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Abstract. We consider the impedance tomography problem for

anisotropic conductivities. Given a bounded region Ω in space, a diffeo-

morphism Ψ from Ω to itself which restricts to the identity on ∂Ω, and

a conductivity γ on Ω, it is easy to construct a new conductivity Ψ∗γ

which will produce the same voltage and current measurements on ∂Ω.

We prove the converse in two dimensions (i.e. if γ1 and γ2 produce

the same boundary measurements, then γ1 = Ψ∗γ2 for an appropriate

Ψ) for conductivities which are near a constant .
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§0. Introduction.

The resistance of a wire is defined by Ohm’s law

(0.1) δV = IR

where δV is the potential difference across the wire and I is the current flow through the

wire. Both δV and I are measured quantities and R is defined so that (0.1) holds. The

existence of the linear relationship in (0.1) is the assertion of Ohm’s law. The differential

version of Ohm’s law is

(0.1′) du(x) = i(x)ρ(x)

where u(x) is the voltage potential at x, du(x) its differential, i(x) the current flowing

through x, and ρ(x), defined by (0.1′), is called the resistivity. It will be convenient to

define the conductivity γ(x) by

γ(x) =
1

ρ(x)
.

Ohm’s law then has the form

(0.1′′) i(x) = γ(x)du(x).

In dimensions greater than one, the current i is represented by an (n − 1) form: the

only quantity we can measure is the flow through a surface (electrode) S, and this quantity

is given by integrating the (n − 1) form i over the surface S. Ohm’s law is still given by

(0.1′′), but γ(x) represents a mapping from differentials, or 1-forms, du, to (n − 1) forms

i: at each x, γ maps ∧1
x, the vector space of covectors at x, to ∧n−1

x , the vector space of

n− 1 covectors. The existence of such a linear map γ is again the assertion of Ohm’s law.

It is customary to assume that γ(x) is both positive definite and symmetric, that is

that, for a, b ∈ ∧1
x

(0.2) γa∧b = γb∧a

(0.3) γa∧a = φ(x)dx1
∧ . . .∧dx

n, φ(x) ≥ εγ |a|2 > 0

where x1, . . . , xn are positively oriented euclidean coordinates and | | is the euclidean

norm. If we define the (n − 1) forms

(0.4) ωk := (−1)k−1dx1
∧ . . . ∧dx

k−1
∧dx

k+1
∧ . . . ∧dx

n
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then the components γij of γ are given by

(0.5) γdxi = γijωj .

(0.2) and (0.3) imply that the matrix γij is positive definite and symmetric (> εγI).

We shall also assume that there is no dispalcement current (i.e. no current sources or

sinks within the body, which we represent by a bounded domain Ω in lRn). Thus if Ω′ ⊂ Ω

is any smooth subdomain ∫

∂Ω′

i = 0

or, using Stokes theorem ∫

Ω′

di = 0

Since Ω′ is arbitrary, we conclude that

di = 0 in Ω

or, substituting (0.1′′)

(0.6) dγdu = 0 in Ω

which is, in coordinates

(0.6′)
∂

∂xi
γij ∂

∂xj
u = 0

The conductivities we have discussed so far are anisotropic. A conductivity is called

isotropic if the relationship between voltage and current is independent of direction. That

is, if we first measure the current due to a voltage potential, and then rotate the voltage

potential, the current we measure will be the rotation of the first measurements. In our

framework, the euclidean rotation group, O(n), acts naturally on both ∧1
x and ∧n−1

x so

that, for any o ∈ O(n), the composite map

∧1
x

o−1γ(x)o→ ∧n−1
x

makes sense. γ is isotropic at x if

γ(x) = o−1γ(x)o ∀o ∈ O(n).

One isotropic conductivity is the euclidean conductivity e, the conductivity whose compo-

nent matrix, eij equals the identity in euclidean coordinates.
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In this paper we shall study the impedance tomography problem: we wish to in-

fer information about the conductivity γ(x) inside a region Ω from voltage and current

measurements at the boundary. The set of boundary measurements may be described as

Mγ = {(f, ω)|f = u|∂Ω, ω = γdu|∂Ω;u solves (0.6)}

Mγ is a subspace of C∞(∂Ω)×C∞(∧n−1(∂Ω)); it is in fact, the graph of the linear operator

C∞(∂Ω)
Λγ→ C∞(∧n−1(∂Ω))

where

(0.7) Λγf := γdu|∂Ω

and u is the unique solution to (0.6) such that

(0.8) u|∂Ω = f.

We can formulate the impedance tomography problem as follows: how much information

about γ can be detected from knowledge of the mapping Λγ? Much is known in the case

that γ is assumed to be isotropic.

For an isotropic conductivity which is a priori known to be real analytic [KV I],

piecewise real analytic [KVIII], or smooth (C3) and sufficiently close to a constant [SU I],

knowledge of Λγ suffices to determine γ uniquely. In dimension three and higher, in fact,

any smooth (C2) γ is uniquely determined by Λγ [SU II]. The C2 hypothesis can even be

relaxed ([I]).

For an anisotropic conductivity, however, it has been observed [KV II] that this is not

the case. Any diffeomorphism of Ω which fixes the boundary can be used to construct a

new conductivity with the same voltage to current map. In this paper we show that in

dimension two, and under the a priori hypothesis that the determinant of γ is (C3) close

to constant, the converse is true. If γ1 and γ2 have the same voltage to current map, then

there exists a diffeomorphism which fixes the boundary and transforms γ1 to γ2. A result

of this nature for real analytic conductivities (in dimensions ≥ 3) appears in [LU].

In §1, we shall state the theorem precisely and prove it, based on three propositions.

§2 and §3 are devoted to the proofs of these propositions.

The author would like to thank Bob Kohn, who made substantial contributions to

this work; and also F. H. Lin who proved a version of theorem 1.0 under the additional

hypothesis, det γ ≡ 1. Thanks are also due to Percy Deift, Jack Lee, Gunther Uhlmann,

and Tom Wolff for many helpful conversations.
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§1.

Let Ψ denote a diffeomorphism from a smooth bounded domain Ω ⊂ lRn to itself. We

may define the push forward, Ψ∗γ of the conductivity γ

γ : ∧1(Ω) → ∧n−1(Ω)

to be

(1.0) (Ψ∗γ)α = Ψ∗(γ(Ψ∗α))

where Ψ∗α denotes the pull back of the 1-form α and Ψ∗ = (Ψ−1)∗ denotes the pull back

by Ψ−1 acting on the n− 1 form γ(Ψ∗α). In coordinates, (1.0) reads

(1.0′) (Ψ∗γ(y))ℓm =
∂Ψℓ

∂xi γ
ij ∂Ψm

∂xj

det(∂Ψ
∂x

)
◦ Ψ−1(y).

Note that if u satisfies

dγdu = 0

then Ψ∗u = u ◦ Ψ−1 satisfies

dΨ∗γd(Ψ∗u) = dΨ∗(γ(Ψ∗dΨ∗u))

= Ψ∗dγdu

dΨ∗γd(Ψ∗u) = 0 .(1.1)

If ψ is a smooth diffeomorphism of ∂Ω we may form the push forward ψ∗Λγ of the

voltage to current map (recall (0.7))

C∞(∂Ω)
Λγ→∧n−1(∂Ω)

by

(ψ∗Λγ)f = ψ∗Λγ(ψ∗f) .

If we choose

ψ = Ψ|∂Ω,

the unique solution to the Dirichlet problem

d(Ψ∗γ)dv = 0

v|∂Ω = f ◦ ψ−1 ,
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is just v = u ◦ Ψ−1 where

dγdu = 0

u|∂Ω = f .

This implies the equality of operators

(1.2) ΛΨ∗γ = ψ∗Λγ when ψ = Ψ|∂Ω .

If, in (1.2), we take ψ to be the identity we see that

ΛΨ∗γ = Λγ

Thus, given any γ and any diffeomorphism Ψ which fixes the boundary, we can con-

struct a (generally) different conductivity, Ψ∗γ, with the same voltage to current map.

Our theorem is a partial converse in dimension two. Our hypotheses shall make reference

to the norm of γ in the C3 topology; by this we mean

‖γ‖C3 = sup
x∈Ω

i,j=1,2
|α|≤3

|Dαγij|

where the γij and all derivatives are computed in euclidean coordinates. We shall assume

that the ellipticity constant, εγ (recall (0.3)), is equal to one; this can be accomplished by

multiplying γ by a constant.

Theorem 1.0. Let Ω be a bounded domain in lR2 with C3 boundary and let γ1 and γ2

be C3 conductivities with

(1.3) ‖γℓ‖C3 ≤M for ℓ = 1, 2 ; εγ = 1

There exists ε = ε(Ω,M) such that if

(1.4) ‖ log(det γℓ)‖C3 < ε for ℓ = 1, 2

and

(1.5) Λγ1
= Λγ2

then there exists a C3 diffeomorphism Ψ with

(1.6) γ1 = Ψ∗γ2 ; Ψ|∂Ω = I.
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Remark 1.0 We could replace hypothesis (1.4) in the theorem by

(1.4′) γℓ is real analytic for ℓ = 1, 2.

This would require verifying real analyticity in propositions 1.1 and 1.3 below and replacing

proposition 1.2 with the analagous theorem for real analytic conductivities, which was

proved in [KV I] in the isotropic case.

Theorem 1.0 will be a direct consequence of the following two propositions:

Proposition 1.1. Let Ω be a bounded domain in lR2 with C3 boundary, let γ1 and γ2 be

C3 conductivities on Ω, and let φ be a C3 diffeomorphism of ∂Ω such that

(1.7) φ∗Λγ1
= Λγ2

then φ extends to a γ1-γ2 conformal diffeomorphism of Ω. That is, there exists a diffeo-

morphism Φ mapping Ω to itself such that

(1.8) Φ∗γ1 = (
detγ1 ◦ Φ−1

detγ2
)1/2γ2

Furthermore,

(1.9) ‖Φ‖C3 ≤ K = K(‖γ1‖C3 , ‖γ2‖C3 , ‖φ‖C3 ,Ω)

Proposition 1.2. Let Ω be a bounded domain in lR2 with C3 boundary and let γ be a

C3 conductivity on Ω. There exists ε = ε(‖γ‖C3 ,Ω) such that, if β and detγ satisfy

(1.10) ‖ logβ‖C3 + ‖ log(detγ)‖C3 ≤ ε

and

(1.11) Λγ = Λβγ

then

β ≡ 1

Proposition 1.1 is the main technical result in the paper, and will be proved in §3.

In the case that γ is isotropic, proposition 1.2 is just a restatement of the main theorem

in [SU I]. The existence of isothermal coordinates will allow us to reduce to that case. In

fact, we shall need a precise version of isothermal coordinates to prove proposition 1.1. To

this end, we shall prove in §2
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Proposition 1.3. Let Ω be a bounded domain in lR2 with C3 boundary and let γ be a C3

conductivity on Ω, then there exists a C3 domain Ω′ and a γ-e conformal diffeomorphism

Φ from Ω to Ω′; that is, there exists a Φ such that

(1.12) Φ∗γ = (detγ ◦ Φ−1)e

Furthermore,

(1.13) ‖Φ‖C3 + ‖Φ−1‖C3 ≤ K = K(Ω, ‖γ‖C3)

Proof of Proposition 1.2 Let Φ be as in proposition 1.3 and let φ denote Φ|∂Ω; then

(1.11) implies

φ∗Λγ = φ∗Λβγ

which yields, according to (1.2),

ΛΦ∗γ = ΛΦ∗βγ

This gives, according to (1.12),

(1.14) Λ(detγ◦Φ−1)e = Λ((βdetγ)◦Φ−1)e

According to theorem 0.2 of [SU I], if (1.14) holds and

(1.15) ‖ log(βdetγ) ◦ Φ−1‖C3 + ‖ log(detγ) ◦ Φ−1‖C3 ≤ δ = δ(Ω′)

then we may conclude that

detγ ◦ Φ−1 = βdetγ ◦ Φ−1

or

β ≡ 1

To guarantee (1.15), we need insist that ε in (1.10) satisfies

ε(1 + ε)‖Φ−1‖C3 ≤ δ

or

ε ≤ δ

2K

where K is the constant which appears in (1.13).

8



Proof of Theorem 1.0 As a consequence of (1.5), (1.7) holds with φ equal to the

identity; proposition 1.1 implies the existence of Φ extending φ such that

Φ∗γ1 = (
detγ1 ◦ Φ−1

detγ2
)1/2γ2

= βγ2

Therefore

Λβγ2
= ΛΦ∗γ1

= φ∗Λγ1
= Λγ1

= Λγ2

as φ is the identity map.

We may now apply proposition 1.2 [ (1.3),(1.4), and (1.9) imply (1.10)] to conclude

that β ≡ 1, or

Φ∗γ1 = γ2

In the remainder of this section we give a brief discussion of proposition 1.1; its proof

will appear in §3. We begin by stating and proving a special case of proposition 1.1, which

illustrates the proof of the theorem in a particularly simple setting. We take D to be the

unit disk in lR2, we have

Proposition 1.1′. Let φ be a C2 diffeomorphism of the circle (∂D) such that

(1.16) φ∗Λe = Λe;

then φ extends to a conformal map of D to itself.

Proof. We shall extend φ to a conformal map by solving

(1.17)
∂v = 0 in D

v|∂D = eiφ.

If we make use of the projection operators

P+f =
∞∑

n=0

fne
inθ ; fn =

1

2π

∫ 2π

0

f(θ)e−inθdθ

(1.18) P−f =

−∞∑

n=−1

fne
inθ,
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then (1.17) has a solution exactly when

(1.19) P−(eiφ) = 0 .

Now, on D,

Λef = (
∞∑

n=−∞

|n|einθfn)dθ

or

(1.20) Λef = (P+(
∂f

∂θ
) − P−(

∂f

∂θ
))
dθ

i
.

(1.16) implies that

Λe(f ◦ φ) = φ∗(Λef) .

If we choose

f(θ) = eiθ

and use (1.20), this becomes

(P+(
∂eiφ

∂θ
) − P−(

∂eiφ

∂θ
))dθ = (

∂eiφ

∂θ
)dθ

from which we conclude that

P−(
∂

∂θ
(eiφ)) = 0

so that

P−e
iφ = constant .

But the constant must be zero (see (1.18)). Hence

P−(eiφ) = 0

and we have verified (1.19); so that (1.17) has a unique solution. The fact that v is a

diffeomorphism follows from the argument principle and the fact that φ is 1-1 and onto.

In the proof of proposition 1.1′, we showed that we could solve the Cauchy problem

(1.17) if the hypothesis (1.16) was satisfied. Proposition 1.1 can also be viewed as the

statement that, in the presence of hypothesis (1.7) we can solve a certain Cauchy problem

for a first order, two by two, linear elliptic system. We seek Φ such that

(1.21) Φ∗γ1 = βγ2
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where β is a scalar function. In lR2,

γ : ∧1 → ∧1

so that the determinant of γ is a well defined function. Hence, if we find Φ satisfying (1.21)

detΦ∗γ1 = detγ1 ◦ Φ−1

= β2detγ2 .

β must be positive so that (0.3) is satisfied, so that

β = (
detγ1 ◦ Φ−1

detγ2
)1/2 .

To solve (1.21), let ω and θ be γ2 orthonormal 1–forms; i.e.

ω∧γ2θ = 0(1.22)

ω∧γ2ω = θ∧γ2θ = 1 .(1.23)

If (1.21) holds, then
ω∧(Φ∗γ1)θ = 0

ω∧(Φ∗γ1)ω = θ∧(Φ∗γ1)θ

or equivalently,

Φ∗ω∧γ1(Φ
∗θ) = 0(1.24)

Φ∗ω∧γ1(Φ
∗ω) = Φ∗θ∧γ1Φ

∗θ .(1.25)

Now (1.24) can only be satisfied if, for some scalar valued function a,

(1.26) Φ∗ω = aγ1(Φ
∗θ) .

Inserting (1.26) into (1.25) yields

a2 = (detγ1)
−1 .

To maintain (0.3) we must choose a to be positive; hence the nonlinear system (1.24),

(1.25) can be replaced by (it is straightforward to check the equivalence) the linear elliptic

first order system

(1.27) Φ∗ω =
γ1

(detγ1)1/2
Φ∗θ .

Equation (1.27) is independent of the choice of θ and ω satisfying (1.22) and (1.23). The

ellipticity of the system can easily be verified directly. It is perhaps easier to note that, if

Ψ1 and Ψ2 are isothermal coordinates (whose existence is guaranteed by proposition 1.3)

for γ1 and γ2 respectively, then Φ̃ = Ψ−1
1 ◦Φ ◦Ψ2 satisfies the Cauchy Riemann equations.

Proposition 1.1 states that we can solve the Cauchy problem for (1.27) when (1.7)

holds. In fact, a direct corollary of proposition 1.1 is
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Corollary 1.4. There exists a solution to (1.27) with

Φ|∂Ω = φ

if and only if

φ∗Λγ1
= Λβγ2

for some scalar valued function β.

Proof The necessity follows from (1.2) and the sufficiency from proposition 1.1 with

γ2 replaced by βγ2.
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§2.

In this section we prove proposition 1.3, as well as develop some special solutions to

the differential equation (0.6) which will be essential to the proof of proposition 1.1. We

shall make use of the weighted (at infinity) Lp spaces, Lp
δ , which are the completions of

C∞
0 (lR2) in the norms

‖u‖p,δ = ‖(1 + |x|2)δ/2u‖p ; δ ∈ lR

Lp
δ are complex interpolation spaces; in particular, if T is a linear map

Lpi

δi

T→Lqi
εi

; i = 0, 1

with bounds ‖T‖i, then T is bounded from

L
p(s)
δ(s)

T→L
q(s)
ε(s)

where

0 < s < 1

1

p(s)
= (1 − s)

1

p0
+ s

1

p1

1

q(s)
= (1 − s)

1

q0
+ s

1

q1

δ(s) = (1 − s)δ0 + sδ1

ε(s) = (1 − s)ε0 + sε1.

Furthermore,

(2.1) ‖T‖s ≤ ‖T‖1−s
0 ‖T‖s

1.

For the general approach to complex interpolation see [S]; in this instance, the relevant

analytic function is, for a ∈ Lp
δ ,

f(z) = (1 + |x|2)1/2( 1−z
p0

+ z
p1

)pδ−(1−z)δ0−zδ1ap( 1−z
p0

+ z
p1

)

We shall use the notation

∂ =
1

2
(
∂

∂x
+ i

∂

∂y
)

∂ =
1

2
(
∂

∂x
− i

∂

∂y
).

We now state and prove the precise version of the existence of isothermal coordinates

which we will need below. The letter e will be used to denote the euclidean conductivity.
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Proposition 2.1. Suppose that

(2.2) γ ∈ C1,1(lR2)(resp.C3(lR2))

and

(2.3) γ = e for |x| > R

then there exists β > 0 such that, for all (p, δ) satisfying |p−2|+|δ+1| < β, − 2
p
< δ < 1− 2

p

there exists a unique f ∈ Lp
δ such that F = z + f is a C2(resp.C3) diffeomorphism from

lR2 to itself satisfying

(2.4) F∗γ = (det γ ◦ F−1)1/2e

In addition,

(2.5) ‖Dαf‖Lp

δ+1
≤ K(p, δ,M,R, ‖γ‖C1,1 ) for 0 ≤ |α| ≤ 3

(2.6) ‖Dαf‖Lp

δ+1
≤ K(p, δ,M,R, ‖γ‖C3 ) for 0 ≤ |α| ≤ 4 .

Furthermore,

(2.7) F−1 = z + h

with h satisfying (2.5) and (2.6).

This proposition is a modification of the proof of the existence of isothermal coordi-

nates given by Ahlfors in [A]. The function spaces we need are somewhat different, and we

choose some different normalizations, but our approach parallels his. Instead of Riemanian

metrics we are dealing with conductivities (which we may identify with (co)metrics tensor

n-forms), however, from the conformal point of view they may be treated similiarly.

In order to be consistent with the notation used in [A], we shall, in this section, use

only euclidean coordinates, and in lemma 2.2 below use γ to denote the positive definite

matrix of coefficients defined in (0.5) with these coordinates.

The possible point of confusion is the following: γ maps 1-forms to (n-1)-forms; in

order to define the γij ’s we must choose two bases, as was done in (0.4) and (0.5). However,

in two dimensions γ maps 1-forms to 1-forms, but the bases we chose in (0.4) and (0.5)

are different. Hence, although the trace and determinant of the mapping are well defined
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functions in two dimensions, they need not be the trace and determinant of the matrix of

γij ’s (it turns out that the determinant of the mapping actually equals the determinant of

the γij’s and the trace of the mapping is always zero).

The proof of proposition 2.1 will follow from a series of lemmas. We use euclidean

coordinates throughout. In lemma 2.2 below, (2.8) is exactly (1.27) in the special case

that γ2 is (conformal to) the euclidean conductivity.

Lemma 2.2. (2.4) holds if and only if

(2.8) ∂F = µγ∂F ; µγ =
γ11 − γ22 + 2iγ12

γ11 + γ22 + 2
√

detγ

Proof. If we write F = F1 + iF2 and abuse notation by writing γ for the matrix of γij ’s

from (0.5) and dF for the column vector ( ∂F
∂x1 ,

∂F
∂x2 )T , (2.4) becomes

(2.9) dFT
1 γdF1 = dFT

2 γdF2

(2.10) dFT
1 γdF2 = 0 .

Now (2.10) implies that

(2.11) dF1 = λ

(
0 −1
1 0

)
γdF2

where λ is a scalar. Inserting (2.11) into (2.9) yields λ = ±(det γ)1/2 and we must choose

λ positive so that F∗γ is a positive definite matrix. Inserting this into (2.11) yields a linear

system which can be seen to be equivalent to (2.8) (see [CH] page 351).

We shall now discuss (2.8). We note that

|µγ|2 =
(γ11 + γ22)2 − 4 detγ

(γ11 + γ22 + 2
√

detγ)2

so that for

(2.12) I < γ < MI

(2.13) |µγ | ≤ 1 − ε ; ε = ε(M) > 0
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We shall need

Lemma 2.3. Let

(2.14) 1 < p <∞ , −2

p
< δ < 1 − 2

p

There exists a constant K(p, δ) and a unique Lp
δ solution to

∂u = v ∈ Lp
δ+1 .

Furthermore,

(2.15) ‖u‖p,δ + ‖Du‖p,δ+1 ≤ K‖v‖p,δ+1

(2.16) |u(z)| ≤ K‖v‖p,δ+1|z|−2/p−δ for p > 2 .

Proof. We refer to Theorem 2.1 of [NW] (page 275) for (2.15). To summarize, one first

shows that the only Lp
δ solution is the one given by

(2.17) u(z) =

∫

lR2

v(w)

z − w

dw∧dw

2πi

and then applies Hölder’s inequality to estimate ‖u‖p,δ and a Calderon-Zygmund type

lemma to estimate ‖Du‖p,δ. The inequality (2.16) is also just Hölder’s inequality applied

to (2.17), namely

|u(z)| ≤ (

∫
(

1

|z −w|(1 + |w|)δ+1
)qdw)1/q‖v‖p,δ+1

≤ (

∫

lR2

(
1

|1 − x||x|δ+1
)qdx)1/q |z|−2/p−δ‖v‖p,δ+1.

where 1
q = 1 − 1

p . The conditions (p > 2) and (2.14) imply that the integral is finite and

that −2/p− δ < 0.

Lemma 2.4. There exists β > 0 such that for all (p, δ) satisfying

(2.18)

|1
p
− 1

2
|+ |δ + 1| < β

−2

p
< δ < 1 − 2

p
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then both of the mappings

(I − µγ∂(∂)−1) : Lp
δ+1 → Lp

δ+1

and

(I − µγ∂(∂−1)) : Lp
δ+1 → Lp

δ+1

are invertible and satisfy

(2.19) ‖(I − µγ∂(∂−1))−1‖ , ‖(I − µγ∂(∂)−1)−1‖ ≤ 2

ε

where ε is defined in (2.13).

Proof. We shall treat only the first operator, the second is analagous.

∂(∂)−1 : L2
0 → L2

0

is bounded with norm 1. It follows from (2.15) that

∂(∂)−1 : Lq
β+1 → Lq

β+1

is bounded with norm M = M(q, β).

By interpolation,

‖∂(∂)−1‖p,δ+1 ≤M1−s1s

where
1

p
= (1 − s)

1

q
+ s

1

2

and

1 + δ = (1 − s)(1 + β)

If we choose s so close to one that

εM1−s < 1,

then the Neumann series for (I − µγ∂(∂)−1)−1 converges and (2.19) follows.

Lemma 2.5. Let p and δ satisfy (2.14), then there exist unique Lp
δ solutions to

(2.20) (∂ − µγ∂)u1 = v1 ∈ Lp
δ+1

and

(2.21) (∂ − ∂µγ)u2 = v2 ∈ Lp
δ+1
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Furthermore,

(2.22) ‖ui‖p,δ + ‖Dui‖p,δ+1 ≤ 2

ε
K(p, δ)‖vi‖p,δ+1 ; i = 1, 2

and, for p > 2,

(2.23) |ui(z)| ≤
2

ε
K(p, δ)‖vi‖p,δ+1|z|−

2
p
−δ .

Proof. We write (2.20) and (2.21) as

(2.20′) (I − µγ∂(∂)−1)∂u1 = v1

(2.21′) ∂(I − (∂)−1∂µγ)u2 = v2

For (2.20′), apply Lemma 2.4 and then Lemma 2.3. For (2.21′), first apply lemma 2.3

to invert ∂ and then note that

(I − (∂)−1∂µγ) = (I − µγ∂∂
−1)∗

so that the invertibility of (I− (∂)−1∂µγ) follows from that of (I −µγ∂∂
−1), which follows

from Lemma 2.4. We leave it to the reader to check that condition (2.18) is commensurate

with the duality argument above.

Proof of Proposition 2.1 From Lemma 2.2, we see that solving (2.4) is equivalent to

solving (2.8) which is in turn equivalent to finding f satisfying

(2.24) (∂ − µγ∂)f = µγ

so that Lemma 2.5 guarantees the existence of a unique f such that F = z + f satisfies

(2.4). Differentiating (2.24) and applying (2.22) successively yields

(2.25)
∑

1≤|α|≤k+1

‖Dαf‖p,δ+1 ≤ 2

ε
K(

∑

|α|≤k

‖Dαµγ‖p,δ+1)(1 +
∑

|α|≤k

‖Dαµγ‖p,δ+1)

which guarantees (2.5) and (2.6); (2.3) and (2.2) guarantee that the right hand side is

finite for k ≤ 2(resp.3). Hence F has 3(resp. 4) derivatives in Lp
loc for some p ≥ 2 and

therefore belongs to C2(resp. C3).
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F tends to the identity as z approaches infinity, hence it is a proper mapping and its

degree is equal to one (the degree is the sum of the number of preimages of a generic point,

counted with a plus or minus sign depending on whether the determinant is positive or

negative at that particular preimage). Once we show that det(DF ) 6= 0, it will follow from

the fact that F has degree one that F is in fact a global diffeomorphism. To see this, it is

enough to check that Fz 6= 0, because

det(DF ) = |Fz|2 − |Fz|2 = (1 − |µγ |2)|Fz|2.

Now, Fz satisfies

(2.26) (∂ − ∂µγ)G = 0

and it is the unique solution of (2.26) of the form

G = 1 + g; g ∈ Lp
δ

because (2.26) is equivalent to

(2.27) (∂ − ∂µγ)g = (µγ)z

and the Lp
δ solution to (2.27) was shown to be unique in Lemma 2.5.

On the other hand, we may seek to solve (2.26) by looking for

G = eσ

where σ must satisfy

(∂ − µγ∂)σ = (µγ)z

so that there exists a unique σ ∈ Lp
δ (Lemma 2.5 again) which approaches zero as |z|

approaches ∞ by (2.23). Hence,

g = G − 1 = eσ − 1 ∈ Lp
δ

and we may conclude that

Fz = eσ 6= 0

so that F is a diffeomorphism .

We now know that F−1 = z + h exists; from

F−1 ◦ F (z) = z
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it follows that

(2.28) h(z + f) = −f(z) ∈ Lp
δ

and then by change of variables (Dfz ∈ Lp
δ , p > 2 implies that fz is locally bounded and

(2.23) can be used to show that fz approaches zero as |z| → ∞) it follows that h ∈ Lp
δ .

Differentiation of (2.28) will show that h satisfies (2.5) and (2.6).

Proof of Proposition 1.3 We begin by extending γ to be a C3 conductivity on all of lR2

satisfying (2.3). We then take Φ to be the diffeomorphism F whose existence is asserted

in proposition 2.1 and let Ω′ be the image F (Ω). The estimate (1.13) is a consequence of

(2.6) and the Sobolev inequalities (F has four derivatives in Lp
loc for some p > 2).

Our next order of business is to produce special solutions to (0.6) in all of lR2. We

shall make use of the following proposition, which is proposition 1.2 in [SU I].

Proposition 2.6. Let 1 < p < ∞, − 2
p < δ < 1 − 2

p . There exist constants M(p, δ),

N(p, δ) > 0 such that if k ∈ Cl and γ is a C1,1 isotropic conductivity satisfying

(2.29) q =
∆(detγ)1/4

(detγ)1/4
∈ Lp

δ

(2.30) ‖(1 + |z|2)1/2q‖L∞ ≤ M

|k|

then there exists a unique solution to

(2.31) dγdu = 0

such that

u = ekz(det γ)−1/4(1 + r(z, k))

(2.32)

r(·, k) ∈ Lp
δ(lR

2) .

Furthermore,

(2.33) ‖r‖p,δ ≤ N

|k|‖q‖p,δ+1
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and

(2.34) ‖Dr‖p,δ ≤ N‖q‖p,δ+1

The last thing we shall do in this section is to combine proposition 2.6 with proposition

2.1 to produce solutions to (2.31) without the isotropy hypothesis. We shall refer to Fγ(z),

the unique mapping (isothermal coordinates) produced in Proposition 2.1. We shall prove

Proposition 2.7. Let (p, δ) satisfy (2.18). There exists M(p, δ) > 0 such that if k ∈ Cl

and γ is a C1,1 conductivity on lR2 satisfying

(2.35) q =
∆(detγ ◦ Fγ)1/4

(det γ ◦ Fγ)1/4
∈ Lp

δ

and

(2.36) ‖(1 + |z|2)1/2q‖L∞ ≤ M

|k|

then there exists a unique solution to

(2.37) dγdu = 0

such that

(2.38) u = ekz(det γ)−1/4(1 + ρ(z, k))

and

(2.39) ρ(·, k) ∈ Lp
δ ,Dρ(·, k) ∈ Lp

δ+1.

Furthermore, with uniform convergence on bounded sets,

(2.40) lim
|k|→∞

log u(z, k)

k
= Fγ(z).

Proof. We first transform (2.37) to the isotropic equation

(2.41) dFγ∗γdw = 0.
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Proposition 2.6 implies the existence of a unique w satisfying (2.41) of the form

w = ekz(det γ ◦ F−1
γ )−1/4(1 + r(z, k)).

Now, a solution to (2.37) will be

u = w ◦ Fγ = ekFγ (z)(det γ)−1/4(1 + r(Fγ (z), k)(2.42)

= ekz(detγ)−1/4(1 + r(Fγ (z), k)ekf(z) .

We previously established, using (2.22) and (2.23), that f and fz were uniformly bounded

and approached zero as |z| approached infinity. Hence we may conclude that

r(Fγ (z), k) ∈ Lp
δ

and

|ekf(z) − 1| ∈ Lp
δ

and hence that

ρ(z, k) = (1 + r(Fγ (z), k))ekf(z) − 1 ∈ Lp
δ

so that we have proved existence.

To see uniqueness, we suppose u solving (2.37) has the form (2.38), then

w = u ◦ F−1
γ

= eF−1
γ (z)k(det γ ◦ F−1

γ )−1/4(1 + ρ(F−1
γ (z), k))

= ezk(det γ ◦ F−1
γ )−1/4(1 + ρ(F−1

γ (z), k))ekh(z)

and w solves the isotropic equation (2.41).

By mimicking the argument which we just used to establish existence, we see that w

has the required form (2.32) (i.e. (1 + ρ(F−1
γ (z), h))ekh(z) − 1 ∈ Lp

δ). Hence proposition

2.6 implies that w is unique; therefore u is also unique.

It remains only to establish (2.40); we begin with (2.42) which gives

(2.43)
logu(z, k)

k
= Fγ(z) − 1

4k
log(det γ) +

1

k
log(1 + r(Fγ (z), k)).

Now Fγ is C1,1 and r(·, k) andDr(·, k) satisfy (2.33) and (2.34) which allows us to conclude

that
‖r(·, k)‖Ws

p (BR) ≤ ‖r‖1−s
Lp(BR)‖Dr‖s

Lp(BR)K̃(p, δ,R)

≤ (
1

k
)1−s‖q‖Lp

δ+1
K̃(p, δ,R)
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where W s
p (BR) is the fractional order Sobolev space in the ball of radius R and δ is as in

proposition 2.1. The embedding theorem implies that, for 2
p < s < 1, we have

sup
z∈BR

|r(z, k)| ≤ C‖r(·, k)‖Ws
p (BR)

hence r, and also r ◦ Fγ, approaches zero (uniformly in |z| ≤ R) so that we may deduce

(2.40) from (2.43).
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§3.

In this section we prove Proposition 1.1. We shall assume throughout this section that

Ω is connected. Proposition 1.1 for arbitrary Ω follows immediately from this special case.

We shall denote the components of ∂Ω by (∂Ω)j ; (∂Ω)m represents the outer component

(i.e., the boundary of the unbounded component of lR2\Ω). The proposition will be a

corollary of proposition 2.7 and the following two propositions:

Proposition 3.1. Let γ1 and γ2 belong to Ck(lR2) and suppose that both are equal to

the euclidean conductivity outside an ǫ neighborhood of Ω. Let

φ : ∂Ω → ∂Ω

be an orientation preserving diffeomorphism which maps (∂Ω)m to itself. Then φ can be

extended to a diffeomorphism

Φ : lR2\Ω → lR2\Ω

such that, for |α| ≤ k

(3.1) Dα(Φ∗γ1 −
detγ1 ◦ Φ−1

detγ2
γ2)|∂Ω = 0

and, for |x| sufficiently large

(3.2) Φ(x) = x .

Proposition 3.2. Suppose that φ is a diffeomorphism of ∂Ω which maps (∂Ω)m to itself,

and such that

(3.3) φ∗Λγ1
= Λγ2

+R

where R is a smoothing operator1. Then φ is orientation preserving, and, if Φ is the

extension of φ in proposition 3.1, we have, for |α| ≤ 1,

(3.4) Dα(detγ1 ◦ Φ−1 − detγ2)|∂Ω = 0

Remark. Although we do not carry the proof out here, (3.4) is valid for |α| ≤ k if

γ1 and γ2 belong to Ck. To see this would require carrying out the computation in lemma

1 A smoothing operator maps L2 to C∞. For our purposes, the definition in (3.14)

below will suffice.
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3.7 below to order k. A form of this computation has been carried out in both [KV I] and

in [SU III].

In the proof of proposition 1.1, we shall use the following immediate consequence of

the two preceding propositions.

Corollary 3.3. Let φ satisfy (3.3) and map (∂Ω)m to itself. Let Φ be as in proposition

3.1, then the conductivity

(3.5) γ12 =

{
γ2 on Ω
Φ∗γ1 on lR2\Ω

is a C1,1 conductivity on lR2.

Proof of Proposition 1.1 Our first step is to extend γ1 andγ2 to be C3 conductivities

on all of lR2, which are equal to the euclidean conductivity outside an ǫ neighborhood of

Ω. Suppose first that φ maps (∂Ω)m to itself and let Φ be the extension of φ to lR2\Ω
produced in proposition 3.1 . Let v be the solution to the Dirichlet problem

(3.6) dγ2dv = 0 in Ω

(3.7) v|∂Ω = uγ1
|∂Ω ◦ φ−1 = uγ1

◦ Φ−1|∂Ω

where uγ1
is the special solution to (2.37), with γ = γ1, of the form (2.38). We define

(3.8) w =

{
v for z ∈ Ω
uγ1

◦ Φ−1 for z ∈ lR2\Ω .

We claim that w is the unique solution uγ12
to (2.37) of the form (2.38), with γ = γ12, as

defined in (3.5). If we recall (1.1) we see that w satisfies (2.37) in lR2\Ω; it has the form

(2.38) because uγ1
does and because Φ is the identity outside a large ball. Equation (3.6)

shows that w satisfies the differential equation in Ω and (3.7) implies continuity across ∂Ω.

The point that we must check, then, is the continuity of γ12dw across ∂Ω.

In lR2\Ω,

γ12dw = Φ∗γ1d(uγ1
◦ Φ−1)

As we approach ∂Ω from lR2\Ω, (1.1) and (3.8) imply that

γ12dw →ΛΦ∗γ1
(uγ1

◦ Φ−1|∂Ω)

=φ∗Λγ1
(uγ1

◦ Φ−1|∂Ω)

=Λγ2
(uγ1

◦ Φ−1|∂Ω)
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which, according to (3.7) and (3.8), is exactly the limit of γ12dw as we approach ∂Ω from

inside Ω.This establishes our claim.

It follows from (2.40) and (3.8) that Fγ12
|Ω is a (γ2−e) conformal map and from (3.7)

that

Fγ12
|∂Ω = Fγ1

|∂Ω ◦ φ−1 .

Hence F−1
γ12

◦ Fγ1
is (γ1 − γ2) conformal and

F−1
γ12

◦ Fγ1
|∂Ω = φ .

This establishes (1.8) with F−1
γ12

◦Fγ1
in place of Φ. The estimate (1.9) follows from similiar

estimates on F−1
γ12

and Fγ1
. The latter is a consequence of (1.13). The former does not

follow directly from (1.13) because we have not verified that γ12 belongs to C3(lR2)(see the

remark following proposition 3.2); however,F−1
γ12

solves the elliptic boundary value problem

(1.27) in Ω with C3 coefficients and C3 boundary data φ, hence F−1
γ12

must belong to C3

and satisfy an estimate of the form (1.9).

Finally, suppose that φ does not map (∂Ω)m to itself; i.e., for some j 6= m

φ : (∂Ω)j → (∂Ω)m

Let F be a diffeomorphism from Ω to itself which maps (∂Ω)m to (∂Ω)j . To see that such

an F exists, proceed as follows: map Ω diffeomorphically to a domain Ω̃ whose boundary

consists of circles (the existence of such a diffeomorphism is guaranteed by the Riemann

mapping theorem for multiply connected domains: we leave the radii of the circles and

their locations to be determined so that the mapping will exist), use a fractional linear

transformation to map the outer bounding circle to an inner circle, and finally scale the

image circles and move them about with the aid of flows induced by vector fields to force

the image to again be Ω̃.

If f denotes the restriction of F to ∂Ω,we have

(φ ◦ f)∗ΛF−1
∗ γ1

= Λγ2

and (φ ◦ f) maps (∂Ω)m to itself so that (φ ◦ f) extends to a F−1
∗ γ1 - γ2 conformal map.

Composition with F now yields the desired extension of φ.

Proof of Proposition 3.1 The proof of proposition 3.1 breaks into two parts. The first is

to find a Φ satisfying (3.1) in a neighborhood of ∂Ω. This is equivalent to formally solving

the Cauchy problem (1.27) with Cauchy data Φ|∂Ω = φ. This can always be accomplished

because (1.27) is elliptic. The second part is to prove:
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Lemma 3.4. Any orientation preserving diffeomorphism mapping a neighborhood of ∂Ω

to a neighborhood of ∂Ω can be extended, from a possibly smaller neighborhood, to a

diffeomorphism Φ of lR2. If Φ̃ maps a neighborhood of (∂Ωm) to itself, then Φ may be

chosen to satisfy (3.2).

Proof Let D denote the unit disk. We shall prove below:

Lemma 3.5. Any orientation preserving diffeomorphism mapping a neighborhood of ∂D

to a neighborhood of ∂D can be extended, from a possibly smaller neighborhood, to a

diffeomorphism of lR2 which equals the identity outside an ǫ neighborhood of D.

We contend that, with the aid of lemma 3.5, we can produce an orientation preserving

diffeomorphism N from lR2 to itself which maps Ω onto a domain Ω̃ whose boundary

consists only of circles. The first step is to let S be a diffeomorphism of Ω onto Ω̃ –

the existence of such a mapping is guaranteed by the Riemann mapping theorem for

multiply connected domains . Next, let Rj denote a diffeomorphism from (lR2\Ω)j , the

jth component of lR2\Ω, (this is simply connected because we have assumed that Ω is

connected) onto the jth component of lR2\Ω̃ (the existence of such a mapping is guaranteed

by the Riemann mapping theorem). Both diffeomorphisms are smooth up to the boundary

and extend to a full neighborhood of their common boundary. As a consequence of lemma

3.5, we may extend the diffeomorphism S ◦ R−1
j (maps a neighborhood of a circle to a

neighborhood of a circle) to a diffeomorphism Ψj of lR2 which is the identity, except in a

neighborhood of the boundary circle. We may now define N by

N(x) =

{
S for x ∈ Ω
Ψj for x ∈ (lR2\Ω)j .

It now suffices to prove lemma 3.4 for Ω̃; conjugation with N then provides the extension

for Ω.

To prove the lemma for Ω̃, we note that each connected component (lR2\Ω̃)j is a

disk and that our diffeomorphism Φ̃ maps (∂Ω̃)j to (∂Ω̃)k for some j, k 6= m. Lemma 3.5

guarantees that Φ̃ extends inside each disk (scale first so that both disks have radius one).

If j = k = m, we again employ lemma 3.5 to extend Φ̃ outside this disk. This completes

the proof of the lemma.

All that remains in the proof of proposition 3.1 is the

Proof of lemma 3.5 In polar coordinates, an orientation preserving diffeomorphism of

D is given by:

Ψ(r, θ) =

(
1

φ(θ)

)
+ (r − 1)

(
ã1(θ)
ã2(θ)

)
+ (r − 1)2R̃(r, θ)
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where

(3.9) φ′(θ) > ǫ > 0

and

(3.10) ã1(θ) > ǫ > 0 .

We shall choose

A(r, θ) =

(
r

θ + µ(r)(φ(θ) − θ)

)
.

and

(3.11) B(r, θ) =

(
r
θ

)
+ (r − 1)µ(r)

((
a1 − 1
a2

)
+ (r − 1)R

)
.

We claim that A and B are diffeomorphisms whose composition, B ◦ A, is the desired

extension of Ψ. In (3.11), a1, a2, and R represent the composition of ã1,ã2, and R̃ with

φ−1(θ). The function µ(r) is a cutoff, which is identically equal to one in some neighbor-

hood of {r = 1} and identically equal to zero outside some other neighborhood. This is

enough, along with (3.9), to check that A is a local diffeomorphism. To guarantee that B

is a local diffeomorphism we shall require that

µ(r) = 1 for |r− 1| < δ

µ(r) = 0 for |r− 1| >Mδ

and that

(3.12) 0 > (r − 1)µ′(r) > − ǫ

2
.

It is possible to find such a µ (with M = e2/ǫ and δ arbitrarily small) because

∫ Mδ+1

δ+1

1

r − 1
dr = logM .

Now,

DB(r, θ) =

(
(1 − µ) + µa1 + µ′(r − 1)(a1 − 1) (r − 1)µa′1

(r − 1)µ′a2 + µa2 1 + (r − 1)µa2

)
+ (r − 1)B̃(r, θ)

It follows from (3.12) and (3.10) that, for a sufficiently small choice of δ, the diagonal

entries of DB are bounded from below and the off diagonal entries are small enough to
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guarantee the invertibility of DB. Because both A and B are equal to the identity off a

compact set, it follows from degree arguments that both are global diffeomorphisms.

It remains only to prove proposition 3.2. As in the proof of proposition 3.1, we begin

with a special case.

Lemma 3.6. Proposition 3.2 holds in the case that γ1 and γ2 are isotropic and Ω is a

disk.

Proof In polar coordinates, an isotropic γ is given by

γdu = αr
∂u

∂r
dθ − α

r

∂u

∂θ
dr ; α = (det γ)1/2

and

γdu|r=1 = α
∂u

∂r
|r=1dθ

To establish lemma 3.6 we shall need the following description of the operator Λγ:

Lemma 3.7.

(3.13) Λγf =

(
α|r=1(|

∂

∂θ
|)f) +

1

2

∂α

∂r
|r=1f − i

2

∂α

∂θ
|r=1sgn(

∂

∂θ
)f +Rf

)
dθ

where

| ∂
∂θ

| : einθ 7→ |n|einθ

sgn
∂

∂θ
: einθ 7→ sgn(n)einθ

and

(3.14) R : H1/2(S1) 7→ H3/2(S1) (Hs = W s,2)

Proof. There are many routes to (3.13). The most general is to note that Λγ is a

pseudodifferential operator and to compute the first two terms in its symbol expansion.

Because we are in D, the disk in two dimensions, we can give a direct proof which avoids

any extra machinery.

Let u0 solve

∆u0 = 0

u0|r=1 = f ∈ H1/2(S1)
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then u0 ∈ H1(D). Let u1 solve

∆u1 = −∂u0

∂r

u1|r=1 = 0

and u2 solve

∆u2 =
−1

r

∂u0

∂θ

u2|r=1 = 0

so that u1 and u2 ∈ H2(D). If u solves

d(γdu) =

(
α∆u+ αr

∂u

∂r
+
αθ

r2
∂u

∂θ

)
rdr∧dθ = 0

u|∂Ω = f

and we set

uR = u− u0 −
αr

α
u1 −

αθ

rα
u2

then uR satisfies

α∆uR + αr
∂uR

∂r
+
αθ

r2
∂uR

∂θ
= Au1 +Bu2

uR|r=1 = 0

where A and B are first order differential operators with coefficients which are smooth

away from the origin, so that uR ∈ H3
loc(D\{0}) and the mapping

f
R̃7→α

∂uR

∂r
|r=1

satisfies (3.14).

If we take f = einθ, however, we may compute that

u0 = r|n|einθ

u1 =
−|n|

(2|n| + 1)
(r|n|+1 − r|n|)einθ

u2 =
−in

(2|n| + 1)
(r|n|+1 − r|n|)einθ

Hence,

γdu|r=1 = α
∂u

∂r
|r=1dθ

=

(
α|n| − αr

2
− iαθ

2
sgn(n) + g(n, α, αr, αθ,∆α)

)
einθdθ
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where g is O( 1
|n| ). Finally, if we define

Reinθ = R̃einθ + g(n, α, αr, αθ,∆α)einθ

we obtain (3.13).

A consequence of (3.13) and (3.3) is

(3.15) φ∗(α1|r=1|
∂

∂θ
| ⊗ dθ) = α2|r=1|

∂

∂θ
| ⊗ dθ

and that

(3.16) φ∗((
∂α1

∂r
|r=1 − i

∂α1

∂θ
|r=1sgn

∂

∂θ
) ⊗ dθ) = (

∂α2

∂r
|r=1 − i

∂α2

∂θ
|r=1sgn

∂

∂θ
) ⊗ dθ .

Computing the push forward in (3.15) and (3.16) yields

(3.15′) sgn(φ−1′(θ)) α1(1, φ
−1(θ)) = α2(1, θ)

and

(3.16′)
∂α1

∂r
(1, φ−1(θ)) φ−1′(θ) =

∂α2

∂r
(1, θ)

(3.16′′)
∂α1

∂θ
(1, φ−1(θ)) φ−1′(θ) =

∂α2

∂θ
(1, θ).

Since both α1 and α2 are positive, φ−1′ must be positive so that φ is orientation preserving.

To see that (3.15′), (3.16′), and (3.16′′) establish (3.4), we need only check that, in polar

coordinates,

(3.17) DΦ(1, θ) = φ′(1, θ)

(
1 0
0 1

)

Recall that Φ is a formal solution (to order k) of (1.27) with Cauchy data φ, and that (1.27),

in the case that γ1 and γ2 are isotropic, is just the Cauchy Riemann equations. This means

that Φ maps ∂D to itself and is conformal to order k, which implies, in particular, (3.17).

This completes the proof of lemma 3.6.

Proof of Proposition 3.2 Suppose first that Ω is simply connected. If we let Φ1 and

Φ2 denote isothermal coordinates for γ1 andγ2 respectively, then Φ1∗γ1 and Φ2∗γ2 are

isotropic conductivities on the domains Φ1(Ω) and Φ2(Ω) respectively. If we let Ψi denote
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conformal maps from the Φi(Ω) to the unit disk, (Ψi ◦ Φi)∗γi are isotropic conductivities

on the disk. Because

φ∗Λγ1
= Λγ2

+R

we have

(φ(ψ1φ1)
−1)∗Λ(Ψ1Φ1)∗γ1

= (ψ2φ2)
−1)∗Λ(Ψ2Φ2)∗γ2

+ R̃

or

(ψ2φ2φ(ψ1φ1)
−1)∗Λ(Ψ1Φ1)∗γ1

= Λ(Ψ2Φ2)∗γ2
+

˜̃
R .

Lemma 3.6 implies that (ψ2φ2φ(ψ1φ1)
−1) is orientation preserving and

(3.18) Dβ(det(Ψ1Φ1)∗γ1 ◦ Φ̃)|∂D = Dβ(det(Ψ2Φ2)∗γ2)|∂D ; |β| ≤ 1

where Φ̃ is the extension in proposition 3.1 with φ replaced by ψ2φ2φ(ψ1φ1)−1. Now Φ is

related to Φ̃ by

Φ = (Ψ2Φ2)
−1 ◦ Φ̃ ◦ (Ψ1Φ1)

so that (3.18) implies (3.4) and the propositon is true in the case that Ω is simply connected.

Finally, suppose that Ω is not simply connected. Let Ω̃ denote the complement to

(lR2\Ω)m, the unbounded component of lR2\Ω (i.e. Ω with the holes filled in), and suppose

that γi has been extended to be a C3 conductivity γ̃i on Ω̃. We claim that

Λγ̃i
= (Λγi

)N +R

whereR is a smoothing operator and (Λγi
)N is a restriction of Λγi

; namely, for f ∈ C3(∂Ω̃),

(Λγi
)Nf = γidu|∂Ω̃

where u satisfies

dγidu = 0 for x ∈ Ω

u|
∂Ω̃

= f

u|
∂Ω\∂Ω̃

= 0

Our claim follows from the fact that the difference between u and the solution to the

Dirichlet problem in Ω̃ is smooth in a neighborhood of ∂Ω̃. To see this, multiply the differ-

ence by a cutoff supported in a neigborhood of ∂Ω̃ and apply standard elliptic estimates

to this product (see [KV I] e.g.).

Hence,the hypothesis (3.3) on Ω implies the same hypothesis on Ω̃, which is simply

connected. Thus we may conclude from the simply connected case that φ is orientation
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preserving and that (3.4) holds on ∂Ω̃, which coincides with (∂Ω)m. However, if we push

forward both γ1 and γ2 by an inversion in a sphere in any bounded component of lR2\Ω,

that boundary component will become the new (∂Ω)m. Hence φ is orientation preserving,

(3.4) holds on all of ∂Ω, and the proposition in the case of a general Ω follows from the

simply connected case.
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