy exercise to show that an ideal p is prime if and only if it has

the property that
x /∈ p and y /∈ p⇒ xy /∈ p.

An induction argument shows that if a prime ideal contains a product x1 · · ·xn
then it contains one the xis.

Lemma 3.2 Let p be an ideal of R. The following are equivalent

1. p is prime;

2. a product of ideals IJ is contained in p if and only if either I or J is
contained in p.

Proof. (1) ⇒ (2) Suppose that p is a prime ideal. Let I an J be ideals of R.
Certainly, if either I or J is contained in p, so is their product. Conversely,
suppose that IJ is contained in p. We must show that either I or J is contained
in p. If I is not contained in p, there is an element x ∈ I that is not in p. Hence
[x + p] is a non-zero element of the domain R/p. If y ∈ J , then xy ∈ p, so
[x+ p][y + p] = 0 in R/p; hence [y + p] = 0 and y ∈ p. Thus J ⊂ p.

(2) ⇒ (1) To show that p is prime we must show that R/p is a domain. Let
x, y ∈ R and suppose that [x+p] and [y+p] are non-zero elements of R/p. Then
x /∈ p and y /∈ p. Thus p does not contain either of the principal ideals I = (x)
and J = (y); by hypothesis, p does not contain there product IJ = (xy). In
particular, xy /∈ p. Hence in R/p,

0 6= [xy + p] = [x+ p][y + p].

This shows that R/p is a domain. �

Lemma 3.3 Let R be a commutative ring. Then xR is a prime ideal if and
only if x is prime.

Proof. The ideal xR is prime if and only if whenever ab ∈ xR (i.e., whenever
x divides ab) either a ∈ xR or b ∈ xR (i.e., x divides either a or b. This is
equivalent to the condition that x be prime. �

Certainly every maximal ideal is prime. The only prime ideals in a principal
ideal domain are the maximal ideals and the zero ideal.

In the polynomial ring k[x1, . . . , xn] one has the following chain of prime
ideals

0 ⊂ (x1) ⊂ (x1, x2) ⊂ · · · ⊂ (x1, . . . , xn).

There are of course many other prime ideals. For example, the principal ideal
generated by an irreducible polynomial is prime.
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Lemma 3.4 Let I be an ideal in a commutative ring R. The prime ideals in
R/I are exactly those ideals of the form p/I where p is a prime ideal of R
containing I.

Proof. We make use of the bijection between ideals of R that contain I and
ideals of R/I. If p is an ideal containing I, then R/p ∼= (R/I)/(p/I) so p is a
prime ideal of R if and only if p/I is a prime ideal of R/I. �

Lemma 3.5 Intersections of prime ideals are radical.

Proof. Let {pi | i ∈ I} be a collection of prime ideals, and set J = ∩i∈Ipi. If
fn ∈ J , then fn ∈ pi for all i, so f ∈ pi. Hence f ∈ J . �

Proposition 3.6 If J is an ideal in a noetherian ring and p1, . . . , pn are the
minimal primes containing it, then

√
J = p1 ∩ · · · ∩ pn.

Proof. Write J ′ = p1∩· · ·∩pn. Then J ′ is radical and J ⊂ J ′, so
√
J ⊂
√
J ′ =

J ′. By Proposition ??.3.9, J contains pi11 · · · pinn for some integers i1, . . . , in.
Hence (J ′)i1+···+in ⊂ J , and J ′ ⊂

√
J . �

Proposition 3.6 says that the radical ideals in a commutative noetherian ring
are precisely the intersections of finite collections of prime ideals.

Proposition 3.7 Every ideal in a noetherian ring contains a product of prime
ideals.

Proof. If the set

S := {ideals of R that do not contain a product of prime ideals}

is not empty it has a maximal member, say I. Now I itself cannot be prime,
so contains a product of two strictly larger ideals, say J and K. Since these
are strictly larger than I they do not belong to S. Hence each of them contains
a product of prime ideals. Now JK, and hence I, contains the product of all
those primes. This contradiction implies that S must be empty. �

As the next result makes clear, Proposition 3.7 is stronger than it first ap-
pears. If I is an ideal of R, then the zero ideal in R/I contains a product of
primes; however, every prime in R/I is of the form p = p/I where p is a prime
in R that contains I, so I contains a product of primes, each of which contains
I.

Definition 3.8 A prime ideal p containing I is called a minimal prime over I if
there are no other primes between p and I; that is, if q is a prime ideal such
that I ⊂ q ⊂ p, then p = q. ♦

Proposition 3.9 Let I be an ideal in a noetherian ring R. Then
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1. there are only finitely many minimal primes over I, say p1, · · · , pn, and

2. there are integers i1, . . . , in such that pi11 · · · pinn ⊂ I.

Proof. As just explained, there are prime ideals p1, · · · , pn containing I such
that pi11 · · · pinn ⊂ I for some integers i1, . . . , in. If pi ⊂ pj we can replace each
pj appearing in the product by pi, so we can assume that pi 6⊂ pj if i 6= j.

It follows that each pi is minimal over I because if q were a prime such that
pi ⊃ q ⊃ I, then q contains pi11 · · · pinn so contains some pj ; but then pj ⊂ pi, so
pi = q = pj . And these are all the minimal primes because any prime containing
I contains pi11 · · · pinn so contains some pj . �

Corollary 3.10 Suppose R is a UFD. Let x ∈ R be a non-zero non-unit, and
write x = pi11 · · · pinn as a product of powers of “distinct” irreducibles. Then the
minimal primes containing x are p1R, . . . , pnR.

1.4 The spectrum of a ring

Definition 4.1 The spectrum of a commutative ring R is the set of its prime
ideals. We denote it by SpecR. ♦

We now impose a topology on SpecR.

Proposition 4.2 Let R and S be commutative rings.

1. The sets
V (I) := {p ∈ SpecR |I ⊂ p}

as I ranges over all ideals of R are the closed sets for a topology on SpecR.

2. If ϕ : R → S is a homomorphism of rings, then the map ϕ] : SpecS →
SpecR defined by

ϕ](p) = ϕ−1(p) := {r ∈ R | ϕ(r) ∈ p}

is continuous.

Proof. (1) We must show that the subsets of SpecR of the form V (I) satisfy
the axioms to be the closed sets of a topological space.

Since ∅ = V (R) and SpecR = V (0), the empty set and SpecR themselves
are closed subsets. Since a prime ideal p contains a product IJ of ideals if and
only if it contains one of them, V (I) ∪ V (J) = V (IJ). Induction shows that
a finite union of closed sets is closed. On the other hand the intersection of a
collection of closed sets V (Ji) is closed because a prime p contains each Ji if
and only if it contains the sum of all of them; that is,

⋂
i V (Ji) = V (

∑
i Ji).

(2) Fix q ∈ SpecS. First, ϕ](q) is a prime ideal of R. It is an ideal because
it is the kernel of the composition

R
ϕ−−−−→ S

π−−−−→ S/q
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where π is the natural map π(s) = [s+ q]. And ϕ](q) is prime because

R/ϕ](q) = R/ ker(πϕ) ∼= imπϕ = πϕ(R) ⊂ S/q,

and a subring of a domain is a domain.
To show that ϕ] is continuous it suffices to show that the inverse image of

a closed set is closed. If I is an ideal of R, let J be the ideal of S generated by
ϕ(I). Then

(ϕ])−1(V (I)) = {q ∈ SpecS | ϕ](q) ∈ V (I)}
= {q ∈ SpecS | ϕ](q) ⊃ I}
= {q ∈ SpecS | ker(πqϕ) ⊃ I}
= {q ∈ SpecS | ker(πq) ⊃ ϕ(I)}
= {q ∈ SpecS | q ⊃ ϕ(I)}
= V (J).

Hence ϕ] is continuous. �

Definition 4.3 Let R be a commutative ring. The Zariski topology on SpecR is
defined by declaring the closed sets to be those subsets of the form

V (I) := {p | p ⊃ I}

as I ranges over all ideals of R. ♦

Proposition 4.2 says that the rule R 7→ SpecR is a contravariant functor
from the category of commutative rings to the category of topological spaces.

Lemma 4.4 The closed points in SpecR are exactly the maximal ideals.

Proof. If m is a maximal ideal of R then V (m) = {m}, so {m} is a closed
subspace of SpecR.

On the other hand if p is a non-maximal prime ideal in R and m is a maximal
ideal containing p, then any closed set V (I) that contains p also contains m; in
particular, m ∈ {p}. Hence {p} is not closed. �

We write MaxR for the set of maximal ideals in R.
If X is a closed subvariety of An, there is a bijection

{points x ∈ X} ←→ MaxO(X).
x←→ mx := {functions f ∈ OX such that f(x) = 0}.

Since mx is the kernel of the evaluation map εx : O(X)→ k, f 7→ f(x), mx is a
maximal ideal.

Let MaxO(X) ⊂ SpecO(X) have the subspace topology. The next result
says that MaxO(X) is homeomorphic to X.
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Proposition 4.5 If X is a closed subvariety of An the map

Φ : X → SpecO(X)
x 7→ mx := {functions f ∈ OX such that f(x) = 0}

is continuous when X and SpecO(X) are given their Zariski topologies.

Proof. By the Nullstellensatz, if k is algebraically closed Φ is a bijection be-
tween the set of maximal ideals in O(X) and the points of X. To see that Φ is
continuous, let I be an ideal in O(X). Then

Φ−1(V (I)) = Φ−1({p | p ⊃ I}) = {x ∈ X | mx ⊃ I} = V (I),

which is a closed subset of X. �

Theorem 4.6 Let A ⊂ B be rings such that B is a finitely generated A-module.
Then the map SpecB → SpecA, p 7→ p ∩A, is surjective.

Proof. [Robson-Small] Let q ∈ SpecA. Choose p ∈ SpecB maximal such that
A ∩ p ⊂ q; we now check that such p exists. The set of ideals J in B such that
A ∩ J ⊂ q is non-empty so, by Zorn’s Lemma, there is an ideal p in B that is
maximal subject to A∩p ⊂ q; such p is prime because if there were ideals I and
J of B strictly larger than p such that IJ ⊂ p, then

(A ∩ I)(A ∩ J) ⊂ A ∩ IJ ⊂ A ∩ p ⊂ q

so either A ∩ I ⊂ q or A ∩ J ⊂ q, contradicting the maximality of p.
It remains to show that A ∩ p = q.
We now replace A by A/A ∩ p, q by q/A ∩ p, and B by B/p. With these

changes A ⊂ B, B is a domain, B is a finitely generated A-module, and q ∈
SpecA has the property that the only ideal I in B such that I ∩A ⊂ q is I = 0.
We will show that q = 0 and this will complete the proof.

Write B =
∑t
i=1Abi where b1 = 1. We may assume that all bi are non-

zero, so Abi ∼= A as A-modules. Renumbering the bis if necessary, we may pick
m maximal such that T = Ab1 + · · · + Abm is a direct sum, and hence a free
A-module.

It follows that for all i, Ji := AnnA(bi+T/T ) is a non-zero ideal of A. Since
A is a domain, the product of the Jis is non-zero, and hence

J :=
t⋂
i=1

Ji

is a non-zero ideal of A.
Because Jbi ⊂ T , it follows that JB ⊂ T , and hence qJB ⊂ qT ⊂ T . Now

qJB is a ideal of B and qJB ∩A ⊂ qT ∩A = q, the last equality being because
T = A ⊕ C for some A-module C. The inclusion qJB ∩ A ⊂ q implies that
qJB = 0, whence q = 0, as required. �
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1.5 Irreducible affine varieties

We continue to work over an algebraically closed field k.

Definition 5.1 A topological space X is said to be irreducible if it is not the union
of two proper closed subsets. ♦

Irreduciblity plays a central role in algebraic geometry.

Examples. The unit interval [0, 1] is not irreducible with respect to the
usual topology because it is the union of the proper closed subsets [0, 1

2 ]∪ [ 12 , 1].
The affine line A1 over an infinite field is irreducible. The union of the two

axes in A2 is not irreducible because it is the union of the individual axes, each
of which is closed.

A topological reminder. A subset W of a topological space X is dense
in X if W̄ = X, i.e., its closure is all of X. This is equivalent to the condition
that W ∩ U 6= φ for all non-empty open subsets U of X. (Exercise: prove this
equivalence).

Lemma 5.2 Every non-empty open subset of an irreducible topological space is
dense.

Proof. Let X be irreducible and Z ( X a closed subspace. The equality
X = Z ∪ (X − Z) expresses X as a union of two closed sets so one of them must
equal X. Thus X = X − Z, and X − Z is dense in X. �

We show below that each closed subvariety of An can be written as a union
of a finite number of irreducible subvarieties in a unique way; these irreducible
subvarieties are called its irreducible components. This is analogous to writing
an integer as a product of prime numbers. We have already seen one other
extrapolation of this theme, namely the process of expressing an ideal of a
Dedekind domain as a product of prime ideals.

Proposition 5.3 The following conditions on a closed subvariety X ⊂ An are
equivalent:

1. X is irreducible;

2. I(X) is a prime ideal;

3. O(X) is a domain.

Proof. Conditions (2) and (3) are equivalent (Definition 3.1).
Let p = I(X).
(1) ⇒ (2) Suppose that X is irreducible. To show that p is prime, suppose

that fg ∈ p. Then Y := V (f, p) and Z := V (g, p) are closed subsets of X. If
p ∈ X, then (fg)(p) = 0 so p belongs to either Y or Z. Hence X = Y ∪ Z. By
hypothesis, either Y or Z is equal to X. But if Y = X, then f vanishes on X
so f ∈ p. Hence p is prime.
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(2) ⇒ (1) Now assume p is a prime ideal. Suppose Y and Z are closed
subsets of X such that X = Y ∪Z. To show that X is irreducible we must show
that either Y or Z is equal to X. Suppose that Y 6= X. The bijection in the
strong nullstellensatz ensures that there is a function f that vanishes on Y but
not on X. Now let g ∈ I(Z). Let p ∈ X. Then p is in either Y or Z, so either f
or g vanishes at p; hence fg vanishes at p. Hence fg ∈ p. But f /∈ p, so g ∈ p.
It follows that I(Z) ⊂ p, whence Z = V (I(Z)) = V (p) = V (I(X)) = X. �

A topological space X is said to be noetherian if any descending chain of
closed subsets

X ⊃ Z1 ⊃ Z2 ⊃ · · ·

eventually stabilizes.
A closed subspace of a noetherian space is obviously noetherian.

Proposition 5.4 Every affine variety is noetherian.

Proof. Because the polynomial ring is noetherian, An is noetherian. Hence
every closed subvariety X ⊂ An is noetherian. �

Proposition 5.5 If X is a noetherian topological space, then there is a unique
way of writing X = X1∪ · · ·∪Xn where each Xi is a closed irreducible subspace
of X and Xi 6⊂ Xj if i 6= j.

Proof. First we show that X is a finite union of irreducible subspaces. Suppose
to the contrary that X is not such a union. In particular, X is not irreducible,
so we can write X = Y1 ∪ Z1 as a union of proper closed subspaces. If both Y1

and Z1 were finite unions of closed irreducible subspaces, X would be too, so
one of them, say Z1, is not such a union. In particular, Z1 is not irreducible,
so we can write Z1 = Z2 ∪ Y2 as a union of proper closed subspaces, and one of
these, say Z2, is not a finite union of irreducible subspaces.

Repeating this process leads to an infinite descending chain Z1 ⊃ Z2 ⊃ · · ·
of subspaces contradicting the hypothesis that X is noetherian. We therefore
conclude that X is a finite union of irreducible subspaces.

It remains to prove the uniqueness. Suppose that X = X1 ∪ · · · ∪ Xn =
Y1 ∪ · · · ∪Ym where each Xi and each Ys is irreducible and Xi 6⊂ Xj if i 6= j and
Ys 6⊂ Yt if s 6= t. Then the irreducible space Xi = (Xi ∩ Y1) ∪ · · · ∪ (Xi ∩ Ym)
is a union of closed subspaces so must equal one of them, whence Xi ⊂ SYs for
some s. Likewise each Ys is contained in some Xj . But then Xi ⊂ Ys ⊂ Xj , so
Xi = Ys. It follows that m = n and {X1, . . . , Xn} = {Y1, . . . , Ym}. �

Definition 5.6 The closed subspaces X1, . . . , Xn appearing in Proposition 5.5
are called the irreducible components of X. ♦

Theorem 5.7 The irreducible components of an affine algebraic variety X are
V (p1), . . . , V (pn), where p1, . . . , pn are the minimal primes over I(X).
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Proof. We can view X as a closed subvariety of some affine space Am. Let
I(X) be the ideal of functions vanishing on X. Let p1, . . . , pn be the distinct
minimal primes over X. Since I(X) is radical, I(X) = p1 ∩ · · · ∩ pn, whence

X = V (p1 ∩ · · · ∩ pn) = V (p1) ∪ · · · ∪ V (pn).

Now Xi := V (pi) is a closed irreducible subvariety of X, and because pj 6⊂ pi
when i 6= j, Xi 6⊂ Xj when i 6= j. �

The minimal primes over a principal ideal fR in a UFD R are p1R, . . . , pnR
where p1, . . . , pn are the distinct irreducible divisors of f . Hence the irreducible
components of V (f) are V (p1), . . . , V (pn). Expressing a variety as the union of
its irreducible components is the geometric analog of expressing an element as
a product of powers of irreducibles.

Theorem 5.7 suggests that we can examine an algebraic variety by study-
ing one irreducible component at a time. This is why, in algebraic geometry
texts, you will often see the hypothesis that the variety under consideration
is irreducible. Of course, questions such as how do the irreducible components
intersect one another cannot be studied one component at a time.

Lemma 5.8 Let X be a subspace of a topological space Y . Then every irre-
ducible component of X is contained in an irreducible component of Y .

Proof. Let Z be an irreducible component of X. Write Y = ∪i∈IYi where
the Yis are the distinct irreducible components of Y . Then Z = ∪i∈I(Z ∩ Yi)
expresses Z as a union of closed subspaces. But Z is irreducible so some Z ∩ Yi
is equal to Z; i.e., Z ⊂ Yi for some i. �

Lemma 5.9 Let f : X → Y be a continuous map between topological spaces.
Then

1. if X is irreducible so is f(X);

2. if Z is an irreducible component of X, then f(Z) is contained in an irre-
ducible component of Y .

Proof. (1) We can, and do, replace Y by f(X) and f(X) is given the sub-
space topology. If f(X) = W1 ∪ W2 with each Wi closed in f(X), then
X = f−1(f(X)) = f−1(W1) ∪ f−1(W2) so X = f−1(Wi) for some i. Thus
f(X) ⊂Wi. Hence f(X) is irreducible.

(2) Let Z be an irreducible component of X. By (1), f(Z) is an irreducible
subspace of Y so, by Lemma 5.8, f(Z) is contained in an irreducible component
of Y . �

Connected components and idempotents. A topological space X is
connected if the only way in which it can be written as a disjoint union of closed
subsets X = X1tX2 is if one of those sets is equal to X and the other is empty.
There is a unique way of writing X as a disjoint union of connected subspaces,
and those subspaces are called the connected components of X.
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An affine algebraic variety has only finitely many connected components
because it is noetherian.

An irreducible variety is connected, but the converse is not true: for exam-
ple, the union of the axes V (xy) ⊂ A2 is conncted but not irreducible. Hence
the decomposition of a variety into its connected components is a coarser de-
composition than that into its irreducible components.

Suppose a variety X is not connected and write X = X1 tX2 with X1 6= φ
and X2 6= φ. Write Ij = I(Xj). Then I1 ∩ I2 = 0 because X1 ∪ X2 = X,
and I1 + I2 = R because X1 ∩X2 = φ. In other words, we have a direct sum
decomposition O(X) = I1⊕ I2. Conversely, if O(X) = I⊕J is a decomposition
as a direct sum of two non-zero ideals, there is a non-trivial decomposition
X = V (I) t V (J).

If O(X) = I1 ⊕ I2 there is a unique way of writing 1 = e1 + e2 with ej ∈ Ij .
It is clear that e1 and e2 are orthogonal idempotents, i.e., e2j = ej and e1e2 =
e2e1 = 0. Notice that e1 is the function that is identically 1 on X2 and zero on
X1.

More generally, a decomposition X = X1 t · · · tXn into connected compo-
nents corresponds to a decomposition 1 = e1 + · · ·+en of 1 as a sum of pairwise
orthogonal idempotents.

1.6 Plane Curves

The simplest algebraic varieties after those consisting of a finite set of points
are the plane curves. These have been of central importance in mathematics
since ancient times. Earlier we defined a plane curve as V (f) where f ∈ k[x, y]
is a non-constant polynomial (see Example 1.2) and showed that a plane curve
has infinitely many points when k is algebraically closed. In this section we will
show that the intersection of two distinct irreducible curves is a finite set.

We continue to work over an algebraically closed field k.

Lemma 6.1 Let R be a UFD and 0 6= f, g ∈ R[X]. Then f and g have a
common factor of degree ≥ 1 if and only if af = bg for some non-zero a, b ∈ R[x]
such that deg a < deg g (equivalently deg b < deg f).

Proof. (⇒) If f = bc and g = ac where c is a common factor of degree ≥ 1,
the af = bg and deg a < deg g.

(⇐) Suppose such a and b exist. Because R[X] is a UFD we can cancel any
common factors of a and b, so we will assume that a and b have no common
factor. Since R[X] is a UFD and a|bg it follows that a|g. Thus g = ac and
deg c > 0 since deg a < deg g. Now af = bg = bac implies f = bc so c is a
common factor. �

Definition 6.2 Let R be a domain. The resultant, R(f, g), of polynomials

f = a0X
m + . . .+ am−1X + am

g = b0X
n + . . .+ bn−1X + bn
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in R[X] of degrees m and n is the determinant of the (m+n)× (m+n) matrix

a0 a1 . . . am 0 . . . 0
0 a0 a1 . . . am 0 . . . 0
...

...
b0 b1 . . . bn−1 bn 0 . . . 0
0 b0 b1 . . . bn−1 bn 0 . . . 0
...

...
0 . . . 0 b0 b1 . . . bn−1 bn


where there are n rows of the a’s and m rows of the b’s. ♦

Lemma 6.3 Let R be a UFD and 0 6= f, g ∈ R[X]. Then f and g have a
common factor of degree ≥ 1 if and only if R(f, g) = 0.

Proof. By Lemma 6.1 it suffices to show that R(f, g) = 0 if and only if af = bg
for some 0 6= a, b ∈ R[X] such that deg a < deg g and deg b < deg f . It imposes
no additional restriction to require that deg a = deg g−1 and deg b = deg f −1.
There exist such polynomials

a =
n−1∑
i=0

ciX
n−1−i and b = −

m−1∑
j=0

djX
m−1−j

if and only if

(c0Xn−1 + c1X
n−2 + · · ·+ cn−2X + cn−1)(a0X

m + · · ·+ am−1X + am) +

(d0X
m−1 + d1X

m−2 + · · ·+ dm−2X + dm−1)(b0Xn + · · ·+ bn−1X + bn) = 0.

Thus f and g have a common factor if and only if there is a solution to the
matrix equation

a0 a1 . . . am 0 . . . 0
0 a0 a1 . . . am 0 . . . 0
...

...
b0 b1 . . . bn−1 bn 0 . . . 0
0 b0 b1 . . . bn−1 bn 0 . . . 0
...

...
0 . . . 0 b0 b1 . . . bn−1 bn





cn−1

cn−2

...
c0

dm−1

...
d0


= 0;

i.e., if and only if R(f, g) = 0. �

Proposition 6.4 Let f, g ∈ R[X]. Then R(f, g) = cf+dg for some c, d ∈ R[X]
with deg c = deg g − 1 and deg d = deg f − 1. In particular, R(f, g) belongs to
the ideal (f, g).
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Proof. For each i = 1, . . . ,m+ n multiply the ith column of the matrix whose
determinant is R(f, g) by Xm+n−i and add it to the last column. This leaves
all columns unchanged except the last which is now the transpose of(

Xn−1f Xn−2f . . . Xf f Xm−1g Xm−2g . . . Xg g
)
.

The determinant of this new matrix is the same as the determinant of the
original one, namely R(f, g). But computing the determinant by expanding
this new matrix down the last column shows that R(f, g) = cf + dg. �

Corollary 6.5 Let f, g ∈ k[x, y] be polynomials of positive degree having no
common factor. Then V (f, g) is finite.

Proof. Let I be the ideal of k[x, y] generated by f and g.
First view f and g as polynomials in R[x] where R = k[y]. Because f and

g have no common factor R(f, g) 6= 0. But R(f, g) ∈ k[y] and is also in I by
Proposition 6.4. Hence I ∩ k[y] 6= 0. Similarly, I ∩ k[x] 6= 0.

Let 0 6= a ∈ I ∩ k[y] and 0 6= b ∈ I ∩ k[x]. Then V (f, g) ⊂ V (a, b) =
V (a) ∩ V (b). But V (a) is a finite union of horizontal lines {λ} × A1 where λ
runs over the zeroes of a ∈ k[y]. Similarly, V (b) is a finite union of vertical lines,
so V (a) ∩ V (b) is finite. It follows that V (f, g) is finite. �

Corollary 6.6 Let k be an algebraically closed field, and let f, g ∈ k[x] be
polynomials of degree m and n respectively. Then f and g have a common zero
if and only if R(f, g) = 0.

Proof. If they have a common zero, say λ ∈ k then they have the common
factor (x − λ), so R(f, g) = 0. Conversely, if R(f, g) = 0 then they have a
common factor, and hence a common factor of degree 1, say x − λ, since k is
algebraically closed. Thus f(λ) = g(λ) = 0. �

The next result gives a more concrete interpretation of the resultant R(f, g):
it is the determinant of a map which is rather naturally defined in terms of f and
g. Before we state the result, recall that if R is a commutative ring, N a free R-
module, and ϕ : N → N a R-module map, then a choice of basis for N allows us
to express ϕ as a matrix with respect to that basis, and the determinant of that
matrix may be defined in the usual way. Since the determinant is independent
of the choice of basis, we may speak of the determinant of ϕ, det(ϕ), as a
well-defined element of R.

Theorem 6.7 Let R be a domain and suppose that f =
∑m
i=0 aiX

m−i and
g =

∑n
i=0 biX

n−i are polynomials in R[X] such that a0 and b0 are units in R.
Then R[X]/(f) is a free R-module of rank m, and if ϕ : R[X]/(f)→ R[X]/(f)
is defined by ϕ(a) = ga, then

det(ϕ) = cR(f, g)
for some unit c ∈ R.
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Proof. The proof is given in several steps, and is finally completed by combining
steps (2) and (7). For each j ≥ 1 define Vj = R⊕RX ⊕ . . .⊕RXj−1.

Step 1 Claim: R[X] = (f) ⊕ Vm. Proof: Since deg(f) = m, (f) ∩ Vm = 0.
The R-module (f) + Vm contains 1, X, . . . ,Xm−1 and also Xm since a0 is a
unit. Therefore, if Xj = fa+ b with b ∈ Vm then Xj+1 = faX + bX is also in
(f) + Vm. The result follows by induction on j.

Step 2 It follows that the natural map γ : Vm → R[X] → R[X]/(f) is a R-
module isomorphism. Define ψ : Vm → Vm by ψ = γ−1ϕγ. Then det(ψ) =det(ϕ).

Step 3 Claim: if w ∈ Vm, then there is a unique v ∈ Vn such that fv+ gw ∈
Vm. Proof: Since R[X] = (f)⊕Vm, and since R[X] is a domain, there is a unique
v ∈ R[X] such that fv + gw ∈ Vm. Now deg(fv) ≤ max{deg(gw),m − 1} ≤
m+ n− 1, so deg(v) ≤ n− 1 as required.

Step 4 For each w ∈ Vm define θ(w) = Xmv where v ∈ Vn has the property
fv + gw ∈ Vm. The uniqueness of v ensures that we obtain a well-defined map
θ : Vm → XmVn. It is routine to check that θ is a R-module homomorphism.

Step 5 Claim: R(f, g) = det(ρ) where ρ : Vm+n = XmVn⊕Vm → Vm+n is de-
fined by ρ(Xmv+w) = fv+gw for v ∈ Vn, w ∈ Vm. Proof: Consider the matrix
representation of ρ with respect to the ordered basisXm+n−1, Xm+n−2, . . . , X, 1
for the free R-module Vm+n. We have

ρ(Xm+n−1) = fXn−1 = a0X
m+n−1 + a1X

m+n−2 + . . .+ amX
n−1

ρ(Xm+n−2) = fXn−2 = a0X
m+n−2 + a1X

m+n−3 + . . .+ amX
n−2

...
ρ(Xm) = f = a0X

m + . . .+ am

ρ(Xm−1) = gXm−1 = b0X
m+n−1 + b1X

m+n−2 + . . .+ bnX
m−1

...

ρ(1) = g = b0X
n−1 + . . .+ bn

Thus the matrix representing ρ is

a0 0 . . . 0 b0 0 . . . 0
0 a0 . . . 0 b1 b0 . . . 0
...

...
...

...
...

am am−1 . . . . . . 0
0 am . . . . . . 0
...

...
...

...
...

0 0 . . . a0 bn−1 . . .
0 0 . . . a1 bn bn−1 . . .
0 0 . . . a2 0 bn . . .
...

...
...

...
...

0 0 . . . am 0 0 . . . bn
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which is the transpose of the matrix whose determinant is R(f, g). Hence
det(ρ) = R(f, g).

Step 6 Claim: ψ = ρ(θ + 1) on Vm. Proof: Let w ∈ Vm. Then
γρ(θ + 1)(w) = γρ(θ(w) + w) = γ(fX−mθ(w) + gw) = γ(gw) = gγ(w) = ϕγ(w)
whence γρ(θ + 1) = ϕγ. The claim follows since ψ = γ−1ϕγ.

Step 7 Claim: There is a unit c ∈ R such that det(ρ) = cdet(ψ). Proof: If
u ∈ XmVn and w ∈ Vm, we will write the element u+w ∈ Vm+n = XmVn⊕Vm
as a column vector

(
u
w

)
. We will also represent a R-module map Vm+n → Vm+n

as a blocked matrix accordingly. For example, ρ =
(
ρ11 ρ12

ρ21 ρ22

)
where ρ11 :

XmVn → XmVn, ρ12 : Vm → XmVn etc. In particular(
ρ11 0
ρ21 IdVm

)(
u
w

)
=
(

ρ11(u)
ρ21(u) + w

)
= ρ11(u) + ρ21(u) + w = ρ(u) + w.

Thus (
ρ11 0
ρ21 IdVm

)(
IdXmVn

−θ
0 ψ

)(
u
w

)
=
(
ρ11 0
ρ21 IdVm

)(
u− θ(w)
ψ(w)

)
= ρ(u− θ(w)) + ψ(w)
= ρ(u) + ρ(w).

Thus (
ρ11 0
ρ21 1

)(
1 −θ
0 ψ

)
= ρ,

from which it follows that det(ρ) = det(ρ11) det(ψ).
It remains to show that ρ11 is invertible, and hence that det(ρ11) is a unit

in R. By definition, if v ∈ Vn then ρ11(Xmv) is the component of ρ(Xmv) = fv
in XmVn. Since fVn ∩ Vm = 0, ρ11 is injective. On the other hand, ρ11 is a
R-module map, so it is enough to show that Xm, Xm+1, . . . , Xm+n−1 are in the
image of ρ11. Now ρ11(Xm) is the component of f in XmVn, namely a0X

m.
Since a0 is a unit, Xm ∈ Im(ρ11). Now ρ11(Xm+1) = a0X

m+1 + a1X
m, and

since Xm ∈ Im(ρ11) we have Xm+1 ∈ Im(ρ11). Continuing inductively yields
the result. �

1.7 Morphisms between affine varieties

Algebraic geometry is the study of algebraic varieties and the maps between
them.

Our next job is to specify the class of maps we allow between two affine
algebraic varieties; i.e., what maps ψ : X → Y should we allow between closed
subvarieties X ⊂ An and Y ⊂ Am? We will eventually call the allowable maps
between two varieties morphisms, so the question is, what are the morphisms
ψ : X → Y between two affine algebraic varieties?

The answer appears in Definition 7.1 below, but let’s take our time getting
there and see why that definition is reasonable.
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We start with the case An → A1 = k. It is reasonable to allow the coordinate
functions xi : An → k to be morphisms, and then agree that sums and products
of such functions should also be morphisms. We therefore allow all polynomial
maps f : An → k, f ∈ k[x1, . . . , xn], to be morphisms and, since this is algebraic
geometry, allow no other maps An → k to be morphisms.

Returning to X, we allow the inclusion map X → An to be a morphism.
A composition of morphisms should be a morphism, because we want a cate-
gory of algebraic varieties, so the composition of the inclusion X → An with a
polynomial map f : An → k is a morphism. That is, if f ∈ k[x1, . . . , xn] its
restriction f |X is a morphism X → k. The collection of such restriction maps is
a subset of the ring of all k-valued functions on X. Since the sum and product
of two such restrictions is the restriction of the sum and product respectively,
the restrictions f |X form a subring of the ring of all functions X → k. The rule
f 7→ f |X is a homomorphism from k[x1, . . . , xn] onto this subring, so the sub-
ring is isomorphic to the quotient of k[x1, . . . , xn] by the kernel. However, f |X
is zero if and only if f ∈ I(X) so the ring of all functions f |X , f ∈ k[x1, . . . , xn],
is isomorphic to k[x1, . . . , xn]/I(X).

The morphisms X → k are exactly the functions in O(X).
Let’s return to the question of what maps ψ : X → Y we should allow as

morphisms. Now Y is a subvariety of Am and we have agreed that the inclusion
Y → Am should be a morphism so, if ψ is a morphism, the composition

X
ψ−−−−→ Y −−−−→ Am (7-3)

should be a morphism X → Am. We now make the reasonable requirement that
ψ is a morphism if and only if the composition (7-3) is a morphism X → Am. In
other words, the morphisms X → Y are the morphisms X → Am whose images
belong to Y .

We therefore ask, what maps ψ : X → Am should we allow to be morphisms?
Choosing coordinate functions x1, . . . , xm on Am, ψ can be written as

ψ(p) = (ψ1(p), · · · , ψm(p)) = (x1(ψ(p)), . . . , xm(ψ(p)), p ∈ X. (7-4)

Each ψi = xi ◦ ψ is a map X → k. We have agreed that the coordinate
functions xi : Am → k are morphisms, so the compositions xi ◦ ψ = ψi should
be morphisms X → k; that is, each ψi should belong to O(X). We now declare
that ψ : X → Am is a morphism if and only if each ψi in (7-4) is a morphism
X → k. That is, each ψi must be given by a polynomial.

Definition 7.1 Let X ⊂ An and Y ⊂ Am be closed subvarieties. A map ψ : X →
Y is a morphism, or regular map, or polynomial map, if there are polynomials
ψ1, . . . , ψm ∈ k[x1, . . . , xn] such that

ψ(p) = (ψ1(p), · · · , ψm(p))

for all p ∈ X. ♦
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For example, the map λ 7→ (λ2, λ3) is a morphism A1 → A2. Its image is
the curve x3− y2. Similarly, the map A1 → A2 given by λ 7→ (λ2− 1, λ(λ2− 1))
is a morphism onto the curve y2 = x2(x+ 1).

However, the inverse of the bijective map λ → (λ2, λ3) is not a morphism
from V (x3 − y2) to A1 (see Example 7.6).

Observe that the definition of a morphism is compatible with our earlier
remarks. For example, the morphisms X → k are exactly the regular functions.

It is clear that the identity map idX : X → X is a morphism. It is easy
to show that a composition of morphisms is a morphism. We may therefore
speak of the category of affine algebraic varieties. The objects are the closed
subvarieties of the affine spaces An and the morphisms are the maps defined in
Definition 7.1.

Theorem 7.2 Let X ⊂ An and Y ⊂ Am be closed subvarieties.

1. A morphism ψ : X → Y induces a ring homomorphism ψ∗ : O(Y ) →
O(X) defined by composition of functions: that is, ψ∗(f) = f ◦ ψ.

2. Every k-algebra homomorphism O(Y ) → O(X) is of the form ψ∗ for a
unique morphism ψ : X → Y .

3. If ψ : X → Y and ϕ : Y → Z are morphisms, then (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗.

4. The category of affine algebraic varieties is equivalent to the opposite of
the category of finitely generated commutative k-algebras.

Proof. (1) Every f ∈ O(Y ) is a morphism f : Y → k. Since a composition of
morphisms is a morphism, f ◦ ψ belongs to O(X). It is clear that ψ∗ is a ring
homomorphism, and even a k-algebra homomorphism.

(2) Let ϕ : O(Y )→ O(X) be a homomorphism of k-algebras. Write O(Y ) =
k[y1, . . . , ym]/I(Y ) and O(X) = k[x1, . . . , xn]/I(X). It is helpful to think of ϕ
as a homomorphism k[y1, . . . , ym]→ O(X) that vanishes on I(Y ).

Define ψi = ϕ(yi) and ψ : X → Am by

ψ(p) = (ψ1(p), . . . , ψm(p)).

Now ψ(p) belongs to Y because if g ∈ I(Y ), then

g(ψ(p)) = g((ψ1(p), . . . , ψm(p)) = g(ψ1, . . . , ψm)(p)

where g(ψ1, . . . , ψm) means substitute the polynomial ψi for yi in g(y1, . . . , ym).
Hence

g(ψ1, . . . , ψm) = g(ϕ(y1), . . . , ϕ(ym)) = ϕ(g) = 0

where the last equality is because ϕ vanishes on I(Y ). �

Two objects in a category are isomorphic if there are morphisms between
them such that each of the two compositions of the maps is the identity. In par-
ticular, two varieties X and Y are isomorphic if and only if there are morphisms
ψ : X → Y and ϕ : Y → X such that ψ ◦ ϕ = idY and ϕ ◦ ψ = idX .

Because of the equivalence of categories, we can rephrase this.
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Proposition 7.3 Two affine varieties X and Y are isomorphic if and only if
the k-algebras O(X) and O(Y ) are isomorphic.

Corollary 7.4 If X and Y are finite affine varieties, then X ∼= Y if and only
if |X| = |Y |.

Proof. (⇒) This is obvious.
(⇐) By the remarks after Lemma 2.4, O(X) is equal to the ring of all

functions X → k. This ring obviously depends only on the cardinality of X.
Hence the result. �

Remark. If X and Y are finite varieties then any set map X → Y is a
morphism (because any map X → k is a regular function). Suppose that G is
a finite group. Then we can view G as an affine variety, and the mutiplication
map G×G→ G and the inversion G→ G, g 7→ g1 , are morphisms. In this way
G becomes an algebraic group (see later).

Example 7.5 Let f(x) ∈ k[x] be any non-zero polynomial. Then the curve
y = f(x) is isomorphic to the affine line via the morphism t 7→ (t, f(t)) and its
inverse (x, y) 7→ x. Equivalently, the k-algebra homomorphism φ : k[x, y]→ k[x]
given by φ(x) = x and φ(y) = f(x) is surjective and has kernel (y − f(x)). ♦

Example 7.6 Not every continuous map between affine varieties is a morphism.
1. Recall that the closed subsets of A1 are just the finite subsets and A1

itself. It follows that every bijective set map A1 → A1 is continuous in the
Zariski topology. No doubt you can think of lots of bijective maps C→ C that
are not given by polynomial maps.

2. The map ψ−1 : X → A1 that is the inverse of the morphism λ 7→ (λ2, λ3)
to the cusp X = V (y2−x3), is bijective, hence continuous. But ψ−1 is not given
by the restriction of a polynomial map A2 → k so is not a morphism. To verify
this last claim, suppose to the contrary that ψ−1 is given by a polynomial f ∈
k[x, y]; i.e., f |C = ψ−1. In particular, if λ 6= 0, then f(λ2, λ3) = ψ−1(λ2, λ3) =
λ; in other words, λ3f(λ2, λ3) = λ2. Hence yf − x vanishes at (λ2, λ3).

Now V (yf − x) is closed in A2 and contains C\{0}, so contains C. Since
yf − x vanishes on C it is a multiple of y2 − x3. Passing to k[x, y]/(y2 − x3)
which is isomorphic to k[t2, t3], this gives t3f̄ = t2. That is not possible!

3. The Frobenius morphism. If char k = p, the map f 7→ fp from k[x1, . . . , xn]
to itself is a ring homomorphism. The corresponding morphism Fr : An → An,
(a1, . . . , an) → (ap1, . . . , a

p
n) is called the Frobenius morphism. It is bijective,

hence a homeomorphism, but its inverse is not a morphism. ♦

Exercise. Let f : X → Y be a morphism. If X ′ is an irreducible component
of X show that f(X ′) is contained in one of the irreducible components of Y .

Proposition 7.7 Let f : X → Y be a morphism between affine varieties and
write φ : O(Y )→ O(X) for the corresponding ring homomorphism. Then

1. if Z ⊂ Y is closed, then f−1(Z) = V (φ(I(Z)));
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2. f is continuous,

3. if W ⊂ X is closed, then I(f(W )) = φ−1(I(W )) = I(f(W ));

4. kerφ = I(f(X)) and f(X) = V (kerφ);

5. φ is injective if and only if f(X) is dense in Y ;

6. the fibers Xy := f−1(y) are closed subvarieties of X;

7. mf(x) = φ−1(mx).

Proof. (1) Let J = I(Z). Then

f−1(Z) = {x ∈ X | f(x) ∈ Z}
= {x ∈ X | g(f(x)) = 0 for all g ∈ J}
= {x ∈ X | φ(g)(x) = 0 for all g ∈ J}
= V (φ(J)).

(2) Part (1) shows that the inverse image of a closed set is closed, so f is
continuous.

(3) We have

I(f(W )) = {g ∈ O(Y ) | g(f(W )) = 0}
= {g ∈ O(Y ) | φ(g)(W ) = 0}
= {g ∈ O(Y ) | φ(g) ∈ I(W )}
= φ−1(I(W )).

(4) Applying (3) with W = X gives

kerφ = φ−1(0) = φ−1(I(X)) = I(f(X)).

By Lemma 1.7, f(X) = V (I(f(X)) = V (kerφ).
(5) This follows from (4).
(6) and (7) are special cases of (1) and (3) respectively. �

A morphism f : X → Y need not send closed sets to closed sets. For
example, the projection of the hyperbola xy = 1 onto the x-axis is a morphism
and the image of the hyperbola is A1 − {0}.

Lemma 7.8 If f : X → Y is a continuous map between topological spaces
and X is irreducible, then both f(X) and f(X) are irreducible (when given the
subspace topology).

Proof. Suppose f(X) = Z ∪W where Z and W are closed subspaces of f(X).
Then X = f−1(Z)∪ f−1(W ) expresses X as a union of closed subspaces so one
of them equals X, say X = f−1(Z). Then f(X) = Z, so f(X) is irreducible.
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We will now show that if U is any subspace of Y that is irreducible (with
the induced subspace topology), then U is irreducible. The Lemma will follow
when we apply this to U = f(X).

If U = Z ∪W , then U = (U ∩Z)∪ (U ∩W ) expresses U as a union of closed
subspaces of itself; hence U is equal to either U ∩Z or U ∩W , and either U ⊂ Z
or U ⊂ W , whence U is contained in either Z or W , and so equal to either Z
or W . Hence U is irreducible. �

Dominant morphisms. When considering a continuous map f : X → Y
between topological spaces one can frequently replace Y by f(X) and consider
instead the surjective map f : X → f(X). We can’t quite do this when consid-
ering morphisms between varieties because f(X) need not be an affine variety—
the problem is that f(X) need not be a closed subspace of Y . However, we can
replace Y by f(X) and then consider the morphism f : X → f(X) between
varieties.

Definition 7.9 A morphism f : X → Y is dominant if f(X) = Y , i.e., if the
image of f is dense in Y . ♦

Part (5) of Proposition 7.7 says that f : X → Y is dominant if and only if
the corresponding k-agebra homomorphism φ : O(Y )→ O(X) is injective. The
hypothesis that a morphism is dominant is the geometric analogue of the hy-
pothesis that a ring homomorphism is injective; or, it is the geometric analogue
of “subalgebra”.

Part (2) of Lemma 7.8 allows us to restrict our attention to morphisms
between irreducible algebraic varieties.

The next example further reinforces the idea that dominance rather than
surjectivity is the key notion for morphisms.

Example 7.10 There exists a surjective morphism f : X → Y in which Y is
irreducible but f |Z : Z → Y is not surjective for any irreducible component Z
of X.

Take X = V (x(xy − 1)) ⊂ A2; then X = L∪C where L is the y-axis and C
is the hyperbola y = x−1, and these are the two irreducible components of X.
Now let Y = A1 be the x-axis and f : X → Y the projection onto the x-axis;
i.e., f(x, y) = x. Then Y is irreducible and f is surjective, but f(L) = {0} and
f(C) = Y − {0}, so neither f |L nor f |C is surjective. ♦

The function field of an irreducible variety. Let X be an irreducible
affine variety over k. Then O(X) is a domain. We usually write k(X) for the
field of fractions of O(X) and call it the function field or the field of rational
functions on X.

Let f : X → Y be a dominant morphism between irreducible varieties. Then
O(X) is a domain and, since the homomorphism φ : O(Y )→ O(X) is injective,
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there is a commutative diagram of inclusions

O(Y ) −−−−→ k(Y )y y
O(X) −−−−→ k(X).

We therefore view k(Y ) and a subfield of k(X).
Let X be an irreducible algebraic variety and f ∈ k(X). Write f = g/h

where g, h ∈ O(X). We can evaluate f at those points x ∈ X such that
h(x) 6= 0. We usually write

Xh := {x ∈ X | h(x) 6= 0}.

This is an open subset of X because the zero locus of h is closed. Also, if h is
not zero Xh is a non-empty (see Remark 1 after Proposition 2.2) open subset
of X and hence dense. Thus f is defined on a dense open subset of X.

For example, the rational function f = x/z = z/y on the surface xy = z2 is
defined at all points except (0, 0, 0).

A finite intersection of dense open sets is dense and open so if we are given a
finite number of non-zero regular functions on an irreducible X the locus where
none of them vanishes is dense and open. Notice that an intersection of two
dense subsets may be empty: for example the even (resp., odd) integers form a
dense subset of C in the Zariski topology, but their intersection is empty.

Final examples. Consider an affine algebraic variety X. By Lemma 2.4,
there are enough functions inO(X) to distinguish the points, and more generally
disjoint closed subsets, of X. However, if x and y are different points of X the
functions in k+ mxmy ⊂ O(X) no longer distinguish x and y: if f ∈ k+ mxmy,
then f(x) = f(y). Now k + mxmy is a finitely generated k-subalgebra of O(X)
so is the coordinate ring of some affine algebraic variety Y and the inclusion
O(Y ) → O(X) corresponds to a morphism π : X → Y with the property that
π(x) = π(y).

This is one crude way of constructing new varieties from old: by identifying
points.

Another simle example of this is to consider the subring k[x2] of k[x] =
O(A1). Functions in k[x2] take the same value at the points p,−p ∈ A1. Thus
k[x2] is the coordinate ring of A1/ ∼ where ∼ is the equivalence relation p ∼ −p
on A1. Of course, A1/ ∼ is still an affine line, but it is a different affine line
than the original one.

One might be more ambitious and try to collapse a curve on a surface X to
a single point. For example, if R = k[x, y], then a function in k + xR takes the
same value at all points of the y-axis V (x). However, k + xR is not a finitely
generated k-algebra (because it is not noetherian–why?) so is not the coordinate
ring of an affine algebraic variety. However, the subalgebra k[x, xy] of k[x, y]
is finitely generated and, because k[x, xy] ⊂ k + xR, a function in it takes the
same value at all points (0, ∗) ∈ A2. Precisely, k[x, xy] is also a polynomial ring
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in two variables so the inclusion k[x, xy] → k[x, y] corresponds to a morphism
π : A2 → A2 that sends the y-axis to the origin but is bijective elsewhere.

This example is also important because it shows that the fibers of a morphism
can have different dimensions.

The other reason this example is important is because it is the simplest
(partial) example of blowing up a point on a surface. From the point of view
of the target X this map π : X̃ = A2 → X = A2 has replaced the single point
(0, 0) ∈ X by an affine line—we say we have blown up the origin.

Actually, blowing up a point on a surface really involves replacing the point
by a projective line P1. Over k = C, the projective line is the Riemann sphere
CP1 so the point has been replaced by a sphere. Think of putting a straw into
the point and puffing, thus producing a bubble, the sphere CP1.

Returning to the idea of passing from O(X) to k+mxmy, one could consider
instead k+m2

x. This is also a finitely generated k-algebra so is of the form O(Y )
and the inclusion O(Y ) ⊂ O(X) corresponds to a map π : X → Y . It is not
hard to show that π is bijective (show that the map m 7→ m∩O(Y ) is a bijection
between the maximal ideals in O(X) and O(Y )). However, π : X → Y is not
an isomorphism because one has lost some first order data. For example, look
at the case of X = A1 and the subring k[t2, t3] ⊂ k[t]. The map π : X → Y
produces a singularity at the origin.. For example, look at the case of X = A1

and the subring k[t2, t3] ⊂ k[t]. The map π : X → Y produces a singularity at
the origin.

1.8 Open subsets of an affine variety

We showed in section 1.2 that the topology on a closed subvariety X ⊂ An
inherited from the Zariski topology on An may be described intrinsically in
terms of O(X). Namely, the closed subsets of X are the

V (I) := {x ∈ X | f(x) = 0 for all f ∈ O(X)}.

The simplest such sets are those of the form V (f), the zero loci of a single
equation f ∈ O(X). Their open complements

Xf := {x ∈ X | f(x) 6= 0}

are called basic open sets. They play a particularly important role. Notice that
Xf ∩Xg = Xfg.

If Z ⊂ X is any closed set, say Z = {x | f1(x) = · · · = fr(x) = 0}, then

X − Z = Xf1 ∪Xf2 ∪ · · · ∪Xfr ,

so every open set is a finite union of basic open sets. In other words, the basic
open sets provide a basis for the Zariski topology on X.

Proposition 8.1 The open set Xf may be given the structure of an affine al-
gebraic variety in such a way that the inclusion Xf → X is a morphism.
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Proof. Let I = I(X) be the ideal of X, x1, . . . , xn a set of coordinate functions
on An, and let xn+1 be a new variable.. There is bijection

Xf ←→ V (I, fxn+1 − 1) ⊂ An+1

p←→ (p, f(p)−1) ∈ An × A1

so we will identify Xf with the closed subvariety V (I, fxn+1−1) of An+1. Doing
this we find

O(Xf ) =
O(X)[xn+1]
(fxn+1 − 1)

= O(X)[f−1].

The projection map π : An+1 → An onto the first n coordinates yields a com-
mutative diagram

V (I, fxn+1 − 1) −−−−→ An+1

i

y yπ
X = V (I) −−−−→ An

when restrictied to the indicated closed subvarieties. It is easy to see that i
is a bijection onto Xf and is therefore a homeomorphism. The corresponding
commutative diagram of k-algebra homomorphisms is

O(X)[f−1] ←−−−− k[x1, . . . , xn, xn+1]x x
O(X) ←−−−− k[x1, . . . , xn].

This completes the proof. �

Remark. Not every open subset of X can be given the structure of an
algebraic variety. For example, U = C2 − {0} can not be given the structure of
an algebraic variety in such a way that the inclusion U → C2 is a morphism.
This is essentially because any regular function f : U → C would be regular on
C − {either axis} so would belong to C[x, y][x−1] ∩ C[x, y][y−1] which is equal
to C[x, y]. Thus the map O(C2)→ O(U) is an isomorphism, but this is absurd
because of the Nullstellensatz—it would say that the natural map U → C2 is a
bijection.

Of course, C2 − {0} is not a pathological object so algebraic geometry must
be adapted to accomodate it. This has been done long ago. What one does is
this. Rather than having a single ring of functions on C2−{0}, one has a sheaf
of functions on C2 − {0}; that is, for every open subset U of C2 − {0} one has
a ring O(U) of C-valued functions, and there are some obvious compatibilities
between these rings that correspond to inclusions U1 ⊂ U2 and so on. The
jargon is that C2 − {0} is a quasi-affine algebraic variety.

More generally, if X is an irreducible affine algebraic variety and Z is a
closed subvariety such that dimZ ≤ dimX − 2, then X − Z can not be given
the structure of an affine algebraic variety.
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Exercise. Let f : X → Y be a morphism between two affine algebraic vari-
eties and let φ : O(Y )→ O(X) be the corresponding k-algebra homomorphism.
If g ∈ O(Y ), then f−1(Yg) = Xφ(g).

Birational Geometry. One of the long-standing themes in algebraic ge-
ometry is birational geometry. Two irreducible varieties X and Y are birational
or birationally equivalent if k(X) ∼= k(Y ). A central problem in algebraic ge-
ometry is to find, for a given variety X a nice variety Y that is birational to
X. Of course one wants Y to be “nicer” than X in some way. For example,
one might ask that Y be smooth. Of course, one can always do that because
X has a dense open subset that is smooth, so one asks also that there be a
surjective morphism f : Y → X with Y smooth and f an isomorphism on a
dense open set. Hironaka won the Fields Medal for proving that this is possible
in characteristic zero. You will win the Fields medal if you can prove the result
in positive charateristic.

The close relationship between a pair of birationally equivalent varieties is
exhibited by the following observation.

Proposition 8.2 Two irreducible varieties are birational if and only if they
possess isomorphic dense open subvarieties.

Proof. Let X and Y be the irreducible varieties in question.
(⇒) This is more straightforward than the proof suggests—the difficulty lies

in finding the domains of definition of the appropriate morphisms.
Suppose φ : k(Y ) → k(X) is an isomorphism. Write O(Y ) = k[y1, . . . , ym]

and φ(yi) = aib
−1
i where ai, bi ∈ O(X). If we set b =

∏
bi, then

φ(O(Y )) ⊂ O(X)[b−1].

In other words, if X ′ = Xb, the restriction of φ to O(Y ) corresponds to a
morphism

f : X ′ → Y.

Similarly, there is a non-empty open subset Y ′ ⊂ Y such that restriction of φ−1

to O(X) corresponds to a morphism

g : Y ′ → X.

Define

X0 := f−1g−1(X ′) ⊂ X ′ and Y0 := g−1f−1(Y ′) ⊂ Y ′.

Because f is the morphism corresponding to an injective homomorphismO(Y )→
O(X ′), f(X ′) is dense in Y ; thus Y ′ ∩ f(X ′) 6= φ and f−1(Y ′) 6= φ; repeating
this argument we see that g−1f−1(Y ′) 6= φ also. Thus X0 and Y0 are non-empty
open subvarieties of X and Y .

We now show that f(X0) ⊂ Y0 and g(Y0) ⊂ X0. We will prove the first of
these inclusions; the same argument with the roles of X and Y reversed will
then establish the second inclusion.
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By definition, f(X0) ⊂ g−1(X ′). Let y ∈ g−1(X ′). Then y ∈ Y ′ and fg(y) ∈
f(X ′). Because f and g are the morphisms corresponding to (restrictions of)
φ and φ−1, fg(y) = y. Thus y ∈ g−1f−1(y) ⊂ g−1f−1(Y ′) = Y0. Hence
f(X0) ⊂ g−1(X ′) ⊂ Y0. Similarly, g(Y0) ⊂ X0.

Now consider f and g as morphisms between X0 and Y0. Because these two
morphisms correspond to (restrictions of) φ and φ−1 it follows that fg = idY0

and gf = idX0 .
(⇐) Let X0 ⊂ X and Y0 ⊂ Y be non-empty open subsets and f : X0 → Y0

an isomorphism. Then f induces an isomorphism O(Y0)→ O(X0) and extends
to an isomorphism k(Y0) → k(X0) between the fields of fractions. But the
inclusions X0 → X and Y0 → Y also induce morphisms O(X) → O(X0) and
O(Y )→ O(Y0) that extend to isomorphisms k(X)→ k(X0) and k(Y )→ k(Y0).
All this can be expressed in the commutative diagram

O(Y ) −−−−→ O(X)y y
O(Y0) −−−−→ O(X0)y y

k(Y ) = k(Y0) −−−−→ k(X0) = k(X).

This is long-winded. The point is simply thatX is birational to every non-empty
open subvariety of itself. �

In other words, birational varieties are almost isomorphic.

Theorem 8.3 Let X be an irreducible affine algebraic variety. Then X is bi-
rational to a hypersurface.

Proof. (Characteristic zero.) Write K = k(X). We must show there is a
hypersurface Y such that k(Y ) ∼= K.

Noether normalization provides a polynomial subalgebra S = k[x1, . . . , xd]
over which O(X) is integral. Now K is a finite extension of F = FractS so the
Primitive Element Theorem tells us there is a single a ∈ K such that K = F (a).
In other words, K ∼= F [T ]/(f) where f is the minimal polynomial of a. We can
replace f by any non-zero scalar multiple of itself so we can, and will, assume
that the coefficients of f belong to S.

Define Y ⊂ Ad+1 to be the zero locus of the polynomial f ∈ S[T ] =
k[x1, . . . , xd, T ]. Thus Y is a hypersurface and there is a surjective map S[T ]→
S[a], T 7→ a, whose kernel is (f) because f is the minimal polynomial of a over
F . Thus O(Y ) ∼= S[a] and k(Y ) = FractO(Y ) ∼= FractS[a] = F (a) = K. �

A further advantage of the birational perspective is that the study of fields is
a branch of algebraic geometry. Given a finitely generated fieldK = k(x1, . . . , xn),
there are many varieties having K as their function field. The geometric prop-
erties of those varieties gives insight into the field K.
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For example, let K be a finite extension of C(x), the function field in one
variable. There is a unique smooth projective curve X having K as its function
field. Not only is X an algebraic variety but it is also a compact Riemann
surface, and as such we can speak of its topological genus, the number of “holes”
in it. The genus of X is then an invariant of the field K. The only smooth
projective curve of genus zero is the projective line P1, or CP1 if you prefer to
think of it as the Riemann sphere. Its function field is C(x). The affine line A1

C
is a dense open subvariety of P1.

The fields of genus one are of the form C(X) where X ⊂ C2 is the zero locus
of a curve of the form y2 = x(x − 1)(x − λ) where λ 6= 0, 1. This is an open
subset of the plane projective curve Y 2Z = X(X − Z)(X − λZ).

1.9 Some algebra

Lemma 9.1 Let I be a finitely generated ideal in a domain R. If I 6= 0 and
I 6= R, then I 6= I2.

Proof. Suppose I2 = I = x1R + · · · + xnR. Then there are elements aij ∈ I
such that

xi = x1ai1 + · · ·+ xnain

for all i = 1, . . . , n. We can arrange this as a matrix equation

(x1 · · ·xn)M = 0

where M is the n× n matrix with entries

Mij =

{
aii − 1 if i = j

aij if i 6= j.

Notice that every non-diagonal element of M belongs to I and the product of
the diagonal elements is of the form (−1)n + b with b ∈ I. It follows that
detM = (−1)n + c with c ∈ I. However xM = 0 so detM = 0. Hence 1 ∈ I. �

Theorem 9.2 (Krull’s Intersection Theorem) Let I be an ideal in a com-
mutative noetherian ring R. If b ∈ ∩∞n=1I

n, then b ∈ bI. If I 6= R and R is
either a domain or local, then ∩∞n=1I

n = 0.

Proof. We may write I = a1R + · · · + atR. Since b ∈ In there is a ho-
mogeneous polynomial Pn(X1, . . . , Xt) ∈ R[X1, . . . , Xt] of degree n such that
b = Pn(a1, . . . , at). Since R[X1, . . . , Xt] is noetherian there is an integer n such
that Pn+1 is in the ideal generated by P1, . . . , Pn, say Pn+1 = Q1P1+· · ·+QnPn
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and each Qi is homomogeneous of degree ≥ 1. Hence

b = Pn+1(a1, . . . , at)

=
n∑
i=1

Qi(a1, . . . , at)Pi(a1, . . . , at)

= b
n∑
i=1

Qi(a1, . . . , at) ∈ bI.

Now suppose I 6= R. If R is a domain, then ∩∞n=1I
n = 0 because b = bx

with x ∈ I implies b = 0. If R is local, then b = bx implies b(1 − x) = 0 but
1− x is a unit so b = 0. �

The next result is already part of Theorem 4.6 but we state it again here
because it is the key to the results on finite morphisms that appear in the next
section. Also the proof we give now is the one usually appearing in commutative
algebra texts.

Proposition 9.3 Let R be a subring of S and suppose that S is a finitely gen-
erated R-module. If m is a maximal ideal of R, then there is a maximal ideal n
of S such that n ∩R = m.

Proof. We can write S =
∑n
j=1Rsj with s1 = 1.

First we show that S 6= Sm. Suppose to the contrary that S = Sm. Then
S =

∑
sjRm =

∑
sjm. For each i = 1, . . . , n, we may write si =

∑
j rijsj for

suitable rij ∈ m. In other words,
∑n
j=1(δij − rij)sj = 0. Let M be the n × n

matrix with ijth entry δij−rij , set ∆ = detM and write s for the column vector
(s1, . . . , sn)T. Thus Ms = 0, and

0 = (Madj)Ms = ∆s

where Madj is the adjoint matrix. Hence ∆si = 0 for all i; in particular,
0 = ∆s1 = ∆ = det(δij − rij). Writing out this determinant explicitly we see
that 1 ∈ m. This is a contradiction, so we conclude that S 6= Sm.

Since Sm is a proper ideal of S it is contained in a maximal ideal, say n.
Then n ∩R ⊃ m, and 1 /∈ n, so n ∩R = m because m is maximal. �

1.10 Finite morphisms

Definition 10.1 A morphism f : X → Y between affine varieties X and Y is
finite if O(X) is a finitely generated O(Y )-module via the induced k-algebra
homomorphism φ : O(Y )→ O(X).

The degree of a finite surjective morphism f : X → Y between irreducible
varieties is [k(X) : k(Y )] = dimk(Y ) k(X), the degree of the field extension. ♦



1.10. FINITE MORPHISMS 35

Remarks. The k-algebra homomorphism φ : O(Y )→ O(X) corresponding
to a finite surjective morphism f : X → Y is injective by Proposition 7.7 so,
when X and Y are irreducible, it induces an injective map k(Y )→ k(X). Hence
the definition of degree makes sense.

Theorem 10.2 Let f : X → Y be a finite dominant morphism. Suppose that
O(X) is generated by ≤ t elements as an O(Y )-module. Then

1. |f−1(y)| ≤ t for all y ∈ Y ;

2. f is surjective;

3. f sends closed sets to closed sets.

Proof. The hypothesis that f is dominant says that the corresponding k-algebra
homomorphism φ : O(Y )→ O(X) is injective, so we will simply view O(Y ) as
a subalgebra of O(X).

(1) Let m be the maximal ideal of O(Y ) vanishing at y. Then f−1(y) =
V (φ(m)). The morphism f−1(y)→ {y} induces a commutative diagram

O(Y )
φ−−−−→ O(X)y y

O(Y )
m = O({y}) −−−−→ O(f−1(y)) = O(X)√

φ(m)O(X)
.

of k-algebra homomorphisms. Therefore O(f−1(y) is generated by ≤ t elements
as a module over O({y}) ∼= k, i.e., O(f−1(y)) is a k-vector space of dimension
≤ t. It now follows from Proposition 2.6 that f−1(y) is finite with cardinality
≤ t.

(2) This is an immediate consequence of Proposition 9.3 because of the
bijection between points and maximal ideals.

(3) Let W ⊂ X be closed. It suffices to show that f(W ) = f(W ). The
restriction f |W : W → f(W ) is a morphism of varieties. The corresponding
k-algebra homomorphism fits into the commutative diagram

O(Y )
φ−−−−→ O(X)y y

O(Y )
I(f(W ) = O(f(W )) −−−−→ = O(X)

I(W ) = O(W ).

The bottom map is injective because I(f(W )) = φ−1(I(W )). Hence by (1)
applied to f |W , f |W is a surjective morphism W → f(W ). �

For example, the inclusion k[x2]→ k[x] makes k[x] a finitely generated k[x2]-
module, generated by 1 and x for example, so the corresponding morphism
ψ : A1 → A1 is surjective with finite fibers. Explicitly, if λ ∈ A1, then

ψ−1(λ) =

{
0 if λ = 0
±
√
λ if λ 6= 0

.
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Let Q be the surface over C cut out by xy = z2 in A3. Write u = 1
2 (x+ y) and

u = 1
2i (x−y). Then x = u+ iv and y = u− iv so the equation xy = z2 becomes

u2+v2 = z2. This makes it easier to picture the real surface as the doubly infinite
icecream cone with vertex at the origin. The map ψ : k[x, y, z]/(xy−z2)→ k[s, t]
defined by x 7→ s2, y 7→ t2, and z 7→ st, makes k[s, t] a finitely generated O(Q)-
module, generated by 1, s, t for example. The map ψ : A2 → Q, (s, t) 7→
(s2, t2, st) is therefore surjective with finite fibers. What are the cardinalities of
the fibers?

Example 10.3 Let f : A2 = X → A2 = Y be the morphism defined by
f(x, y) = (xy, y). The corresponding k-algebra homomorphism φ : O(Y ) =
k[s, t] → O(X) = k[x, y] is given by φ(s) = xy and φ(t) = y. It is better to
think of φ as the inclusion k[xy, y] → k[x, y]. The image of φ is {(α, β) |β 6=
0} ∪ {(0, 0)}. It is clear that f(X) = Y . Notice that f−1((0, 0)) = (∗, 0) but
for every other point p = (α, β) ∈ f(X), f−1(p) = (αβ−1, β) is a singleton.
In particular, we see that one of the fibers is a line and all other fibers are
singletons. Notice too that it now follows that k[x, y] is not a finitely generated
module over k[xy, y]. ♦

The upper bound on the cardinality of the fibers in Theorem 10.2 is far from
the best possible result. We will now prove the definitive result: the cardinality
of the fibers is at most deg f .

First we show that deg f is no more than the number of generators for O(X)
as a O(Y )-module.

Lemma 10.4 Let S be a domain with field of fractions L. Let R be a subring of
S and consider K = FractR as a subfield of L. If S is generated by t elements
as an R-module, then dimK L ≤ t and S contains a K-basis for L.

Proof. Suppose S = Rs1 + · · ·+Rst. Then Ks1 + · · ·+Kst is a subring of L
because

sisj ∈
t∑

k=1

Rsk ⊂
t∑

k=1

Ksk.

Now Ks1 + · · · + Kst is a domain and a finite dimensional K-vector space so
is a field. But this field contains S so must equal L. It follows that L =
Ks1 + · · · + Kst, and the result follows because some subset of {s1, . . . , sn}
must provide a basis for L over K. �

Exercise. In the situation of Lemma 10.4 show that a subset of L is linearly
independent over K if and only if it is linearly independent over R.

Theorem 10.5 Let f : X → Y be a finite dominant morphism between irre-
ducible varieties. Then the fibers of f have cardinality at most the degree of f
and some fiber has that cardinality.
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Proof. In order to lighten the notation we will write R = O(Y ) ⊂ S = O(X),
K = k(Y ) ⊂ L = k(X), and n = deg f = [L : K]. There are inclusions

Y R −−−−→ K

f

x y y
X S −−−−→ L.

By Lemma 10.4,
L = Kf1 ⊕ · · · ⊕Kfn

for some f1, . . . , fn ∈ S. Without loss of generality we may assume that f1 = 1,
so

R ⊂ Rf1 ⊕ · · · ⊕Rfn ⊂ S.

Consider the finitely generated R-module

M = S/(Rf1 ⊕ · · ·Rfn).

Let s ∈ S and write s̄ for its image in M . Since s = a1f1 + · · · + anfn for
some ai ∈ K, there is a non-zero x ∈ R such that xs ∈ Rf1 + · · ·+Rfn. Hence
Ann(s̄) 6= 0. NowM is a finitely generated R-module, sayM = Rm1+· · ·+Rmt,
so AnnM = ∩ti=1 Ann(mi) and this is non-zero because a finite intersection of
non-zero ideals in a domain is non-zero (look at their product!).

Write J = AnnM . Then Y − V (J) is non-empty and open, hence dense.
Pick y ∈ Y − V (J) and let my be the maximal ideal of R vanishing at y. Then
J + my = R. But

S

myS +Rf1 + · · ·+Rfn

is annihilated by my + J so must be zero. In other words, as an R-module, and
thus as an R/my-module, S/myS is generated by the images of f1, . . . , fn. Thus

dimk
S

myS
≤ n = deg f.

Hence, as in the proof of Theorem 10.2, |f−1(y)| ≤ n.
It remains to prove that this bound is obtained. �

Noether normalization again. Let X be a closed subvariety of An. The
coordinate ring O(X) is a finitely generated k-algebra, so Noether normalization
says that O(X) contains a polynomial ring k[y1, . . . , ym] such that O(X) is
integral, and hence a finitely generated module, over k[y1, . . . , ym]. The inclusion
k[y1, . . . , ym] → O(X) is a homomorphism of k-algebras, so corresponds to a
morphism ψ : X → Am. By Corollary ??, ψ is surjective with finite fibers.

Let’s reconsider the example, k[t+t−1] ⊂ k[t, t−1]. Now, k[t, t−1] ∼= k[x, y]/(xy−
1), so k[t, t−1] is isomorphic to the hyperbola xy = 1; let’s write X for this
hyperbola. Since k[t + t−1] is the polynomial ring in one variable, it is the
coordinate ring of the affine line. Hence the inclusion k[t + t−1] → k[t, t−1]
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corresponds to a morphism X → A1. That morphism is given by (x, y) 7→ x+y,
or (x, x−1) 7→ x + x−1. The surjectivity says that for every α ∈ k = A1, there
is a point (x, x−1) ∈ X such that x + x−1 = α; this is nothing more than the
statement that because k is algebraically closed the equation x2 + 1 = αx has
a solution in k. Because k[t, t−1] is generated by two elements as a k[t + t−1]-
module, there are at most two points in each fiber ψ−1(α).

Contrast this with the inclusion k[t] ⊂ k[t, t−1]. The associated morphism
X → A1 is given by (x, x−1) 7→ x. This morphism is not surjective (0 is not
in the image). This tells us at once that k[t, t−1] is not a finitely generated
k[t]-module.

Example 10.6 Let R = k[t] and S = k[x, y] be the polynomial rings in one and
two variables respectively. If φ : k[t]→ k[x, y] is any k-algebra homomorphism,
then k[x, y] is not a finitely generated k[t]-module.

Proof: If kerφ 6= 0, then imφ has finite dimension so the infinite dimensional
vector space k[x, y] cannot be a finitely generated k[t]-module.

Now suppose φ is injective. The corresponding morphism f : A2 → A1 is
the map p 7→ φ(t)(p) so f−1(0) is the zero locus of the polynomial φ(t). By
Theorem 10.2 f−1(0) is finite; but Example 1.2 shows this can only happen if
φ(t) is a constant; but in that case φ is not injective. We conclude that there is
no map φ making k[x, y] a finitely generated k[t]-module. ♦

1.11 Finite group actions

Let G ⊂ AutX be a finite group of automorphisms acting on a variety X. Let’s
write X/∼ for the set of orbits for the moment. One of the most important
constructions in algebraic geometry is the imposition of an algebraic variety
structure on X/∼.

The strategy we employ to do this is not one you have met before. So
far we have defined and/or constructed all varieties as explicit subvarieties of
particular affine spaces. In contrast, we will first define a particular subring
O(X)G ⊂ O(X), then show there is a variety having O(X)G as its coordinate
ring, then introduce the notation X/G for that variety. We do not know what
X/G is at this stage—all we know is its coordinate ring. The inclusionO(X)G →
O(X) corresponds to a morphism π : X → X/G as in Theorem 7.2 and we will
use the algebraic properties of this inclusion to show that π is surjective and
π(x) = π(y) if and only if Gx = Gy. In other words, the points of X/G are in
bijection with the orbits and the fibers of the map π : X → X/G are exactly
the orbits. Thus, there is a bijection between X/∼ and X/G with the property
that the diagram

X

�
�

�	

@
@

@R

π

X/∼ -� 1-1
X/G

commutes.
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In order to explain why O(X)G (defined below) is a good candidate for the
coordinate ring of X/∼ let’s forget algebraic geometry for a moment and just
think of G as a group acting on a set X and write X/∼ for the set of orbits.
Write R(X) and R(X/∼) for the rings of k-valued functions on X and X/∼
respectively. Every function f : X/∼→ k induces a function f̄ : X → k,
x 7→ f(Gx). The map f 7→ f̄ is obviously injective, so we can think of R(X/∼)
as a subring of R(X). What subring is it? The crucial point is this:

if f ∈ R(X/∼), then as a function on X it takes the same value at x
and gx for every x ∈ X and g ∈ G because f(x) is really f(Gx) and,
likewise, f(gx) is really f(Ggx) BUT Gx = Ggx so f(x) = f(gx).

Just as any map π : X → Y between two sets induces a ring homomorphism
R(Y )→ R(X), f 7→ fπ, each g ∈ G induces a map R(X)→ R(X), f 7→ f ◦ g.
I prefer to write f ◦ g as fg because the roles of f and g are very different: f :
X → k but I now want to think of g as giving an automorphism f 7→ fg = f ◦ g
of R(X). In this situation we define

RG := {f ∈ R | fg = f for all g ∈ G}.

Notice that RG consists of the k-valued functions on X that are constant along
each orbit. The previous paragraph shown that the subring R(X/G) of R(X)
belongs to R(X)G.

If f ∈ R(X) is constant along orbits then we may also view f as a function
X/G → k because the map Gx 7→ f(x) is unambiguous. We have therefore
shown that R(X/G) is equal to RG.

If a group G acts as automorphisms of a ring R the subring of invariants is

RG := {r ∈ R | rg = r for all g ∈ G}.

This is a ring because 0 and 1 are invariants, and products, sums, and differences,
of invariants are again invariants. Usually R is a k-algebra and G acts as k-linear
transformations, in which case RG is a k-algebra.

Theorem 11.1 (Hilbert-Noether) Let k be a field and R a finitely generated
commutative k-algebra. Let G be a finite group acting as automorphisms of R.
Then

1. RG is a finitely generated k-algebra, and

2. R is a finitely generated RG-module.

Proof. An element r ∈ R is a zero of the monic polynomial

f(x) :=
∏
σ∈G

(x− rσ) ∈ R[x].

The action of G on R extends to an action of G on R[x] by declaring that xσ = x
for all σ ∈ G. The action of G on f(x) permutes its factors, so f(x) ∈ RG[x].
Thus r is integral over RG.
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Write R = k[r1, . . . , rn] and let fi ∈ RG[x] be a monic polynomial satisfied
by ri. The subalgebra S ⊂ RG generated by the coefficients appearing in the fis
is a finitely generated k-algebra and hence noetherian. Because its generators
are integral over S, R is integral over S. Because R is finitely generated as
an S-algebra it is a noetherian S-module. Therefore RG is a noetherian S-
module, hence a finitely generated k-algebra, a noetherian ring, and R is a
finitely generated RG-module. �

Proposition 11.2 Let R be a domain and K its field of fractions. Let G be a
finite group acting as automorphisms of R. Then

1. KG is the field of fractions of RG;

2. K is generated by R and KG;

3. if the map G → AutR is injective, then K is a Galois extension of KG

with Galois group G.

Proof. (1) Certainly KG is a subfield of K. A non-zero element a in KG

can be written as bc−1 with b, c ∈ R. But d :=
∏
σ∈G c

σ belongs to RG and
a = (bc−1d)d−1; but bc−1d ∈ R and is also G-invariant because it is equal to
ad, so a ∈ FractRG.

(2) Let T be the subring of K generated by R and KG. Now K is integral
over KG because q ∈ K satisfies the monic polynomial

∏
σ∈G(x− qσ) ∈ KG[x].

Hence T is integral over KG. But an integral extension of a field is a field, so T
is a field. But R ⊂ T so K ⊂ T too; thus K = T as required.

(3) The hypothesis implies that the induced map G → AutK is injective,
so we will consider G as a subgroup of AutK. By a theorem of E. Artin,
[K : KG] = |G|. Certainly, G ⊂ Aut(K/KG); also, the subfield of K fixed by
Aut(K/KG) is exactly KG, so another application of Artin’s theorem tells us
that [K : KG] = |Aut(K/KG)|, so we must have G = Aut(K/KG). Hence
K/KG is a Galois extension. �

A more formal way of stating part (2) is to say that the multiplication map
R⊗RG KG → K is an isomorphism.

Definition 11.3 Let G be a finite group of automorphisms acting on an irre-
ducible affine algebraic variety X. We define the quotient variety X/G to be the
variety whose ring of regular functions is O(X)G, i.e.,

O(X/G) := O(X)G.

We call the morphism
π : X → X/G

corresponding to the inclusion O(X)G → O(X) the quotient map. ♦
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Remarks. 1. We defined an affine variety as a Zariski-closed subset of An.
But in this definition we are not defining X/G as a particular closed subset of
any particular An. What happens is this: we know O(X)G is finitely generated
so there is a surjective map k[x1, . . . , xn] → O(X)G for some large integer n,
and this map will have a kernel I and V (I) ⊂ An is an affine variety whose coor-
dinate ring is isomorphic to O(X)G. But another person may pick a completely
different set of generators for O(X)G and so be led to a different V (I ′) ⊂ An′

whose coordinate ring is isomorphic to O(X)G. Thus, X/G is really only defined
up to isomorphism!

2. Recall the discussion on page 28: although a subalgebra R of O(X) is
a ring of functions on X there may not be sufficiently many functions in R
to distinguish all the points of X, and that the closed points of SpecR are
obtained by collapsing together the points of X that R fails to distinguish. This
idea applies to O(X)G. Functions in O(X)G cannot distinguish between two
points belonging to the same orbit so X/G is obtained from X by crushing each
orbit to a single point.

Theorem 11.4 Let G ⊂ AutX be a finite group acting on an affine algebraic
variety X. The quotient morphism π : X → X/G is surjective and its fibers are
exactly the orbits. If X is irreducible, then O(X) is integral over O(X/G) and
deg π = |G|.

Proof. By Theorem 11.1, O(X) is integral over O(X)G so π is surjective by
Theorem 10.2.

By the Remark after Proposition 2.2, to show that π(x) = π(gx) it suffices
to show that f(π(x)) = f(π(gx)) for all f ∈ O(X)G. However, f ◦ π is really
just f since we are identifying O(X/G) with O(X)G ⊂ O(X).

Now suppose x, y ∈ X have distinct orbits. Then Gy and Gx are distinct
closed sets so there is a function f ∈ O(X) such that f(gx) = 1 and f(gy) = 0
for all g ∈ G. The function F :=

∏
g∈G f

g is certainly in O(X)G, and F (x) = 1
and F (y) = 0. Hence π(x) 6= π(y).

The previous two paragraphs show that the fibers of π are exactly the orbits
of G. �

Finally, we show that X/G, or rather the pair consisting of X/G and the
quotient map π : X → X/G, has an appropriate universal property.

Proposition 11.5 Let G be a finite group acting on an affine algebraic variety
X and suppose that ρ : X → Y is a morphism that is constant on each G-orbit.
Then there is a unique morphism δ : X/G→ Y such that ρ = δπ.

Proof. Let ψ : O(Y )→ O(X) be the k-algebra homomorphism corresponding
to ρ. The hypothesis that ψ is constant on each orbit means that if g ∈ G, then
ρ = ρ ◦ g. Hence if f ∈ O(Y ), then ψ(f)g = (f ◦ ρ)g = f ◦ ρ ◦ g = f ◦ ρ =
ψ(f). In other words ψ(f) ∈ O(X)G, so we get a factorization ψ = φθ where
φ : O(X)G → O(X) is the inclusion and θ : O(Y ) → O(X)G is just ψ viewed
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as a map to O(X)G. Hence, if δ : X/G→ Y is the morphism corresponding to
θ, the equality ψ = φθ gives ρ = δπ. �

Some precision. We adopt the convention that G acts from the left on
geometric objects such as topological spaces, varieties, and manifolds. Thus if
X is a geometric object on which G acts, then g.(h.x) = (gh).x for all g, h ∈ G
and x ∈ X.

If R is a ring of functions on X, there are two induced actions of G on R.
We can either define g.f by (g.f)(x) = f(g−1x) or (g.f)(x) = f(g.x). The first
option leads to a left action of G on the ring of functions and the second leads
to a right action of G on the ring of functions.

We prefer the second alternative and the notation fg for the function defined
by

fg(x) := f(gx).

Thus fgh = (fg)h.
The notation fg is compatible with notation you already use! Let u be a

unit in a ring R. The notation un, n ∈ Z, can be thought of as indicating an
action of Z on the set of powers of u. Or, if you prefer, the notation rn can be
thought of as indicating the action of the semigroup N on R.

1.12 Basic constructions

To illustrate the ideas in the preceeding sections we now turn to some examples
and applications.

The product of two varieties. If X ⊂ An and Y ⊂ Am are closed
subvarieties, then X × Y is a closed subvariety of An+m = An × Am. To see
this, suppose that I(X) = (a1, . . . , as) ⊂ k[x1, . . . , xn] and I(Y ) = (b1, . . . , bt) ⊂
k[y1, . . . , yn]. ThenX×Y is the zero locus of the ideal in k[x1, . . . , xm, y1, . . . , yn]
generated by a1, . . . , as, b1, . . . , bt.

Even before one knows that X × Y is a closed subvariety there are some
obvious functions X × Y → k. If f ∈ O(X) and g ∈ O(Y ) we define the
function

f ⊗ g : X × Y → k

by
(p, q) 7→ f(p)g(q), (p, q) ∈ X × Y.

Using the + in k we can add such functions to obtain k-valued functions

f1 ⊗ g1 + · · ·+ ft ⊗ gt

on X × Y . Every regular function on X × Y is of this form. All this is quite
tautological. The ring of regular functions on A1 × A1 is k[x, y] where x is
the coordinate function on the first A1 and y is the coordinate function on the
second A1, and every regular function is of the form∑

i,j

αijx
iyj =

∑
i,j

αijx
i ⊗ yj .
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In fact
O(X × Y ) ∼= O(X)⊗O(Y ).

Corresponding to the obvious k-algebra homomorphisms O(X) → O(X) ⊗k
O(Y ) and O(Y )→ O(X)⊗kO(Y ) are the projection morphisms π1 : X×Y → X
and π2 : X×Y → Y . Let f : Z → X and g : Z → Y be morphisms. Then there
is a morphism (f, g) : Z → X × Y defined by (f, g)(z) := (f(z), g(z)). Check
that f = π1 ◦ (f, g) and g = π2 ◦ (f, g).

Exercises. 1. Suppose that h : Z → W , f ′ : W → X, and g′ : W → Y are
morphisms such that f ′h = f and g′h = g. Show there is a unique morphism
ψ : X × Y →W such that h = ψ ◦ (f, g).

2. Suppose that k is algebraically closed. If I and J are radical (resp.,
prime) ideals in A = k[x1, . . . , xn] and in B = k[y1, . . . , ym], show that the zero
ideal in A/I ⊗k A/J is is radical (rep., prime).

3. Show that the hypothesis on k in the previous example is essential by
showing that C⊗R C ∼= C⊕C and that if K = Fp(x) and k = Fp(xp) ⊂ K, then
x⊗ 1− 1⊗ x ∈ K ⊗k K is nilpotent.

The diagonal. Let X be an affine algebraic variety. The diagonal,

∆ := {(x, x) | x ∈ X} ⊂ X ×X},

is a closed subvariety of X because it is the common zero locus of the elements
1⊗f−f⊗1 ∈ O(X×X) = O(X)⊗kO(X) as f runs over all elements of O(X).

The locus where f = g. Let f, g : X → Y be morphisms. The locus where
f and g agree, namely

{x ∈ X | f(x) = g(x)} ⊂ X

is closed because it is (f, g)−1(∆Y ).

The graph of a morphism. The graph of a morphism f : X → Y is

Γf := {(x, f(x)) | x ∈ X} ⊂ X × Y }

and it is a closed subvariety of X×Y because the diagonal ∆ ⊂ Y ×Y is closed
and Γf = (f, idY )−1(∆). The ideal in O(X × Y ) = O(X)⊗k O(Y ) defining Γf
is generated by elements of the form

1⊗ g − φ(g)⊗ 1

where g ∈ O(Y ) and φ : O(Y ) → O(X) is the k-algebra homomorphism corre-
sponding to f : X → Y .

Some varieties associated to the action of a finite group. Let G be
a finite group acting on an affine algebraic variety X. For each g ∈ G we define

Xg := {x ∈ X | gx = x}
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for each g ∈ G. Since Xg is the locus where the morphisms idX : X → X and
g : X → X agree it is a closed subvariety of X. More generally, if S is any
subset of G, then

XS :=
⋂
g∈S

Xg

is closed. For example, if H is a subgroup of G, then

XH = {x ∈ X | H ⊂ StabG(x)}

is closed. Therefore, for each integer n, the set

Xn := {x ∈ X | |Gx| ≤ n}

is closed because it is the union of the XHs as H runs over all those subgroups
of G such that |G : H| ≤ n. Hence we get an ascending chain

XG = X1 ⊂ · · · ⊂ X|G| = X

of closed subvarieties. If π : X → X/G is the quotient morphism, then π(Xn)
is closed and

π(Xn) = {x̄ ∈ X/G | |π−1(x̄)| ≤ n}.

It is a general result that if f : X → Y is a finite morphism the sets {y ∈
Y | |f−1(y)| ≤ n} are closed. The way in which this is proved is important
because it illustrates a rather general idea: we translate the question into a
question about the number of zeroes of a polynomial in k[t]. That is, we obtain
a variety of degree d polynomials and show that the subset consisting of thse
polynomials having ≤ n distinct zeroes is closed.

1.13 Examples

In this section we establish some results having the general form:

almost every point on a variety X has property P

where the property P depends on the matter being considered. First we make
the phrase “almost all” precise.

Definition 13.1 If the set of points on a variety X having property P is dense
and open we will say almost all points on X have property P . ♦

Proposition 13.2 Almost all monic polynomials of degree d in one variable
over an algebraically closed field have d distinct zeroes.

Proof. First we give the set of degree dmonic polynomials f ∈ k[t] the structure
of an algebraic variety. Such a polynomial can be written uniquely as

f(t) = td + a1t
d−1 + · · ·+ ad−1t+ ad,
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so we can view f as the point

f = (a1, . . . , ad) ∈ Ad = Y.

There are coordinate functions y1, . . . , yd defined by yi(f) = ai, the coefficient
of td−i. We now define a morphism

π : X = Ad −→ Y = Ad

π(α1, . . . , αd) = (t− α1)(t− α2) · · · (t− αd)

=
d∑
i=0

(−1)isi(α1, . . . , αd)td−i

where si(α1, . . . , αd) is the ith symmetric function

s0(α1, . . . , αd) = 1
s1(α1, . . . , αd) = α1 + · · ·+ αd

s2(α1, . . . , αd) =
n∑

i,j=1

αiαj

et cetera.

Notice that π−1(f) is the set of zeroes of f counted with multiplicity. The
k-algebra homomorphism φ : k[y1, . . . , yd]→ k[x1, . . . , xd] corresponding to π is

φ(yn) =
d∑

i1,...,in=1

(−1)nxi1 · · ·xin .

Since φ is injective we view O(Y ) as the subalgebra

O(Y ) = k[s1, . . . , sd] ⊂ k[x1, . . . , xd] = O(X).

Now O(X) is integral over O(Y ) because each xi is a zero of the monic polyno-
mial

(t− x1)(t− x2) · · · (t− xd) ∈ O(Y )[t].

By Theorem 10.2, π is surjective, has finite fibers, and

{f | f has a multiple zero} = π(∆)

is closed because

∆ := V

( ∏
1≤i<j≤d

(xi − xj)

)
⊂ Ad

is closed. Thus the set of monic polynomials having d distinct zeroes is the
dense open set Y − π(∆). �

The morphism π in the previous proof is the quotient morphism π : Ad →
Ad/Sd for the action of the symmetric group Sd on Ad.
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Remark. It is probably better to prove the following result. Let Y =
k[t]≤d ∼= Ad+1 denote the set of polynomials of degree ≤ d. Then

Yi := {f ∈ Y | f has ≤ i distinct zeroes} (13-5)

is a closed subvariety of Y . Hence there is a chain of closed subspaces

Y0 ⊂ Y1 ⊂ · · · ⊂ Yd = k[t]≤d.

In particular, Y −Yd−1, which is the set of degree d polynomials having d distinct
zeroes, is open. If k is algebraically closed it is infinite so there is a degree d
polynomial having d distinct zeroes, whence Y − Yd−1 is dense an open.

Question. Can you show that almost all polynomials in Q[t] of degree ≤ n
(n ≥ 2) are irreducible?

Proposition 13.3 Let X ⊂ An be the zero locus of an irreducible polynomial
f ∈ k[x1, . . . , xn] of degree d. Let p ∈ An. Then almost every line through p
meets X at d distinct points.

Proof. First we give the set of lines in An passing through p the structure of
an affine algebraic variety. For each 0 6= q ∈ kn, let

Lq := {p+ λq | λ ∈ k}

be the line through p in the direction of q. Every line through p is of the form Lq.
We will write X = kn −{0} and consider this as the set of lines through p. (Of
course, this is not a variety, at least as we have defined a variety, because it is not
a closed subspace of kn...however, this can be fixed by enlarging our category
from affine varieties to quasi-affine varieties defined as the open subspaces of
affine varieties.) There is another reasonable objection: if 0 6= µ ∈ k, then
Lµq = Lq, so the rule q 7→ Lq is not a bijection between the points of X and
the lines through p. This objection is met by passing to projective varieties, the
most basic example of which is Pn−1 the set of lines through the origin in kn,
and taking X = Pn−1. But we won’t do this here, we will just work with X
acknowledging the shortcomings of using X to parametrize the lines through p.

The basic observation is that

Lq ∩X = {p+ λq | f(p+ λq) = 0}

so Lq∩X will consist of d distinct points if and only if the polynomial f(p+tq) ∈
k[t] has d distinct zeroes.

Now f(p + tq) is a polynomial in t of degee ≤ d, and the coefficient of tj

is a polynomial function in the coordinates of q, so the rule q 7→ f(p + tq) is a
morphism

π : kn → Y = k[t]≤d.

Let Yi ⊂ Y be the closed set defined in (13-5) and set Zi := π−1(Yi). Hence kn

has a stratification by closed subsets

Z0 ⊂ Z1 ⊂ · · · ⊂ Zd = kn
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where
Zi = {q ∈ kn | |Lq ∩X| ≤ i}.

In particular, kn − Zd−1 is open. We want to show it is non-empty.
Write f = g + h where

g =
∑

i1+···in=d

αi1,...,inx
i1
1 · · ·xinn

is homogeneous of degree d and deg h ≤ d−1. The coefficient of td in f(p+tq) is
g(q) so {q ∈ kn | g(q) 6= 0} is non-empty and open. Another way of saying this is
that if U ⊂ k[t]≤d is the set of degree d polynomials, then π−1(U) 6= φ. However,
U is a dense open subset of k[t]≤d (it is the complement to a hyperplane), so
π−1(U) is a non-empty open subset of kn, hence dense.

We know that the subset of U consisting of those polynomials have d distinct
zeroes is non-empty and dense. �

To think about. The case of a curve is already interesting: if C ⊂ k2 is a
curve cut out by an irreducible f ∈ k[x, y] of degree d, then almost every line
in k2 meets C at d distinct points.

Can you show that almost every degree m curve meets C at exactly md
distinct points? Try to use the fact that such a curve D degenerates into m
distinct lines and such a degenerate D meets C at md distinct points.

Motivate Bézout.

Proposition 13.4 Let f be an irreducible polynomial in k[x, y]. Then k[x, y]/(f)
is integral over k[t] for almost all t ∈ kx+ ky + k.

Proposition 13.5 Let k[x, y]d be the space of homogeneous degree d polynomi-
als. Then almost every f ∈ k[x, y]d is not of the form ud for any u ∈ kx+ ky.

Lemma 13.6 Almost all n× n matrices are diagonalizable.

Proof. Define

f : Mn(k)→ Y := {monic polynomials in k[t] of degree n}

by
f(A) = det(tI −A).

This is a morphism because the coefficient of ti in f(A) is a polynomial function
of the entries in the matrix A. By ???, the set

Y o := {polynomials in Y having n distinct zeroes}

is a non-empty open subset. Hence f−1(Y o) is a non-empty open subset of
Mn(k). However, every element of f−1(Y o) has n distinct eigenvalues so is
diagonalizable. Hence the set of diagonalizable matrices contains a non-empty
open open subset of Mn(k). �
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Questions. 1. Is the set of diagonalizable matrices open?
2. You can almost think of the last result as saying that almost all n-

dimensional k[t]-modules are semisimple. Explain.
3. Can you formalize and prove the statement that almost all n-dimensional

k[t]-modules are semisimple?

Nilpotent matrices. At the other extreme from the diagonalizable matri-
ces are the nilpotent ones. We write N for the set of nilpotent n× n matrices.
This is a closed subvariety of Mn(k) because A is nilpotent if and only if An = 0
and this can be expressed as a polynomial condition on the entries of A.

Exercise. Write out the defining equations of the variety of nilpotent 2× 2
matrices. Compare the variety of nilpotent 2 × 2 matrices to the subvariety of
M2(k) cut out by the conditions

trace = determinant = 0.

When we studied Jordan normal form we observed that the conjugacy classes
of nilpotent n× n matrices are in natural bijection with the set of partitions of
n. Let’s write Xπ for the conjugacy class correponding to the partition π.

Here are some natural questions. You might find it helpful to consider the
Young diagram associated to a partition. It might also be helpful to consider
the conjugacy class in the symmetric group corresponding to each partition.

A conjugacy class of nilpotent matrices is not necessarily closed. Show that
its closure is a union of conjugacy classes.

Find conditions on partitions π and σ such that Xσ ⊂ Xπ.
When is Xπ ∩Xσ 6= φ?
What is dimXπ?
You can explore these questions is some detail for n = 4 and perhaps on

that basis make some conjectures about the answers to these questions.

1.14 Tangent spaces

Fix a point p on an affine variety X ⊂ An. A line in An through p is of the form

Lq = {p+ λq | λ ∈ k}

where 0 6= q ∈ kn is a fixed point giving the “direction” of L. Different choices
of q give different lines through p.

Suppose that I(X) = (f1, . . . , fm). Fix p ∈ X and 0 6= q ∈ kn. Introduce a
new variable t and consider the polynomials fj(p+ tq) in k[t].

Lemma 14.1 Retain the above notation and set

f(t) := gcd{fj(p+ tq) | j = 1, . . . ,m}.

Then
Lq ∩X = {p+ λq | λ ∈ k, f(λ) = 0}.
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Proof. Suppose x ∈ Lq ∩ X. Then x = p + λq for some λ ∈ k and f1(x) =
· · · = fm(x) = 0. Hence λ is a zero of each fj(p+ tq) ∈ k[t]. Equivalently, t− λ
divides each fj(p+ tq), so divides f(t), whence f(λ) = 0.

Conversely, suppose f(λ) = 0. Then t − λ divides f(t) and hence each
fj(p+ tq). In other words, fj(p+ λq) = 0 for all j so x = p+ λq ∈ X. But x is
also on the line Lq so x ∈ Lq ∩X. �

In other words there is a bijection

{the points of Lq ∩X} ←→ {the zeroes of f(t)}.

In particular p ∈ Lq ∩X corresponds to t = 0.

Definition 14.2 The intersection multiplicity of X and Lq at p is the multiplicity
of the root t = 0 in the polynomial f(t). We say that Lq is tangent to X at p if
the intersecion multiplicity of Lq and X at p is > 1. The tangent space to X at
p is

TpX := {q ∈ kn | Lq = {p+ tq | λ ∈ k} is tangent to X at p} ∪ {0}.

♦

We must show that the intersection multiplicity, and hence TpX, is well-
defined.

Lemma 14.3 The intersection multiplicity of X and Lq at p does not depend
on the choice of generators for I(X).

Proof. Retain the previous notation, and suppose that I(X) = (g1, . . . , gr)
also. Set g(t) := gcd{gi(p+ tq) | i = 1, . . . , r}. Since g1 = a1f1 + · · ·+ amfm,

g1(p+ tq) = a1(p+ tq)f1(p+ tq) + · · ·+ am(p+ tq)fm(p+ tq).

Hence f(t) divides g1(p + tq); likewise, f(t) divides every gi(p + tq) so divides
g(t). Similarly g(t) divides f(t) so f(t) = g(t) up to a unit multiple. �

Next we describe TpX directly in terms of the defining equations for X.

The Jacobian matrix. The partial derivatives

∂

∂xj
: k[x1, . . . , xn]→ k[x1, . . . , xn]

make complete sense. The Taylor expansion of a polynomial g ∈ k[x1, . . . , xn]
around a point p = (α1, . . . , αn) ∈ An is

g = g(p) +
n∑
i=1

∂g

∂xi
(p)(xi − αi) +

1
2!

n∑
i,j=1

∂2g

∂xi∂xj
(p)(xi − αi)(xj − αj) + · · · .
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Now let p ∈ X and q = (β1, . . . , βn) ∈ kn. Writing I(X) = (f1, . . . , fm) as
before, since fr(p) = 0, we have

fr(p+ tq) =
n∑
i=1

∂fr
∂xi

(p)(tβi) +
1
2!

n∑
i,j=1

∂2fr
∂xi∂xj

(p)(tβi)(tβj) + · · · . (14-6)

It follows that

Lq is tangent to X at p⇐⇒ t2 divides fr(p+ tq) for all 1 ≤ r ≤ m

⇐⇒
n∑
i=1

∂f

∂xi
(p)βi = 0 for all 1 ≤ r ≤ m.

Definition 14.4 The Jacobian matrix forX with respect to the generators f1, . . . , fm
for I(X) is the m×n matrix with entries in k[x1, . . . , xn] whose ijth entry is ∂fi

∂xj
.

The Jacobian matrix at p is the matrix Jp ∈ Mm×n(k) obtained by evaluating
the entries of J at p, i.e.,

Jp :=
(
∂fi
∂xj

(p)
)
.

♦

We think of the Jacobian as a linear map Jp : kn → km,

Jp

β1

...
βn

 =


∑n
j=1

∂f1
∂xj

(p)βj
...∑n

j=1
∂fm

∂xj
(p)βj

 .

Therefore

q = (β1, . . . , βn) ∈ TpX ⇐⇒
n∑
j=1

∂fi
∂xj

(p)βj = 0 for all i

⇐⇒ Jpq = 0.

We have proved the next result.

Theorem 14.5 Let X ⊂ An be a closed subvariety and p ∈ X. Then

TpX = ker
(
Jp : kn → km

)
.

In particular, TpX is a linear subspace of kn of dimension n− rank Jp.

A standard observation. Let V be a finite dimensional k-vector space.
If D is a subspace of V ∗ = Homk(V, k) we define D⊥ := {v ∈ V | δ(v) =
0 for all δ ∈ D}. The inclusion D → V ∗ dualizes to give a surjective map
V → D∗ whose kernel is D⊥. Hence V/D⊥ ∼= D∗.
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Theorem 14.6 Let X ⊂ An be a closed subvariety, p ∈ X, and mp the corre-
sponding maximal ideal in O(X). There is a vector space isomorphism

dp : mp/m
2
p → (TpX)∗.

Proof. Let x1, . . . , xn be coordinate functions on An, set p = (α1, . . . , αn), and
write n = (x1 − α1, . . . , xn − αn) for the corresponding maximal ideal in the
polynomial ring k[x1, . . . , xn]. Then mp = n/I(X) and mp/m

2
p
∼= n/n2 + I(X).

We now view x1, . . . , xn as a basis for (kn)∗ = Homk(kn, k). Define ψ : n→
(kn)∗ by

ψ(f) :=
n∑
i=1

∂f

∂xi
(p)xi.

Since ψ(xi − αi) = xi, ψ is surjective. Since dimk(n/n2) = n and ψ(n2) = 0
there is an isomorphism

ψ : n/n2 −→ (kn)∗.

If q = (λ1, . . . , λn) ∈ kn,

ψ(f)(q) =
n∑
i=1

∂f

∂xi
(p)λi = Jp(q),

so Theorem 14.5 may be restated as

TpX = ker(Jp : kn → km)
= {q = (λ1, . . . , λn) ∈ kn | ψ(f)(q) = 0 for all f ∈ I(X)}
= ψ(I(X))⊥.

If we identify (kn)∗ with n/n2 via ψ this can be restated as

TpX =
(

n2 + I(X)
n2

)⊥
⊂
(

n

n2

)∗
= kn.

The observation just before this theorem now tells us that

(TpX)∗ ∼=
n/n2

I(X) + n2/n2
∼=

n

n2 + I(X)
∼=

mp

m2
p

.

Explicitly, this isomorphism

dp :
mp

m2
p

−→ (TpX)∗

is given by

f 7→ dpf :=
n∑
i=1

∂f

∂xi
(p)xi

for f ∈ mp. �
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Our definition of tangent space agrees with that in differential geometry. Of
course, we are working over an arbitrary field so it is only over the reals and
complexes that we can make such a comparison. Also, we must be aware that
not every algebraic variety over R or C is actually a manifold. However, if X
is an affine variety over R or C, and p ∈ X is a point around which X is a
smooth real (or complex) manifold, then our definition of TpX coincides with
the differential geometers tangent space.

We will use this to define what we mean by a smooth point of X.

Proposition 14.7 Consider morphisms

X
f−−−−→ Y

g−−−−→ Z

between affine algebraic varieties, and points x ∈ X, y = f(x), and z = g(y).
Then

1. there are induced linear maps

TxX
dxf−−−−→ TyY

dyg−−−−→ TzZ

called the differentials of f at x, etc., and

2. dx(g ◦ f) = (dyg) ◦ (dxf);

3. dx(idX) = idTxX ;

4. if f is an isomorphism, then dxf : TxX → Tf(x)Y is an isomorphism.

We take the point of view of the differential geometers: the tangent space at
a point p of a manifoldM is a linear approximation toM near p. We make use of
this idea by using the tangent space to define the dimension of the variety. (This
has no parallel in differential geometry—there one defines the dimension of M
first and then proves that the dimension of the tangent space at a point is equal
to the dimension of M .) However, this needs some care since the dimension of
the tangent space TpX can vary as p varies.

Theorem 14.8 Let X be an irreducible affine algebraic variety.

1. There is a unique integer d such that dimk TpX = d for almost all p ∈ X
and dimk TxX > d for all other points x ∈ X.

2. For every integer n, the set of points x such that dimk TxX ≥ n is closed.

Proof. Suppose that X is a closed subvariety of An. Let J be the Jacobian
matrix for X with respect to a set of generators for I(X). For exach integer r,
the subset

Xr := {x ∈ X | dimTxX ≥ r}

is equal to
{x ∈ X | rank Jx ≤ n− r}.
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This is a closed subset of X in the Zariski topology because it is the zero locus
of the set of all (n−r+1)×(n−r+1) minors of J . Hence we have an ascending
chain of closed subvarieties

Xn ⊂ Xn−1 ⊂ · · · ⊂ X.

Let d be the largest integer such that Xd = X. Then Xd+1 is a proper closed
subvariety of X. �

Definition 14.9 Let X be an irreducible affine algebraic variety, and let d be the
integer in Theorem 14.8. We say that p is a smooth point of X if dimTpX = d,
and singular otherwise. We write SingX for the singular locus X, i.e., for the set
of singular points. If SingX = φ we say X is a smooth or non-singular variety.
Otherwise we say X is singular. ♦

Synonyms. A smooth point is also called a simple, or regular, or non-singular
point of X.

Theorem 14.8 says that the smooth points form a non-empty open (hence
dense) subset of X, and SingX is a closed subvariety of X.

Example 14.10 Determine all singular points of the cubic surface cut out by

f = xyz − x2 − y2 − z2 + 4.

The partial derivatives are yz − 2x, xz − 2y, xy − 2z, so the singular points of
X are those where all three vanish. These are (a, b, 1

2ab) where a, b ∈ {±2}. ♦

Definition 14.11 The dimension of an irreducible affine algebraic variety X is the
number d appearing in Theorem 14.8. That is, dimX is the smallest number
d such that dimTpX = d for some p ∈ X. Equivalently, dimX is the unique
integer d such that dimTpX = d for all p belonging to some dense open subset
of X.

The dimension of an arbitrary affine algebraic variety is the maximum of the
dimensions of its irreducible components. ♦

Remark. The dimension of An is n because if m is a maximal ideal in
k[x1, . . . , xn] we can pick coordinates so m = (x1, . . . , xn), and then it is clear
that {x̄1, . . . , x̄n) is a basis for m/m2.

Proposition 14.12 The dimension of a hypersurface in An is n− 1.

Proof. Let X = V (f) be the zero locus of an irreducible f in the polynomial
ring k[x1, . . . , xn].

Suppose the result fails for X. Because X ⊂ An, dimTpX ≤ n for all p ∈ X
so it would follow that dimTpX = n for all p ∈ X. Hence rank Jp = 0 for all
p ∈ X, where Jp is the Jacobian matrix.

Jp =
(
∂f

∂x1
(p), · · · , ∂f

∂xn
(p)
)
.
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In other words, V (f) ⊂ V (I) where I is the ideal in the polynomial ring
generated by all ∂f/∂xi. It then follows that

√
I ⊂

√
(f). However, f is

irreducible so (f) is a prime ideal and hence radical, so
√
I ⊂ (f). In particular,

I ⊂ (f) so every ∂f/∂xi is a multiple of f . However, the xi-degree of ∂f/∂xi is
strictly smaller than the xi-degree of f , so this can only happen if ∂f/∂xi = 0.

In characteristic zero, if ∂f/∂xi = 0 for all i, then f is constant which
contradicts the hypothesis that f is irreducible. Thus the proposition holds in
characteristic zero.

Now suppose char k = p. Because ∂f/∂x1 = 0, f belongs to k[xp1, x2, . . . , xn].
Because all partials vanish f ∈ k[xp1, . . . , xpn]. But every element in this subring
is a pth power of an element in k[x1, . . . , xn] so f would not be irreducible. �

Proposition 14.13 Let X be an irreducible affine algebraic variety, f ∈ O(X),
and p a point in Xf := {x ∈ X | f(x) 6= 0}. Then the natural map TpXf → TpX
is an isomorphism.

Proof. Write R = O(X) and Rf := R[f−1]. Then Xf is an affine algebraic
variety with O(Xf ) = R[f−1] ∼= R[T ]/(Tf − 1).

Let m and n be the maximal ideals in R and Rf vanishing at p. After
Theorem 14.6, it suffices to show that the composition

m→ n→ n/n2

is surjective and has kernel equal to m2. In other words, we must show that
n = n2 + m and n2 ∩R = m2.

First notice that n = mRf because if b ∈ R and bf−n vanishes at p, then
0 = b(p)f(p)−n, so b(p) = 0, whence b ∈ m and bf−n ∈ mRf .

To see that n = m + n2, consider a typical element bf−n ∈ n where b ∈ m.
Then 1− f(p)−nfn ∈ m, so b(1− f(p)−nfn)f−n ∈ n2. Thus

bf−n = b(1− f(p)−nfn)f−n + f(p)−nb ∈ n2 + m.

Hence n = n2 + m.
Now R∩ n2 = R∩ (mRf )2 = R∩m2Rf , but this is equal to m2. (Indeed, we

have shown before that R ∩ IRf = I for every ideal I in R). �

Corollary 14.14 Let X be an irreducible affine algebraic variety and 0 6= f ∈
O(X). Then dimX = dimXf .

Proof. Write d = dimX and d′ = dimXf . Then

U := {p ∈ X | dimTpX = d}

is a dense open subset of X, and U ′ := {p ∈ Xf | dimTpXf = d′} is a dense
open subset of Xf . But Xf is a dense open subset of X, so U ′ is a dense open
subset of X; thus U ∩ U ′ 6= φ. Let p ∈ U ∩ U ′; but TpX ∼= TpXf , so d = d′. �

The next result shows that the dimension of an irreduucible variety depends
only on its function field.
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Corollary 14.15 Let X and Y be birationally equivalent irreducible affine al-
gebraic varieties. Then dimX = dimY .

Proof. By Proposition 8.2, there are non-empty open subsets Xf and Yg such
that Xf

∼= Yg. The result now follows from Corollary 14.14. �

Theorem 14.16 Let X be an irreducible affine algebraic variety. If O(X) is
integral over a polynomial ring k[t1, . . . , td], then d = dimX.

Proof. By Noether normalization, there is a subring k[x1, . . . , xd] ⊂ O(X) over
which O(X) is integral. For a suitably large n there is a surjective map

φ : k[X1, . . . , Xn]→ O(X)

such that φ(Xi) = xi for 1 ≤ i ≤ d. The kernel of φ is I(X) = (f1, . . . , fm).
Thus I(X)∩k[X1, . . . , Xd] = 0 and, becauseO(X) is integral over k[x1, . . . , xd],

for each r > d there is a non-zero

gr ∈ I(X) ∩ k[X1, . . . , Xd][Xr].

that is monic as a polynomial in Xr and of minimal degree subject to this.
Define the (n− d)× n matrix

A :=
(
∂gr
∂Xj

)
d+1≤r≤n
1≤j≤n

.

The (n− d)× (n− d) submatrix in the bottom right corner

A′ :=
(
∂gr
∂Xj

)
d+1≤r,j≤n

is a diagonal matrix because gr ∈ k[X1, . . . , Xd, Xr]. But gr was chosen to be
of minimal degree in Xr so

∂gr
∂Xr

/∈ I(X).

Therefore

Ur :=
{
p ∈ X

∣∣∣∣ ∂gr∂Xr
(p) 6= 0

}
is a non-empty open, hence dense, subset of X. Thus

U := Ud+1 ∩ · · · ∩ Un

is a dense open subset of X. If p ∈ U , then the diagonal entries of A′p are
non-zero so

rankAp = n− d

for all p ∈ U .
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Because each gr is in I(X), we can write gr =
∑d
i=1 brifi for some (n−d)×m

matrix (bri). Differentiating this with respect to Xj and evaluating at p ∈ X
we get Ap = BpJp where Jp is the Jacobian matrix at p. Hence rankAp ≤
rank Jp = n−dimTpX and dimTpX ≤ n− rankAp for all p ∈ X. In particular,
dimTpX ≤ d for all p ∈ U .

It remains to show that dimTpX = d for some p ∈ U . Once that is done we
will �

1.15 Derivations and differentials

Definition 15.1 A k-linear derivation on a commutative k-algebra R is a k-linear
map δ : R→ R that satisfies the Leibniz identity:

δ(ab) = δ(a)b+ aδ(b)

for all a, b ∈ R. The set of all such maps is denoted by Derk R.
If M is an R-module an M -valued derivation on R is a k-linear map δ : R→

M such that
δ(ab) = aδ(b) + bδ(a) (15-7)

for all a, b ∈ R. We write Derk(R,M) or just Der(R,M) for all such maps. ♦

Notice that δ(1) = 0 because δ(1) = δ(1× 1) = δ(1) + δ(1). The k-linearity
of δ then implies that δ(a) = 0 for all a ∈ k.

Lemma 15.2 Der(R,M) is an R-module and DerR is a Lie algebra with re-
sepct to the bracket

[δ, η] := δ ◦ η − η ◦ δ.

Proof. It is obvious that rδ is a derivation if δ is. It is also straightforward to
check that [δ, η] is again a derivation. �

Perhaps you have already met a definition of the tangent space to a point
on a manifold. The next proposition might match up with that definition. It
says that TpX is isomorphic to the space of all k-linear maps δ : O(X) → k
such that

δ(fg) = f(p)δ(g) + δ(f)g(p)

for all regular functions f, g : X → k. To see that this statement is equiva-
lent to the proposition simply observe that, as an O(X)-module, O(X)/mp is
isomorphic to k with the action of f ∈ O(X) on α ∈ k given by f.α = f(p)α.

Proposition 15.3 Let p be a point on an affine algebraic variety X over k.
Write R = O(X) and m for the maximal ideal at p. Then

TpX ∼= Der(R,R/m).
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Proof. We have already shown there is an isomorphism

TpX ∼=
(

m

m2

)2

.

We will now show that the map

Φ : Der(R,R/m)→
(

m

m2

)∗
defined by Φ(δ)(f̄) := δ(f)(p) for f̄ ∈ m/m2 is an isomorphism. In the definition
of Φ(δ), f ∈ m is any preimage of f̄ . The definition makes sense because
δ(m2) = 0. Thus Φ is a well-defined k-linear map and we must show it has an
inverse.

Define

Ψ :
(

m

m2

)∗
−→ Der(R,R/m)

by
Ψ(λ)(f) = λ(f − f(p))

where f − f(p) denotes the image of f − f(p) in m/m2, which makes sense
because f − f(p) ∈ m. To see that Ψ(λ) really belongs to Der(R,R/m) notice
first that

(f − f(p))(g − g(p)) ∈ m2

so
fg − f(p)g(p) = f(p)(g − g(p)) + g(p)(f − f(p));

hence

Ψ(λ)(fg) = λ(fg − f(p)g(p))

= f(p)λ(g − g(p)) + g(p)λf − f(p))
= f(p)Ψ(λ)(g) + g(p)Ψ(λ)(f).

Thus Ψ(λ) is an R/m-valued derivation on R.
It is now a routine matter to check that Ψ and Φ are mutually inverse. �

Fix a commutative ring R. The rule

M 7→ Der(R,M)

is a functor from the category of R-modules to itself because if δ : R → M is
a derivation and f : M → N an R-module homomorphism then f ◦ δ : R → N
is a derivation. We ask, as always, is this functor representable, i.e., is there an
R-module Ω such that

Der(R,M) ∼= HomR(Ω,M)

for all R-modules M? There is.
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Proposition 15.4 Let k be any commutative ring and R any commutative k-
algebra. There is an R-module ΩR/k and a k-linear derivation

d : R→ ΩR/k

such that if δ : R → M is any k-linear derivation, there is a unique R-module
homomorphism f : ΩR/k →M such that δ = f ◦ d.

Definition 15.5 In the context of Proposition 15.4, the pair (ΩR/k, d) is called
the module of relative differentials. ♦

Suppose that f : R → S is a k-algebra homomorphism. Then every S-
module is an R-module in a natural way, and a derivation δ : S → M can
be composed with f to provide a derivation δ ◦ f : R → M . In particular,
dS/k◦f : R→ ΩS/k is a derivation so there is a unique R-module homomorphism
ρ : ΩR/k → ΩS/k such that dS/k ◦ f = ρ ◦ dR/k.

The map f : R → S also allows us to view S as an R-algebra so there is
a module ΩS/R of relative differentials and a universal derivation dS/R : S →
ΩS/R. There is therefore an S-module homomorphism η : ΩS/k → ΩS/R such
that dS/R = η ◦ dS/R.

Putting all this together, we have the following result.

Proposition 15.6 There is an exact sequence

ΩR/k −−−−→ ΩS/k −−−−→ ΩS/R −−−−→ 0.

Proof. �

1.16 A first glimpse of schemes

Schemes are geometric objects that are somewhat more general than algebraic
varieties.

A blunt definition: the category of affine schemes is the opposite of the
category of commutative rings.

If k is any commutative ring the category of affine k-schemes, or affine
schemes over k, is the opposite of the category of commutative k-algebras.

We saw earlier that the category of affine algebraic varieties over an alge-
braically closed field k is equivalent to the opposite of the category of finitely
generated commutative k-algebras having no nilpotent elements. Thus every
algebraic variety over k can be viewed as an affine k-scheme.

There are many ideas, or ways of thinking, that lead naturally from varieties
to schemes. Natural questions about varieties suggest we need more general
objects than varieties.

As a simple example consider the fact that a degree d polynomial f(x) over
an algebraically closed field has exactly d zeroes when counted with multiplicity.
Geometrically, this says that the curve y = f(x) meets the x-axis d times if we
count the points of intersection with appropriate multiplicity.



1.17. ALGEBRAIC GROUP ACTIONS 59

Lots to say... Spec k[ε] and TpX = morphisms Spec k[ε] → X centered at
p... non-separated schemes (and reln to eg quotient for ξ.(x, y) = (ξx, ξ−1y))...
projective spaces and sheaf of regular fns....

1.17 Algebraic group actions

Definition 17.1 An affine algebraic group is an affine algebraic variety G that has
the structure of a group and is such that the multiplication map G × G → G
and the inversion map G→ G, g 7→ g−1, are both morphisms. ♦

For example, the additive group (k,+) is an algebraic group. It is usually
denoted by Ga. Its coordinate ring is O(Ga) = k[x]. The inversion map is
the morphism g 7→ −g and this corresponds to the k-algebra automorphism
x 7→ −x. The muliplication map Ga × Ga is the addition map (x, y) 7→ x + y.
Now, O(Ga×Ga) ∼= O(Ga)⊗k O(Ga) ∼= k[x]⊗ k[y] = k[x, y], and the k-algebra
homomorphism k[x]→ k[x, y] corresponding to the binary operation of addition
is x 7→ x+ y.

GLn(k) as an affine algebraic variety. The general linear group GLn(k),
the group of invertible n × n matrices with entries in k, is an algebraic group.
To see this we must first impose the structure of an algebraic variety on it.
Since GLn(k) is the subset of Mn(k) where det 6= 0 it is an open subspace of
Mn(k). However, the natural projection Mn(k)×A1 →Mn(k) sends the closed
subvariety

X := {(A, λ) | λ detA = 1}

bijectively to GLn(k). The coordinate ring of this closed subvariety is

k[xij , t]/(tdet−1) ∼= k[xij ][det−1].

We therefore consider GLn(k) as an affine algebraic variety and take the above
ring as its ring of regular functions. The multpilication map (g, h) 7→ gh corre-
sponds to the k-algebra homomorphism xij 7→

∑n
r=1 xir ⊗ xrj .

Actions of algebraic groups. Let G be an affine algebraic group and X
an affine algebraic variety. We are often interested in actions with the property
that the action map G×X → X is a morphism of algebraic varieties.

If G is finite so are its orbits, so every orbit is a closed subvariety of X. When
G is not finite this is no longer true. For example, consider the two actions of
G = C∗ = GL1(C) on C2 given by

1. ξ.(α, β) = (ξα, ξβ) for ξ ∈ C∗ and (α, β) ∈ C2, and

2. ξ.(α, β) = (ξα, ξ−1β) for ξ ∈ C∗ and (α, β) ∈ C2.

The orbits are as follows:

1. {(0, 0)}, and the lines through the origin (less the origin); the only closed
orbit is {(0, 0)}, and the origin is in the closure of every orbit.
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2. {(0, 0)}, the x- and y-axes less the origin, and the hyperbolas xy = λ,
0 6= λ ∈ k; the closed orbits consist of the origin and the hyperbolas; the
origin is in the closure of each of the two non-closed orbits (the x- and
y-axes).

The fact that there are non-closed orbits means that the method we used for
finite groups (i.e., the imposition of an algebraic variety structure on the orbit
space) will fail for infinite groups. Although the ring of G-invariant functions
O(X)G still consists of functions that are constant on orbits, these functions are
actually constant on closures of orbits (because f−1(λ) is closed!). A further
problem is that O(X)G need not be a finitely generated algebra; even if it is the
points of the affine variety having O(X)G as its coordinate ring are in natural
bijection with the closed orbits.

For example, consider Example (1) above. The action of C∗ on C[x, y] =
O(C2) is given by ξ.x = ξx and ξ.y = ξy, so C[x, y]G = C, the constant
functions. And C is the coordinate ring of the variety with one point. That
point corresponding to the closed orbit {(0, 0)}.

In Example (2) above the induced action of G = C∗ on C[x, y] is given by
ξ.x = ξx and ξ.y = ξ−1y, so C[x, y]G = C[x, y] which is the coordinate ring of
the affine line; and the affine line is in natural bijection with the closed orbits.

When O(X)G is finitely generated it is usual to write X//G for the affine
algebraic variety whose coordinate ring is O(X)G. The inclusion O(X)G →
O(X) then corresponds to a morphism π : X → X//G with the property that

1. each fiber of π is a union of orbits;

2. orbits Gx and Gx′ belong to the same fiber if and only if Gx ∩ Gx′ 6= φ;

3. each fiber contains a unique closed orbit.

Obviously X//G is a rather crude approximation of the orbit space so one
proceeds as follows. One takes various “good” open subvarieties X0 of X that
are stable under the action of G and have the property that the orbits of G on
X0 are closed (as subsets of X0), and then one imposes on X0/G, the set of
G-orbits on X0, the structure of an algberaic variety.

This is the subject of Geometric Invariant Theory.
Returning to Example (1), consider C2 − {0}. This set is G-stable and the

orbits on it are closed. The quotient C2 − {0}/C∗ is the projective line P1.
Now consider Example (2)....affine line with a double point, a non-separated

scheme.

Conjugacy classes. The conjugacy classes of n×n complex matrices are the
orbits for the conjugation action of GL(n,C) on Mn(C). Functions on matrices
that depend only on the conjugacy class of a matrix are of great importance—
the trace and determinant are such functions. the functions that are constant
on conjugacy classes are those in the ring of invariants O(Mn(C))GL(n,C).

Is this a finitely generated C-algebra and, if so, what are its generators?
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It turns out that the closures of the conjugacy classes are in bijection with
the diagonal matrices. Equivalently, the closure of each orbit contains a unique
dense orbit and that orbit is the conjugacy class of a unique diagonal matrix.

Notice that the trace and determinant of a matrix are (up to a sign) coeffi-
cients of the characteristic polynomial of that matrix. That is,

det(tI −A) = tn − (a11 + · · ·+ ann)tn−1 + · · ·+ (−1)n−1 detA.

We know that conjugate matrices have the same minimal polynomial so every
coefficient of the characteristic polynomial is constant on conjugacy classes so
belongs to O(Mn(C))GL(n,C). It is an important result that these generate the
invariant ring.

There are n of these, and they are algebraically independent soO(Mn(C))GL(n,C)

is isomorphic to the polynomial ring in n variables.
There is another way to obtain generators for O(Mn(C))GL(n,C). If xij is

the coordinate function on Mn(C) that takes the ij-entry of a matrix, then the
trace function is x11 + · · ·+xnn. Now consider the morphism Mn(C)→Mn(C),
A 7→ Ar. Composing this with the trace function gives a function that is
constant on conjugacy classes.

Let’s compute this function when r = 2. Let A = (aij). Then the diagonal
entries of A2 are

n∑
i=1

a1iai1,
n∑
i=1

a2iai2, · · ·
n∑
i=1

aniain,

so

Tr(A2) =
n∑
j=1

n∑
i=1

ajiaij .

Hence the function is
n∑
j=1

n∑
i=1

xjixij .

Similarly, for r = 3 we have the function
n∑

i,j,k=1

xijxjkxki.

These functions also provide a set of generators for O(Mn(C))GL(n,C).
Look at the simple case of a 2 × 2 generic matrix X. Its characteristic

polynomial is
t2 − (TrX)t+ detX.

The Cayley-Hamilton Theorem tells us that a matrix satisfies its minimal poly-
nomial, so

X2 − (TrX)X + detX = 0 (17-8)

where the last term is really (detX)I. Now take the trace of the matrices in
(17-8) to get

Tr(X2)− (TrX)2 + 2 detX = 0.

This shows that C[TrX,detX] = C[TrX,Tr(X2)].
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1.18 Dimension

There are several ways of defining the dimension of an algebraic variety all of
which lead to the same number.

Let’s list some of the properties we want a dimension function to have. We
want it to agree with our primitive notions of dimension: a point has dimension
zero, a curve (or line) has dimension one, a surface has dimension two, etc. We
want the dimension of An to be n. If X ⊂ Y we want the dimension of Y to be
at least as big as that of X. We want the dimension of X to be the maximum of
the dimension of its irreducible components. If f : X → Y is a surjective map
with finite fibers then X and Y should have the same dimension. We would like
to have dimX×Y = dimX+dimY . If f : X → Y is a dominant morphism we
might expect that dim f−1(y) = dimX−dimY for almost all y ∈ Y . Perhaps we
want a variety of dimension n to have infinitely many subvarieties of dimension
n− 1.

Definition 18.1 The dimension of a topological space X is the largest n for which
there is a chain of closed irreducible subspaces

φ 6= X0 ( X1 ( · · · ( Xn.

The dimension of the empty set is −∞. ♦

This definition of dimension is not suited to all topological spaces.
It is easy to see that a point has dimension zero, and that An has dimension

at least n because of the chain

V (x1, . . . , xn) ⊂ V (x1, . . . , xn−1) ⊂ · · · ⊂ V (x1) ⊂ V (0).

It is quite a bit harder to show that dim An ≤ n.

Lemma 18.2 Let X be a topological space.

1. If Z is a closed subspace of X, then dimZ ≤ dimX.

2. dimX is the maximum of the dimension of its irreducible components.

3. If X is irreducible, then dimZ ≤ dimX−1 for all closed subspaces Z ( X.

4. If X = X1 ∪ . . . ∪ Xt expresses X as a union of closed subspaces, then
dimX = max{dimXi}.

Proof. (1) A closed irreducible subspace of Z is a closed irreducible subspace of
X, so a chain φ 6= Z0 ( Z1 ( · · · ( Zn of Z is also a chain of closed irreducible
subspaces of X.

(2) The definition of dimX implies thatX has a closed irreducible subvariety
X ′ such that dimX = dimX ′. Since X ′ is an irreducible component of itself it
is contained in some irreducible component of X, say X1, by Lemma 5.8. Now
(1) gives the inequalities in dimX = dimX ′ ≤ dimX1 ≤ dimX, so dimX1 =
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dimX. By (1) dimX is at least as big as the dimension of all its irreducible
components.

(3) This follows at once from the definition.
(4) Let X ′ be an irreducible component of X such that dimX ′ = dimX.

Then X ′ = (X ′ ∩ X1) ∪ · · · ∪ (X ′ ∩ Xn) so X ′ = X ′ ∩ Xi for some X. Thus
X ′ ⊂ Xi for some i and dimX = dimX ′ ≤ dimXi ≤ dimX. �

We now reformulate this notion of dimension for SpecR with the Zariski
topology directly in terms of prime ideals.

Definition 18.3 The Krull dimension of a ring R is the largest integer n such that
there is a chain p1 ⊂ · · · ⊂ pn of distinct prime ideals of R. ♦

If X is an affine algebraic variety it is clear that dimX = KdimO(X).

Proposition 18.4 Let R ⊂ S be rings such that S is a finitely generated R-
module. Then KdimR = KdimS.

Proof. Let
p0 ( p1 ( · · · ( pn

be a chain of primes in R. By Theorem 4.6, there is a prime q0 in S such that
p0 = R ∩ q0. Applying Theorem 4.6 to the prime p1/fp0 in R/fp0 ⊂ S/q0,
there is a prime q1 in S that contains q0 such that p1 = R ∩ q1. Continuing in
this way, there is a chain of primes

q0 ( q1 ( · · · ( qn

in S such that pi = R ∩ qi for all i. Hence KdimS ≥ KdimR.
Now suppose that q′ ( q are distinct primes in S. Then there is an inclusion

p′ := R ∩ q′ ⊂ p := R ∩ q of primes in R. If we can show that p 6= p′ it will
follow that KdimR ≥ KdimS.

Suppose that p = p′. Replace S by S/q′ and R by R/q′ ∩R. With this new
notation we are in the following situation: S is a domain, R ⊂ S, S is a finitely
generated R-module, and q is a non-zero prime in S. We will now show that
q ∩R 6= 0.

We work inside the field FractS. This contains K := FractR. Notice that

T := {sr−1 | s ∈ S, 0 6= r ∈ R}

is a subring of FractS that contains K and S. Since S is a finitely generated
R-module T is a finitely generated K-module, i.e., T is a domain and is a finite
dimensional K-vector space. It is therefore a field. Hence if 0 6= f ∈ S, then T
contains f−1, i.e., f−1 = sr−1 for some r ∈ R and s ∈ S. Hence 0 6= r = fs,
and we conclude that R ∩ fS 6= 0. In particular, q ∩R 6= 0. �

Theorem 18.5 If f : X → Y is a dominant morphism, then dimX ≥ dimY .



64 CHAPTER 1. AFFINE ALGEBRAIC GEOMETRY

Proof. Claim: If the theorem is true when X is irreducible, it is true for all
X. Proof: Write X = X1 ∪ . . . ∪Xt as the union of its irreducible components.
By applying the theorem to f |Xi

: Xi → f(Xi), we have dimXi ≥ dim f(Xi).
However,

Y = f(X) = f(X1) ∪ · · · ∪ f(Xt) = f(X1) ∪ · · · ∪ f(Xt)

so dimY = dim f(Xi) for some i by part (4) of Lemma 18.2.
We now assume X is irreducible.
We will prove the theorem by induction on n = dimY . If n = 0 then X is

non-empty so dimX ≥ 0. Let dimY = n > 0 and suppose the result is true for
varieties of dimension ≤ n− 1.

Let Yn−1 ⊂ Y be a closed irreducible subvariety of dimension n − 1. Then
f−1(Yn−1) is a closed subvariety of X. If f−1(Yn−1) = X, then f(X) ⊂ Yn−1

contradicting the hypothesis that f(X) = Y . Hence f−1(Yn−1) 6= X. Since
X is irreducible, part (3) of Lemma 18.2 gives dimX > dim f−1(Yn−1); but
dim f−1(Yn−1) ≥ n − 1 by applying the induction hypothesis to f−1(Yn−1) →
Yn−1.

Not complete �

When X is irreducible we may define dimX := trdegk k(X), the transcen-
dence degree of k(X), i.e., the maximal d such that k(X) contains algebraically
independent elements x1, . . . , xn.

Theorem 18.6 Let X be an irreducible affine variety. Then dimX is the
unique integer d such that O(X) is integral over a polynomial subring k[t1, . . . , td].

Proof. We want to show that the integer d is unique, so suppose that O(X) is
integral over the polynomial subrings k[t1, . . . , td] and k[x1, . . . , xn]. Then there
are surjective morphisms f : X → Ad and g : X → An. �

1.19 Localization

1.20 Local Rings

Nakayama’s Lemma
Completion.
Hensel’s Lemma
Henselization.


